
IFT2015 Miklós Csűrös September 6, 2011

1 Recursion

1.1 Factorial

Definition of the factorial: 0! = 1 and n! = 1× 2× 3× · · · × n =
∏n

k=1 k. for n > 0. (en)

Definition 1.1. The factorial n! of a natural number n ∈ {0, 1, 2, 3 . . . } is defined by

n! =

{
1 {n = 0}
n · (n− 1)! {n > 0}

1.2 Growth of the factorial and Stirling’s formula

10 20 30 40
n

1011

1022

1033

1044

1055

n �

nn

10n
The factorial grows very rapidly — it is a superex-
ponential function: for every fixed c > 1, there
exists n0(c) s.t.

cn < n!
{
n = n0(c), n0(c) + 1, . . .

}
(1.1)

For example, n0(c) = 25 works for c = 10: 25! =
15511210043330985984000000 > 1025.

(en)

Theorem 1.1 (Stirling’s approximation). For all n = 1, 2, . . . there exists 0 < θn < 1 s.t.

n! =
√

2πn
(n
e

)n

︸ ︷︷ ︸
Stirling’s formula

× exp
(θn

12n

)
︸ ︷︷ ︸
error of order 1/n

.

So, n! ∼
√

2πn
(

n
e

)n
. In fact, Stirling’s formula provides a tight lower bound (hence (1.1) is correct

with n0(c) = dcee):

20 40 60 80 100
n

1.002

1.004

1.006

1.008 n �

Stirling

10 20 30 40
n

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

Θn

1

http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Stirling_formula

Exercise 1.1. Use Stirling’s formula to characterize the asymptotic growth of the double factorial:

(2k + 1)!! = 1 · 3 · 5 · 7 · · · (2k + 1) (2k)!! = 2 · 4 · 6 · · · (2k) {k = 0, 1, 2, . . . }

Hint: write (2k)!! = (k!)
∏k

i=1 2, (2k + 1)!! = (2k+1)!Qk
i=1(2i)

= (2k+1)!

(k!)
Qk

i=1 2
, and plug in Stirling’s formula.

1.3 Call stack
(en)

Definition 1.1 translates directly into a recursive algorithm:

FACT(n) //(calculates n!)
F1 if n = 0 then return 1

F2 else return n× FACT(n− 1) // recursive call

int fact(int n)

{

if (n==0) return 1;

else return n*fact(n-1);

}

One can verify that the algorithm satisfies the minimal requirements for a correct recursion: (1) there
is a base case, and (2) every recursive call takes us “closer” to a base case. Consequently, the algorithm
terminates after a finite number of recursive calls.

fact(3)

n=3

fact(2)

n=2

fact(1)

n=1

fact(0)

n=0

return 1

return n*1=1

return n*1=2

return n*2=6

During the execution, the program needs to recover the con-
text (e.g., parameter n) after returning from a recursive call.
It is impossible to predict the depth of the recursion at compile-
time. Memory for local variables and parameters needs to be
allocated at run-time. Typically, the run-time environment
uses a call stack. Whenever a procedure is activated, a block
is allocated on the call stack to store the parameters, local vari-
ables, and the return address.

parameters

return address

top
of the
stack activation

block
(stack frame)

SP
local variables

int fact(int n)

{

if (n==0) return 1;

else return n*fact(n-1);

}

In the machine code, SP denotes the stack pointer.

An activation block uses two memory cells in this

example: n is stored at SP−1, and the return address

is stored at SP− 2. r0 and r1 are CPU registers. r0

is used to store the return value.

imaginary assembly code for fact

M1 load r1, [SP− 1] // (r1 stores n)

M2 jumpnonzero r1, M6

M3 load r0, 1 // (value returned in r0)

M4 sub SP, 2 // (resetting the call stack)

M5 jump [SP]

M6 sub r1, 1 // (r1 = n− 1)

M7 store M11, [SP] // (return address)

M8 add SP, 2 // (frame allocation)

M9 store r1, [SP− 1] // (argument)

M10 jump M1 // (executing the procedure call)

M11 mul r0, [SP− 1] // (value returned in r0)

M12 sub SP, 2 // (resetting the stack)

M13 jump [SP]

2

http://en.wikipedia.org/wiki/Call_stack

Variables. variable = abstraction of a memory location [John von Neumann]
nom + address (lvalue) + value (rvalue) + type + visibility

Local variable (including function parameters): lvalue is relative with respect to the stack frame⇒ every
activated copy of the procedure has its own address space.

1.4 Fibonacci numbers

Definition 1.2. The Fibonacci numbers F (n) are defined for n = 0, 1, 2, . . . by: (en)

F (0) = 0; F (1) = 1; F (n) = F (n− 1) + F (n− 2) {n > 1} (1.2)

Binet’s formula. The roots of the homogeneous recurrence equation [xn = xn−1 + xn−2] are φ =
1+
√

5
2 = 1.618 · · · et φ− = 1 − φ = 1−

√
5

2 = −0.618 · · · . We can find the specific solution by checking
F (0) and F (1):

F (0) = 0 = aφ0 + bφ0
−; F (1) = 1 = aφ1 + bφ1

−.

Hence a = −b = 5−1/2, and

F (n) =
φn − φn

−√
5

. (1.3)

20 40 60 80 100
n

104

108

1012

1016

1020

F�n� In other words, the Fibonacci numbers grow expo-
nentially. Since F (n) is integer and

∣∣φn
−/
√

5
∣∣ <

1/2 for all n ≥ 0, F (n) must equal φn/
√

5,
rounded to the nearest integer:

F (n) =
⌊
φn/
√

5 + 1/2
⌋
.

Exercise 1.2. Characterize the growth of the Pell numbers P (n) for n = 0, 1, 2, 3, . . . :

P (0) = 0;P (1) = 1;P (n) = 2P (n− 1) + P (n− 2) {n > 1}.

1.5 Euclid’s algorithm
(en)

Euclid’s algorithm finds the greatest common divisor (gcd) between two positive integers.

GCD(a, b) // {b ≤ a}
E1 if b = 0 then return a

E2 else return GCD
(
b, a mod b

)
;

int gcd(int a, int b)

{ assert (b<=a && b>=0);

if (b==0) return a;

else return gcd(b, a%b);

}

The next theorem, along with Eq. (1.3) show that the maximum recursion depth is logarithmic in b.

Theorem 1.2. Let n be the largest integer for which F (n) ≤ b < F (n+ 1) when invoking Euclid’s algorithm. The
algorithm terminates after at most (n− 1) recursive calls.

3

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Euclidean_algorithm

Proof. Define ni for i = 1, 2, . . . as the index for the Fibonacci number at recursion depth i for which F (ni) ≤ a <
F (ni + 1) (i = 1 in the initial call). If b < F (ni), then ni+1 ≤ ni − 1 in the next recursive call. If b ≥ F (ni), then
a mod b ≤ a− b < F (ni − 2). So, after two recursive calls, a < F (ni − 2) and, thus, ni+2 ≤ ni − 2. Consequently,
the recursion depth is bounded by n1 − 2: with ni ≤ 3, 0 ≤ b ≤ a < 3 and the algorithm terminates after at most
one more recursion. For the theorem’s tighter bound, consider the initial value of b: F (n2) ≤ b < F (n2 + 1) (since
a← b at the first recursive call), and the algorithm terminates after at most n2 − 1 recursions. �

REMARK. The bound of Theorem 1.2 shows the worst-case: a = F (n+1), b = F (n). with such a choice, a mod b = F (n−1),
and the algorithm recurs n−2 times to get a = F (3) = 2, b = F (2) = 1, and finishes with one more recursion where b becomes 0,
and returns the answer gcd

`
F (n), F (n− 1)

´
= 1.

1.6 Towers of Hanoı̈
(en)

Sometimes, recursion gives a very simple solution for complicated problems.

In the game Towers of Hanoi, a stack of disks with different
diameters (1, 2, . . . , n) has to be moved from one peg onto
another, obeying Rules 1 and 2 below. Operation MOVE(i→
j) moves the top disk from peg i to peg j. There are three
pegs, and the disks are originally ordered in descending order,
with the smallest on top.

Rule 1. Only one disk may be moved at a time. A move consists of taking the top disk from one peg, and
sliding it onto another peg, on top of other disks that may be already there.

Rule 2. A disk can be moved to an unoccupied peg, or on top of a larger disk.

A solution can be formulated in terms of a recursive procedure HANOI(i y k y j, n) that moves the top n
disks from peg i to peg j using the intermediate peg k.

HANOI(i y j y k, n)
H1 if n 6= 0 then

H2 HANOI(i y j y k, n− 1)
H3 MOVE(i→ j)
H4 HANOI(k y i y j, n− 1)

Theorem 1.3. HANOI moves n disks from one peg to another using 2n − 1 moves.

Proof. The proof is by induction in n. Let D(n) be the number of moves (Line H3).

Base case: the theorem is correct for n = 0 since D(0) = 0 = 20 − 1.

Induction hypothesis: assume that the theorem holds for some n ≥ 0.

Induction case: the algorithm has two recursive calls and one MOVE: D(n + 1) = 2D(n) + 1. By the induction

hypothesis, D(n+ 1) = 2 ·
(
2n − 1

)
− 1 = 2n+1 − 1. Hence the theorem holds for (n+ 1).

Consequently, D(n) = 2n − 1 for all n = 0, 1, 2, �

Exercise 1.3. Prove by induction that disk m is moved 2n−m times. (Note that the result implies Theorem 1.3 since 20 +
21 + · · ·+ 2n−1 = 2n − 1.)

Exercise 1.4. Show by induction that
∑n

k=0 F (k) = F (n+2)−1 and that
∑n

k=0 kF (k) = nF (n+2)−F (n+3)+2.
Hint: show the equalities for the base cases (there are two!) and proceed with the induction using the definition (1.2).

4

http://en.wikipedia.org/wiki/Tower_of_Hanoi

	Recursion
	Factorial
	Growth of the fatcorial and Stirling's formula
	Call stack
	Fibonacci numbers
	Euclid's algorithm
	Towers of Hanoï

