Tas binaire — suppression

```
DELETEMIN(H) // tas dans H[1..|H|]
D1 r \leftarrow H[1]
D2 \mathbf{if} |H| > 1
D3 \mathbf{then} \ v \leftarrow H[|H|] \ ; \ H[|H|] \leftarrow \mathsf{null} \ ; \ \mathsf{COULER}(v, 1, H)
D4 \mathbf{return} \ r
```

```
COULER(v, i, H) // tas dans H[1..|H|]

C1 c \leftarrow \text{MINCHILD}(i, H)

C2 while c \neq 0 et H[c] < v do

C3 H[i] \leftarrow H[c]

C4 i \leftarrow c

C5 c \leftarrow \text{MINCHILD}(i, H)

C6 H[i] \leftarrow v
```

(COULER est implanté par percolateDown dans le livre)

```
MINCHILD(i,H)
// retourne l'enfant avec clé minimale ou 0 si i est une feuille
```

Tas binaire — efficacité

Hauteur de l'arbre est toujours $\lfloor \lg n \rfloor$

 $deleteMin : O(\lg n)$

 $insert : O(\lg n)$

findMin : O(1)

Tas d-aire

Tas d-aire : on utilise un arbre complet d-aire avec une arité $d \geq 2$.

L'implantation utilise un tableau A:

parent de l'indice i est $\lceil (i-1)/d \rceil$, enfants sont à d(i-1)+2..di+1

ordre de monceau:

$$A[i] \ge A\left[\left\lceil \frac{i-1}{d} \right\rceil\right]$$
 pour tout $i > 1$

 $deleteMin : O(d log_d n)$ dans un tas d-aire sur n éléments

 $insert : O(\log_d n)$ dans un tas d-aire sur n éléments

findMin : O(1)

NAGER et COULER : $O(\log_d n)$ et $O(d\log_d n)$

Permet de balancer le coût de l'insertion et de la suppression si on a une bonne idée de leur fréquence

Tas d-aire — construction

Opération heapify (A) met les éléments de la vecteur A[1..n] dans l'ordre de monceau.

Triviale?

$$H \leftarrow \emptyset$$
; for $i \leftarrow 1, \dots, n$ do insert $(A[i], H)$; $A \leftarrow H$ \Rightarrow prend $O(n \log_d n)$

Meilleure solution:

HEAPIFY
$$(A)$$
 // vecteur arbitraire $A[1..n]$
H1 for $i \leftarrow n, \ldots, 1$ do COULER $(A[i], i, A)$

 \Rightarrow prend O(n)

Tas d-aire — construction (cont)

Preuve du temps de calcul : si i est à la hauteur j, alors il prend O(j) de faire COULER (\cdot, i, \cdot) . Il y a $\leq n/d^j$ nœuds à la hauteur j. Donc temps est de

$$\sum_{j} \frac{n}{d^{j}} O(j) = O\left(n \sum_{j} \frac{j}{d^{j}}\right) = O(n).$$

«Évidemment», O(n) est optimal pour construire le tas.

Preuve formelle:

- Trouver le minimum des élements dans une vecteur de taille n prend n-1 comparaisons, donc un temps de $\Omega(n)$ est nécessaire pour trouver le minimum.
- Avec n'importe quelle implantation de heapify, on peut appeler findMin après pour retrouver le minimum en O(1).
- Donc le temps de heapify doit être $\Omega(n)$, sinon on pourrait trouver le minimum en utilisant heapify+findMin en un temps o(n) + O(1) = o(n).

Tri par tas

```
HEAPSORT(A) // vecteur non-trié A[1..n]
H1 heapify(A)
H2 for i \leftarrow |A|, \dots 2 do
H3 échanger A[1] \leftrightarrow A[i]
H4 COULER(A[1], 1, A[1..i-1])
```

A[1..n] est dans l'ordre décroissant à la fin

(pour l'ordre croissant, utiliser un max-monceau)

Temps $O(n \log n)$ dans le pire des cas, sans espace additionnelle!

quicksort : $O(n^2)$ dans le pire des cas

mergesort: $O(n \log n)$ dans le pire des cas mais utilise un espace auxiliaire de

taille n

Files de priorité

Autres implantations existent (nécessaires pour un merge efficace) : binomial heap, skew heap, Fibonacci heap

	binaire (pire)	binomial (pire)	skew (amorti)	Fibonacci (amorti)
deleteMin	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
merge	O(n)	$O(\log n)$	O(1)	O(1)
decreaseKey	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)

opération decreaseKey : change la priorité d'un élément — dans un tas binaire on peut le faire à l'aide de NAGER

decreaseKey est important dans quelques algorithmes fondamentaux sur des graphes (plus court chemin, arbre couvrant minimal)

Applications

Simulations d'événements discrets

Algorithme A*: arriver à sa destination malgré des obstacles (labyrinthe)