

8. Appartenance-union

UNION-FIND est l'exemple d'une structure de données simple avec une efficacité remarquable. Il s'agit d'une abstraction applicable dans beaucoup de situations:

Miklós Csűrös

- * connexité et propagation d'information dans réseaux un réseau (épidemiology, réseaux informatiques, interactions moléculaires, société, éléctronique),
- * maintenance de composantes connexes dans des algorithmes sur graphes (arbre couvrant minimal, plus court chemins, ancêtre commun),
- * allocation de mémoire pour variables déclarées à compilation
- * séquençage de génomes (objets = morceau de séquence, connexion = chevauchements de séquences)
- * et d'autres

La conception suit des principles génériques de structures de données : arrangement malin d'éléments dans un tableau, maintenance de variables définissant une structure «auto-organisante». La structure est aussi notable pour son analyse superbe par la méthode de crédit-débit, élaboré par Robert Tarjan.

Connexité 8.1

Problème de connexité. Beaucoup d'objets, avec connexions entre eux. Question : est-ce qu'il existe une connexion entre deux objets x, y?

Abstraction. On veut identifier les classes d'équivalence dans l'ensemble $\{0,1,2,\ldots,n-1\}$, définies par une relation d'équivalence (réfléxive, symétrique et transitive). On identifie chaque classe d'équivalence par un élément unique : son élément canonique, c'est à dire un entier de $\{0,1,2,\ldots,n-1\}$ 1}. Opérations :

- \star find(x) retourne l'élément canonique de la classe de x («appartenance») : find(x) = find(y) si et seulement si les deux appartiennent à la même classe (=connexes)
- \star union(x, y) établit l'équivalence (connexion) entre x et y
- \star intitialisation : former une classe avec le seul élément x. Au début, chaque élément forme une classe d'équivalence en soi : on initialise la structure par **for** $x \leftarrow 0, 1, ..., n-1$ **do** init(x).

FIG. 1: Robert Endre Tarjan (1948-)

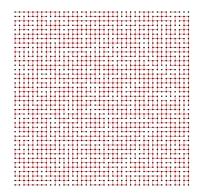


FIG. 2: Connexité : y a-t-il un chemin entre les coins opposés?

¹ W_(fr):Rélation d'équivalence

Exemple:

$$union(3,4)$$
; $union(4,9)$; $union(8,0)$; $union(2,3)$; $union(7,4)$; $union(6,4)$; $union(5,0)$; $find(2)$; $find(6)$ (8.1)

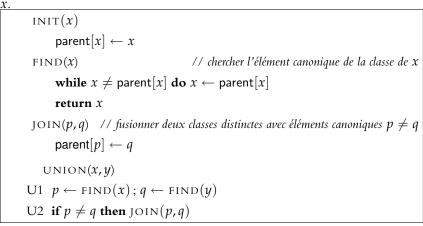
Solution naïve

On stocke la classe de chaque élément dans un tableau id[0..n-1]. En conséquence, la mise à jour prend $\Theta(n)$ temps dans le code d'union.

```
INIT
      \mathsf{id}[x] \leftarrow x
FIND(x)
      return id[x]
UNION(x, y)
      p \leftarrow \text{FIND}(x); q \leftarrow \text{FIND}(y)
                                                                      // déterminer la classe à travers l'interface
      if p \neq q then
                                                    // il faut placer tous les membres de classe p dans classe q
            for z \leftarrow 0, 1, \dots, n-1 do if id[z] = p then id[z] \leftarrow q
```

Solution avec un forêt d'arbres

Dans la deuxième solution, on représente chaque classe par un arbre enraciné à l'élément canonique. Il suffit de stocker parent[0..n-1]; on met parent[x] = x à la racine. Ainsi, on peut lier les éléments canoniques de deux classes en $\Theta(1)$, et find(x) prend un temps proportionnel à la profondeur



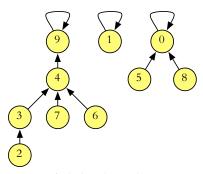


FIG. 3: Forêt d'arbres d'équivalence, après les opérations de (8.1).

Union par rang

Afin de contrôler la hauteur des arbres et ainsi assurer l'exécution rapide de find, on introduit un autre tableau rang[0..n -1]. À tout temps, rang[x] est une borne supérieure sur la hauteur du sous-arbre de x.

```
INIT(x)
  M1 parent[x] \leftarrow x; rang[x] \leftarrow 0
    JOIN(p,q)
J1 if rang[q] < rang[p] then échanger p \leftrightarrow q
                                                                           // assurer
    rang[p] \le rang[q]
J2 if rang[p] = rang[q] then rang[q] \leftarrow rang[q] + 1
J3 parent[p] \leftarrow q
```

Lemma 8.1. Pour tout x avec parent $[x] \neq x$, rang [x] < rang[parent[x]].

Lemma 8.2. Le nombre d'éléments dans un arbre enraciné à x est supérieur ou égal à $2^{\mathsf{rang}[x]}$, après toute séquence d'opérations union et find.

Démonstration. Soit n(x) le nombre d'éléments de l'arbre enraciné à x. La démonstration se fait par induction dans le nombre d'opérations d'union $m = 0, 1, \ldots$

Cas de base. À m = 0, on a rang[x] = 0 et n(x) = 1 pour tout x.

Hypothèse d'induction. On suppose que $n(x) \geq 2^{\mathsf{rang}[x]}$ vaut pour chaque x après m > 0 opérations d'union.

Cas inductif. Soit UNION(x,y) le (m+1)-ème appel à UNION. Si p=q dans Ligne U2, rien ne change, donc la propriété reste vraie par l'hypothèse d'induction. Autrement, on appelle JOIN(p,q). Si rang[p] < rang[q] dans Ligne J2, rang[q] ne change pas mais son sous-arbre grandit, donc après on a $n(q) > 2^{rang[q]}$. rang[q], on a (par l'hypothèse d'induction appliqué à p,q) que $n(p) + n(q) \ge 2^{\mathsf{rang}[p]} + 2^{\mathsf{rang}[q]} = 2^{1 + \mathsf{rang}[q]}.$ En conclusion, le lemme est valide pour toute séquence avec $m=0,1,2,\ldots$ opéra-

Théorème 8.3. Une opération de find(x) prend $\Theta(\log n)$ temps avec la heuristique d'union par rang.

```
Démonstration. Par Lemme 8.1, le rang croît à chaque itération, et 0 \le \text{rang}[p] \le \lg n
pour tout p par Lemme 8.2.
```

Compression de chemin

tions d'union.

On peut réduire la profondeur aussi lors d'un find par la technique de compression de chemin.

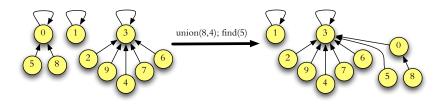


FIG. 4: Union-find avec compression de chemin.

```
FIND(x)
                                                              // compression par récursion
FC1 y \leftarrow \mathsf{parent}[x]
FC2 if x \neq y
FC3 then y \leftarrow \mathsf{parent}[x] \leftarrow \mathsf{FIND}(y)
FC4 return y
```

On peut éviter la récursivité avec l'astuce de compression par réduction à moitié (path halving). Cela nécessite un seul passage.

```
FIND(x)
                                                                    // compression par réduction à moitié
FH1 y \leftarrow \mathsf{parent}[x]
FH2 z \leftarrow \mathsf{parent}[y]
FH3 while y \neq z do x \leftarrow \mathsf{parent}[x] \leftarrow z; y \leftarrow \mathsf{parent}[x]; z \leftarrow \mathsf{parent}[y]
FH4 return y
```

Temps de calcul

Si on implante union par rang, le temps de calcul de find est $O(\log n)$ au pire sans ou avec compression de chemin. Mais la compression mène à un coût amorti presque constant : $O(\log^* n)$ par opération, où \log^* dénote le logarithme itéré²:

$$\lg^* n = \begin{cases} 0 & \text{si } n \le 1\\ 1 + \lg^* (\lg n) & \text{si } n > 1 \end{cases}$$

Théorème 8.4. En utilisant union-par-rang et compression de chemin (ou compression par réduction à moitié), une séquence de m opérations sur n éléments prend $O(m \lg^* n)$ temps, où \lg^* dénote le logarithme itéré.

On peut trouver une borne plus serrée que celle du Théorème 8.4; avec la réciproque de la fonction d'Ackermann³.

Définition 8.1 (définition de Tarjan). La fonction Ackermann A(i, j) avec $i, j \geq 1$ est définie par

$$A(i,j) = \begin{cases} 2^j & \text{si } i = 1; \\ A(i-1,2) & \text{si } j = 1 \text{ et } i \ge 2 \\ A(i-1,A(i,j-1)) & \text{si } i,j \ge 2 \end{cases}$$

On définit la fonction Ackermann inverse ($m \ge n \ge 1$) par

$$\alpha(m,n) = \min\{i: A(i,\lfloor m/n \rfloor) \ge \lg n\}.$$

Ackermann inverse est une fonction à croissance même plus lente que \lg^* : $\alpha(m,n) \leq 3$ pour tout n < 65536 et $\alpha(m,n) \leq 4$ pour tout $n < 2^{2^{...^2}}$ (exponentiation 16 fois).

Théorème 8.5. En utilisant union-par-rang et compression de chemin (ou compression par réduction à moitié), une séquence de m opérations sur n éléments prend $O(m\alpha(m,n))$ temps.

² W_(en):iterated logarithm

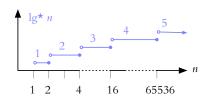


FIG. 5: Logarithme itéré : une fonction à croissance très lente (mais monotone). Noter que $\lg^* n \le 5$ pour tout $n \le 2^{65536}$.

³ W_(fr):Ackermann