

Learning Deep Architectures: a Stochastic Optimization Challenge?

Yoshua Bengio, U. Montreal

University of Waterloo, May 6th, 2009

Intelligence

Intelligence = good decisions in new contexts = operational knowledge

- Mostly implicit knowledge
- How and where to take the knowledge?
 - Adaptation: evolution and learning

Adaptation = Evolution + Learning

- Each example/experience contributes some information
- Combine innate & learned knowledge
- Are there general principles at work?
- Learning tasks for which evolution did not prepare

What is learning?

Extract underlying and previously unknown statistical structure, from examples

Locally capture the variations

Curse of Dimensionality

To generalize locally, need examples representative of each possible variation.

Limits of local generalization: Theoretical results

Theorem: Gaussian kernel machines need at least k examples to learn a function that has 2k zero-crossings along some line

Theorem: For a Gaussian kernel machine to learn some maximally varying functions over d inputs require O(2^d) examples

(Bengio & Delalleau 2007)

Distributed Representations

- Many neurons active simultaneously.
- Input represented by the activation of a set of features that are not mutually exclusive.
- Can be exponentially more efficient than local representations

Local vs Distributed

Nearby Words in Semantic Space

France	Jesus	XBOX	Reddish	Scratched
Spain	Christ	Playstation	Yellowish	Smashed
Italy	God	Dreamcast	Greenish	Ripped
Russia	Resurrection	PS###	Brownish	Brushed
Poland	Prayer	SNES	Bluish	Hurled
England	Yahweh	WH	Creamy	Grabbed
Denmark	Josephus	NES	Whitish	Tossed
Germany	Moses	Nintendo	Blackish	Squeezed
Portugal	Sin	Gamecube	Silvery	Blasted
Sweden	Heaven	PSP	Greyish	Tangled
Austria	Salvation	Amiga	Paler	Slashed

Collobert & Weston, ICML'2008

Local vs Distributed Representations

Debate since early 80's (connectionist models)

- Local representations:
- still common in neuroscience
- kernel machines, graphical models
- easier to interpret
- Distributed representations:
- $\approx 1\%$ active neurons in brains
- exponentially more efficient
- difficult optimization

Deep architecture in the brain

Sequence of transformations / abstraction levels

Architecture Depth

Computation performed by learned function can be decomposed into a graph of simpler operations

Insufficient Depth

Insufficient depth

May require exponential size architecture

Sufficient depth

Compact representation

Expressive power

Good news	Universal approximator	 Logic gates 	(Hastad et al 86)
Bad	May have exponential size	 Formal neurons 	(Hastad et al 91)
		- RBF units	(Bengio et al 2007)

Functions representable compactly with k layers may require exponential size with k-1 layers

Neuro-cognitive inspiration

- Brains use a distributed representation
- Brains use a deep architecture
- Brains heavily use unsupervised learning
- Brains learn simpler tasks first
- Human brains developed with society / culture / education

Breakthrough!

Before 2006

Failure of deep architectures

After 2006

Train one level after the other, unsupervised, extracting abstractions of gradually higher level

Deep Belief Networks (Hinton et al 2006)

Success of deep neural networks

Since 2006

- Records broken on MNIST handwritten character recognition benchmark (Ranzato et al 2007, 2008)
- State-of-the-art beaten in language modeling (Collobert & Weston 2008)
- □ NSF et DARPA are interested...
- Similarities between V1 & V2 neurons and representations learned with deep nets
- Dozens of papers. See my review paper to appear in Foundations and Trends in Machine Learning.

V1 and V2-like filters learned

Slow features 1st layer

RBM 1st layer

Denoising auto-encoder 1st layer____

DBN 2nd layer

Unsupervised layer-wise pre-training

RBMs and Auto-Encoders

- Building blocks of current learning algorithms for deep architectures
- Mathematically similar
- Feedback connections for learning

Injection of noise

Denoising auto-encoder

What neuron model?

- Amount of noise / randomness in individual neuron behavior?
- □ Linear or higher-order computations in the dendritic tree?
- Exponentially or polynomially saturating non-linearity?
- Temporal constancy? multiple time scales?

Quadratic interactions? Sigmoid?

CSE

Back-prop in the Brain?

- The best-performing models require weight adaptation driven by gradient wrt prediction error
- Insufficient to adapt only one layer: need to adapt many layers wrt predictive goal
- Back-propagation of errors mostly believed to be biologically implausible

Brain Back-prop? Hinton's way

Hinton proposed a solution at NIPS'2007:

- requires roughly symmetric connections
- Slow time scale for predictions
- Fast time scale (temp.deriv.) for error signals

Why is unsupervised pre-training working?

- Learning mostly layer-local with unsupervised learning
- generalizing better when many factors of variation (Larochelle et al ICML'2007)
- deep neural nets iterative training: stuck in poor local minima (AISTATS 2009)
- pre-training moves into improbable region with better basins of attraction, adds prior on p(input)
- Training one layer after the other ≈ continuation method (Foundations & Trends in ML 2009)

Deep Training Trajectories

$E\left[\frac{\partial C(x)}{\partial \theta}\right] = \frac{\partial}{\partial \theta} \int C(x)p(x)dx$

Really an Optimization Problem

Non-convex optimization

Humans somehow find a good solution to an intractable non-convex optimization problem.

How?

- Guiding the optimization near good solutions
- Guiding / giving hints to intermediate layers

Continuation Methods

The Credit Assignment Problem

- Even with the correct gradient, lower layers (far from the prediction, close to input) are the most difficult to train
- Lower layers benefit most from unsupervised pre-training
 - Local unsupervised signal = extract / disentangle factors
 - Temporal constancy
 - Mutual information between multiple modalities
- Credit assignment / error information not flowing easily?

Guiding the Stochastic Optimization of Representations

- Train lower levels first (DBNs)
- Start with more noise / larger learning rate (babies vs adults)
- Slow features / multiple time scales
- Cross-modal mutual information
- Curriculum / shaping
- Parallel search / culture, education & research

Curriculum Learning

Guided learning helps training humans and animals

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)

See ICML'2009 paper

Curriculum Learning

- Sequence of training distributions
- Initially peaking on easier / simpler ones
- Gradually give more weight to more difficult ones until reach target distribution

Shape Recognition

First: easier, basic shapes

Second = target: more varied geometric shapes

Shape Recognition Experiment

- 3-hidden layers deep net known to involve local minima (unsupervised pre-training finds much better solutions)
- 10 000 training / 5 000 validation / 5 000 test examples

Procedure:

- 1. Train for k epochs on the easier shapes
- 2. Switch to target training set (more variations)

Shape Recognition Results

Language Modeling Experiment

Language Modeling Results

Parallelized exploration in brain space

Brain space

Each brain explores a potential solution

 Instead of exchanging synaptic configurations, exchange ideas through language

Memes

Genetic Algorithms	Evolution of ideas
Population of candidate solutions	Brains
Recombination mechanism	Culture and language

Conclusions

- Shallow architectures and local generalization are insufficient to represent complex functions efficiently
- Deep distributed architectures could not be trained before 2006
- Now understand it is a non convex optimization problem connected to credit assignment for deeper layers
- Many successful algorithms proposed:
 - Optimizing easier proxys (continuation methods)
 - Guiding the learning of intermediate representations