BIN3002 :: II

6 Modèles temporaires

6.1 Descendance avec modification

Substitutions multiples. Évolution de caractères homologues est sans mémoire : états succéssifs forment une chaîne de Markov. Probabilités de substitution selon la matrice $M_{X \to Y}$ où

$$\mathbf{M}_{X \to Y}[a, b] = \mathbb{P}\Big\{Y = b \mid X = a\Big\}$$

avec valeurs $a, b \in \Sigma = \{1, \dots, r\}$. (Exemple : $\Sigma = \{1, 2, 3, 4\}$ encodant ADN)

$$\begin{array}{l}
 X \\
 Y \\
 Y$$

6.2 Temps continu.

Comment peut-on ajouter une notion de temps? Quelle est la matrice **M** qui correspond à un temps de divergence connu entre les séquences?

À chaque mutation, le changement d'état est determiné par la matrice **M**. Si k événements en temps t, alors $\mathbf{M}_{X\to Y} = \mathbf{M}^k$. Donc la matrice pour temps t devrait être $\mathbf{M}^{N(t)}$ où N(t) est le nombre de mutations pendant temps t. Problème : N(t) est aléatoire...

Procéssus de Poisson. Supposons que $\{N(t): t \in [0, \infty)\}$ est un procéssus qui compte l'occurrence d'événements de quelque sort. Supposons que le procéssus satisfait les critères suivants

🕼 [«orderly»] La probabilité qu'il y ait plus d'une occurrence dans un petit intervalle de temps est négligeable

$$\lim_{\delta \to 0} \mathbb{P}\Big\{ N(t+\delta) > 1 \ \Big| \ N(t+\delta) \ge 1 \Big\} = 0$$

(«memoryless») Le nombre d'occurrences pendant un intervalle ne dépend pas des événements précédents : N(t + s) - N(t) est indépendant de N(t)

Si le procéssus est orderly et memoryless, alors c'est un procéssus de Poisson avec les propriétés suivantes.

 \star nombre d'arrivées pendant temps s est une v.a. Poisson :

$$\forall t, s \colon \mathbb{P}\{N(t+s) - N(t) = k\} = e^{-\lambda s} \frac{(\lambda s)^k}{k!}$$

Le paramètre λ est l'intensité ou le **taux** du procéssus.

* temps d'attente est une v.a. exponentielle : $\forall t, s : \mathbb{P}\{N(t+s) = N(t)\} = e^{-\lambda t}$

Procéssus de Markov. En retournant à ce qui se passe pendant temps t:

$$\sum_{k=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} \mathbf{M}^k = \exp\left(\lambda t (\mathbf{M} - \mathbf{I})\right) = \exp\left(\lambda t \mathbf{Q}\right)$$

où I est la matrice d'unité. $\mathbf{Q} = \mathbf{M} - \mathbf{I}$ est la matrice instantanée de taux de substitutions. Calcul de $\exp(\lambda \mathbf{Q}t)$: décomposition de la matrice $\mathbf{Q} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}$, et faire $e^{\lambda \mathbf{Q}t} = \mathbf{U} e^{\lambda t \mathbf{\Lambda}} \mathbf{V}$.

$$\begin{pmatrix} -\eta & \eta \\ \nu & -\nu \end{pmatrix} \begin{pmatrix} \cdot & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & \cdot & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} \end{pmatrix} \begin{pmatrix} \cdot & \pi_{\mathsf{C}}\alpha & \pi_{\mathsf{G}}\beta & \pi_{\mathsf{T}}\alpha \\ \pi_{\mathsf{A}}\alpha & \cdot & \pi_{\mathsf{G}}\alpha & \pi_{\mathsf{T}}\beta \\ \pi_{\mathsf{A}}\beta & \pi_{\mathsf{C}}\alpha & \cdot & \pi_{\mathsf{T}}\alpha \\ \pi_{\mathsf{A}}\alpha & \pi_{\mathsf{C}}\beta & \pi_{\mathsf{G}}\alpha & \cdot \end{pmatrix}$$
(somme est 0 dans toute rangée) perte-gain (binaire) Jukes-Cantor (DNA) Hasegawa-Kishino-Yano (DNA)

Le modèle de Yang et Nielsen (1998) pour codons utilise un paramètre ω qui mesure sélection, et un paramètre κ pour rapport de transitions/transversions :

$$\mathbf{Q}[a,b] = \begin{cases} \mu \pi_b & 1 \text{ transversion synonyme} \\ \mu \kappa \pi_b & 1 \text{ transition synonyme} \\ \mu \omega \pi_b & 1 \text{ transversion non-synonyme} \\ \mu \kappa \omega \pi_b & 1 \text{ transition non-synonyme} \end{cases}$$

6.3 Conservation de séquence

Miller & al. Annu Rev Genomics Hum Genet 5:15 (2004)

Principe de génomique comparative : éléments fonctionnels sont plus conservés (séléction négative) que les éléments non-fonctionnels (évolution neutre)

Comparaison de séquences entre des espèces proches : évolution rapide/lente $e^{\mu \mathbf{Q}t}$ où $\mu < 1$ pour des régions sous sélection purificatrice.

Exemple : fenêtre glissant de 50 pb sur alignement multiple de primates. Axis Y : score LODS (en haut) et % d'identité (en bas)

Boffelli & al. Science 299 :1391 (2003)

PhyloHMM. Modèle HMM pour segmentation : émissions = colonnes de l'alignement multiple, avec probabilités $e^{\mathbf{Q}t}$ (neutre) ou $e^{\rho \mathbf{Q}t}$ (sélection négative avec $\rho < 0$)

deux états : conservé ou non Siepel & al. *Genome Res* 15 :1034 (2005)

DLESS : états correspondent à conservation dans un clade phylogénétique, ou à la perte de fonction Siepel & al. *RECOMB 2006*

6.4 Modèle temporaire pour suppressions et insertions

On a vu le modèle de Markov pour substitutions — est-ce qu'on peut modéliser les indels par un procéssus stochastique?

Idée : événements forment un procéssus (p.e., Poisson de taux θ), il faut juste spécifier ce qui se passe lors d'un événement. Un modèle assez général : insertions de longueur ℓ avec probabilité $p_{\text{Ins}}(\ell)$ et suppressions de longueur ℓ avec probabilité $p_{\text{Del}}(\ell)$ — très difficile (ou impossible) de travailler avec...

Thorne-Kishino-Felsenstein [1991] Un modèle simple : insertions et suppressions de longueur 1.

-##CC-C#CCCC

Un procéssus indel (en parallèle avec les procéssus de substitution) à chaque caractère + au début. Événement d'insertion : choix d'un caractère selon la distribution stationnaire.

Taux d'insertion λ à chaque caractère ainsi qu'au début; taux de suppression μ à chaque caractère.

But : étant donné une séquence ancestrale et une séquence déscendante, établir la homologie au niveau des caractères (représentée par un alignement). Les caractères s'évoluent indépendamment : on peut considérer le sort de chaque caractère ancestral séparamment.

Sort	Description	Bloc d'alignement
$C \underbrace{\# \cdots \#}_{}$	ancêtre survivant, avec $n \ge 0$ caractères inserés à côté	C C###
$\Box \underbrace{\overset{n \text{ fois}}{\# \cdots \#}}_{}^{n \text{ fois}}$	ancêtre mort, avec $n > 0$ caractères insérés à côté	C -###
n fois	ancêtre mort, aucune insertion à côté	C -
* <u># · · · #</u>	insertion de $n \ge 0$ caractères au début	 ###
n fois		

Sort	probabilité $X \to Y$
$C \to C \#^{n-1}$	$H_t B_t^{n-1}$
$C \to \Box \#^n$	$N_t B_t^{n-1}$
$C \to \Box$	E_t
$\star \to \star \#^n$	$I_t B_t^n$

$$\begin{split} \beta_t &= \frac{1 - e^{-(\mu - \lambda)t}}{\mu - \lambda e^{-(\mu - \lambda)t}} \\ B_t &= \lambda \beta_t \\ I_t &= 1 - \lambda \beta_t \\ N_t &= (1 - e^{-\mu t} - \mu \beta_t)(1 - \lambda \beta_t); \end{split}$$

Maintenant on peut

- ★ trouver le meilleur alignment
- \star maximiser la vraisemblance pour deux séquences homologues et ainsi trouver les valeurs de λ , μ , t
- * concevoir des tests de homologie basés sur la valeur de la vraisemblance
- * évaluer la fiabilité de l'alignment optimal

Exemple : calcul de la vraisemblance — utiliser la programmation dynamique (en se servant des queues géométriques $\propto B^n$). L(i, j) probabilité que X[1..i] est devenu Y[1..j]; Z(i, j) variables auxiliaires. Récurrences :

$$Z(i,j) = p_{i,j} \cdot H_t \cdot Z(i-1,j-1) + p_j \cdot N_t \cdot Z(i,j-1) + p_j \cdot B_t \cdot Z(i,j-1)$$

$$L(i,j) = Z(i,j) + E_t \cdot L(i-1,j),$$

où $p_{i,j} = \mathbf{M}[X[i], Y[j]]$ est la probabilité $X[i] \to Y[j]$ dans la matrice de substitution, et $p_j = \pi_{Y[j]}$ est la probabilité stationnaire de Y[j]. Initialisation : $Z(0,0) = L(0,0) = I_t$.

Paire-HMM. Modèle de Markov caché où les états correspondent à des insertions, suppressions et substitutions/identités dans l'alignement. La machine *émet* un alignment, mais on obsèrve seulement les séquences sans trous. Problème d'inférence : on connaît les séquences — qu'est-ce qu'on peut dire sur l'alignment inconnu?

Start

 $\left(\frac{N\tau}{1-B\tau}+E_{\tau}\right)$

 p_{DD}

 p_{ML}

 p_{DE}

#

 p_{DM}

 $1 - B_{c}$

 p_{MM}

#

#

 p_{ID}

 p_{DI}

 p_{ME}

 p_{IM}

 p_M

End

 p_{IE}

#

 p_{II}

(transitions entre états p_{MM} , p_{MI} , etc. calculées à partir de I_t, B_t, H_t, N_t, E_t)

6.5 Alignement?

alignement = hypothèse de homologies

Fiabilité. On a la probabilité postérieure de homologie $(i \diamondsuit j)$, et celle de manque de homologie $(i \diamondsuit -, -\diamondsuit j)$ pour juger les colonnes de l'alignement. Une partie bien alignée correspond à une séquence de colonnes avec de grandes probabilités postérieures.

Maximal Expected Accuracy. l'alignement qui maximise le nombre de paires alignés correctement — utiliser $\mathbb{P}\{i \diamondsuit j\}$ comme le score du match de la colonne $\frac{X[i]}{Y[j]}$, pas de pénalité pour trous.

AMAP. Problème avec MEA — qu'est-ce qui se passe avec deux séquence non-reliées ? Maximiser plutôt le nombre (en espérance) d'accords entre le vrai alignement (inconnu) et l'alignement qu'on calcule :

désaccords =
$$n + m - 2M - D - I$$
,

où M, D, I sont les nombres de matches, suppressions et insertions en commun entre deux alignements. En espérance, on a $\mathbb{E}M = \sum_{i,j} \mathbb{P}\{i \diamondsuit j\}$, $\mathbb{E}D = \sum_i \mathbb{P}\{i \diamondsuit -\}$, $\mathbb{E}I = \sum_j \mathbb{P}\{-\diamondsuit j\}$ (où \mathbb{P} dénote probabilité postérieure, conditionnée sur les deux séquences).