1 Recursion

1.1 Factorial

IFT2015

Miklés Csliros September 6, 2011

Definition of the factorial: 0! = landn!=1x2x3 X --- X n = szl k. forn > 0. W en)

Definition 1.1. The factorial n! of a natural number n € {0,1,2,3 ...} is defined by

n! =

{n=0}

1
n-(n—1)" {n>0}

1.2 Growth of the factorial and Stirling’s formula

1055

1044

1033

1022

10!

The factorial grows very rapidly — it is a superex-
ponential function: for every fixed ¢ > 1, there
exists ng(c) s.t.

" < nl {n:no(c),ng(c)—l—l,...} (1.1)

For example, ng(c) = 25 works for ¢ = 10: 25! =
15511210043330985984000000 > 1027,

Theorem 1.1 (Stirling’s approximation). Forallm = 1,2,... there exists 0 < 6, < 1 s.t.

So, n! ~

with ng(c) = [cel):

1.008

1.006

1.004

1.002

2wn<

n
e

n! = 27rn(

-~

1) cesp(35)
— X —_— .
e P 12n

Stirling’s formula error of order 1/n

n!

Stirling

n
) . In fact, Stirling’s formula provides a tight lower bound (hence is correct

1.0000

0.9998 -

0.9996 -

0.9994 -
0.9992
0.9990 (-

0.9988 |-

http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Stirling_formula

Exercise 1.1. Use Stirling’s formula to characterize the asymptotic growth of the double factorial:

(2k+1)11=1-3-5-7---(2k+1) (2k)1=2-4-6---(2k) {k=0,1,2,...}

.o n— (=N TT% o (kDY (2k+1)!) e
Hint: write (2k)!! = (E") [, 2, (2k + 1)!! .Gy — WOIE, and plug in Stirling’s formula.

1.3 Call stack

Definition [I.1] translates directly into a recursive algorithm:

int fact(int n)
FACT(n) // (calculates n)) 11{n ackiamt m
F1 if n = O then return 1 if (n==0) return 1;
F2 else return n X FACT(n — 1) // recutsive call ; else Teturn nkfact(n-1);

One can verify that the algorithm satisfies the minimal requirements for a correct recursion: (1) there
is a base case, and (2) every recursive call takes us “closer” to a base case. Consequently, the algorithm
terminates after a finite number of recursive calls.

fact(3)
GE During the execution, the program needs to recover the con-
: text (e.g., parameter n) after returning from a recursive call.
. It is impossible to predict the depth of the recursion at compile-
— 5 time. Memory for local variables and parameters needs to be
; allocated at run-time. Typically, the run-time environment
B uses a call stack. Whenever a procedure is activated, a block
= is allocated on the call stack to store the parameters, local vari-
- ables, and the rft:(t)lgrn address.
," = SP -~ Oft}if ~"® [Tocal variables T,
-" return 1 e I parameters acgﬁ;lcti{on
“‘ e - T=1 return address (stack fratne)
return n*1=2
imaginary assembly code for fact
M1 load ri, [SP — 1] // (71 stores m)

P———— M2 jumpnonzero 71, [M§]

{ M3 load ro, 1 // (value returned in o)
if (n==0) return 1; M4 sub SP, 2 // (resetting the call stack)
else return nxfact(n-1); M5 jump [SP]

} M6 sub 7y, 1 //(r1=n—1)

In the machine code, SP denotes the stack pointer. M7 store [SP] // (return address)

An activation block uses two memory cells in this M8 add SP, 2 /7 (frame allocation)
example: n is stored at SP —1, and the return address M9 store r1, [SP — 1] // (argument)
is stored at SP — 2. rg and r1 are CPU registers. 7o M10 jump [MT] // (executing the procedure call)

is used to store the return value. M11 mul ro, [SP — 1] // (value returned in o)

M12 sub SP, 2 // (resetting the stack)
M13 jump [SP]

W(en)

http://en.wikipedia.org/wiki/Call_stack

Variables. variable = abstraction of a memory location [John von Neumann]
nom + address (Ivalue) + value (rvalue) + type + visibility

Local variable (including function parameters): lvalue is relative with respect to the stack frame = every
activated copy of the procedure has its own address space.

1.4 Fibonacci numbers

Definition 1.2. The Fibonacci numbers F'(n) are defined forn = 0,1,2, ... by: W (en)
F0)=0; F1)=1; Fn)=Fn-1)+F(n—2) {n>1} (1.2)
Binet’s formula. The roots of the homogeneous recurrence equation [z = z" ! + 2" 2] are ¢ =

% =1618 - etp_=1—¢ = % = —0.618 .. We can find the specific solution by checking
PO and £ F(0)=0=a¢’ +b4"; F(1)=1=ap" +bol.
Hencea = —b = 5_1/2, and

F(n) = gbn_\/;ﬁ (1.3)

1020

In other words, the Fibonacci numbers grow expo-
nentially. Since F'(n) is integer and ‘¢T_L/\£‘ <
1012 1/2 for all n > 0, F(n) must equal ¢"//5,

rounded to the nearest integer:

1010 F | —— F(n)

F(n) = |¢"/V5+1/2].

20 40 60 80 100

n

Exercise 1.2. Characterize the growth of the Pell numbers P(n) forn =0,1,2,3,...:

P(0)=0;P(1) = 1;P(n) =2P(n—1) + P(n—2) {n>1}.

1.5 Euclid’s algorithm
Wen)

Euclid’s algorithm finds the greatest common divisor (gcd) between two positive integers.

int gcd(int a, int b)
GCD(a, b) /7 {b S a} { assert (b<=a && b>=0);
E1 if b = 0 then return a if (b==0) return a;
E2 else return GCD(b, a mod b);) else return gcd(b, alb);

The next theorem, along with Eq. show that the maximum recursion depth is logarithmic in b.

Theorem 1.2. Let n be the largest integer for which F(n) < b < F(n 4+ 1) when invoking Euclid’s algorithm. The
algorithm terminates after at most (n — 1) recursive calls.

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Euclidean_algorithm

Proof. Define n; fori = 1,2,... as the index for the Fibonacci number at recursion depth ¢ for which F(n;) < a <
F(n; + 1) (i = 1 in the initial call). If b < F(n;), then n;+1 < n; — 1 in the next recursive call. If b > F(n;), then
amod b <a—0b< F(n; —2). So, after two recursive calls, a < F(n; — 2) and, thus, n;12 < n; — 2. Consequently,
the recursion depth is bounded by n; — 2: with n; < 3,0 < b < a < 3 and the algorithm terminates after at most
one more recursion. For the theorem’s tighter bound, consider the initial value of b: F\(ng) < b < F(ng + 1) (since
a «— b at the first recursive call), and the algorithm terminates after at most ng — 1 recursions. |

REMARK. The bound of Theorem|1.2fshows the worst-case: a = F'(n+1), b = F(n). with such a choice, a mod b = F(n—1),
and the algorithm recurs n— 2 times to get a = F'(3) = 2,b = F(2) = 1, and finishes with one more recursion where b becomes 0,
and returns the answer gcd(F(n), F(n— 1)) =1.

1.6 Towers of Hanoi
Wen)

Sometimes, recursion gives a very simple solution for complicated problems.

In the game Towers of Hanoi, a stack of disks with different
diameters (1,2,...,n) has to be moved from one peg onto
another, obeying Rules 1 and 2 below. Operation MOVE(i —
j) moves the top disk from peg i to peg j. There are three
pegs, and the disks are originally ordered in descending order,
with the smallest on top.

Rule 1. Only one disk may be moved at a time. A move consists of taking the top disk from one peg, and
sliding it onto another peg, on top of other disks that may be already there.

Rule 2. A disk can be moved to an unoccupied peg, or on top of a larger disk.

A solution can be formulated in terms of a recursive procedure HANOI(i ~ k ~ j, n) that moves the top n
disks from peg @ to peg j using the intermediate peg k.

HANOI(i ~j ~ k,n)
H1 ifn # 0 then
H2 HaNOI(i ~j ~ k,n— 1)
H3 MOVE(i — j)
H4 HaNoOI(k ~ i~ j,m—1)

Theorem 1.3. HANOI moves n disks from one peg to another using 2" — 1 moves.
Proof. The proofis by induction in n. Let D(n) be the number of moves (Line [H3).

Base case: the theorem is correct for n = 0 since D(0) = 0 = 20 — 1.

Induction hypothesis: assume that the theorem holds for some n > 0.

Induction case: the algorithm has two recursive calls and one MOVE: D(n + 1) = 2D(n) + 1. By the induction

hypothesis, D(n +1) = 2 - (2" - 1) — 1 =2""1 — 1. Hence the theorem holds for (n + 1).

Consequently, D(n) =2" —1foralln =0,1,2,... . |
Exercise 1.3. Prove by induction that disk m is moved 2™~™ times. (Note that the result implies Theorem sime 20 4
2t gont=9on 1)

Exercise 1.4. Show by induction that 3 _ F(k) = F(n+2)—1 and that _,_, kF (k) = nF(n+2) — F(n+3)+2.
Hint: show the equalities for the base cases (there are two!) and proceed with the induction using the definition (1.2).

http://en.wikipedia.org/wiki/Tower_of_Hanoi

	Recursion
	Factorial
	Growth of the fatcorial and Stirling's formula
	Call stack
	Fibonacci numbers
	Euclid's algorithm
	Towers of Hanoï

