
Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös

RECHERCHE ET TRI 2



Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös

ARBRE 2-3-4



Arbre 2-3-4

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös ii

? arbre de recherche non-binaire

? nœud interne peut avoir 2, 3 ou 4 enfants et 1,2 ou 3 clés
? tous les nœuds externes sont au même niveau

on peut transformer un arbre rouge-et-noir en un arbre 2-3-4 facilement :

fusionner les nœuds rouges et leurs parents noirs
! nœuds composés avec 2,3 ou 4 enfants et 1,2, ou 3 clés



Arbre RN$ arbre 2-3-4

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös iii

x y z

A B C Dz

D

y

x

A B C

x

A B

x

A B

x y

A B C

y

x

A B

C

y

C

x

A

B

x y

A B C

4-nœud 

2-nœud 

3-nœud 
de gauche 

3-nœud
de droite



Insertion dans l’arbre 2-3-4

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös iv

Qu’est-ce qui se passe lors d’une insertion ?
On crée un nœud rouge : promotions+rotations en ascendant vers la racine

Rotation : nœud noir avec un enfant rouge et son grand-enfant rouge transformé
en un nœud noir avec deux enfants rouges

x z y

y

z

x

Rotation

y

z

x

A B C D

z y

C D

x

A B

Décalage



Promotion et découpage

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös v

x u

y

u

x

Promotion

A B Cx

A B

Découpage

v

y

u

x

v
rang r

rang r

rang r+1

u y v

C D E

v

D E

y



Promotion à la racine

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös vi

Cas spécial : promotion de la racine

x u

A B C

x

A B

Découpageu y v

C D E

v

D E

y(nouvelle racine)

) la hauteur de l’arbre croı̂t par le découpage de la racine

(arbre binaire de recherche : la hauteur croı̂t par l’ajout de feuilles)



Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös

RECHERCHE EXTERNE



Recherche dans mémoire externe

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös vii

enregistrements avec clés dans une banque de données ––– comment chercher ?

On veut minimiser l’accès au disque dur :
plus lent (par bcp de magnitudes) que l’accès au mémoire vive

Concept principal : page = bloc contigu de données (unité de lecture/écriture sur
le disque)

(++ contextes : «sectors/tracks» sur disque dur, RAID, système d’exploitation, base
de données, swapping du mémoire virtuel)

Taille typique : 1k, 4k, 8k, . . . octets

Accéder à une partie de la page est aussi couteux que d’accéder à toute la page

Opération typique pour caractériser la performance : (1er) accès à une page = probe



Accès séquentiel indexé

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös viii

indexed sequential access : supporte la recherche rapide par clé dans un gros fichier

tableau d’indices (index table) — structure de données pour clés ordonnées
? chaque cellule contient une paire de

⇣
clé, addr

⌘

addr : addresse sur le disque (d’une page)
? chaque page contient M cellules :

M =

6664taille de la page
|clé| + |add|

7775

) arbre M-aire, copier (min-)clés aux nœuds internes (chacun sur 1 page), stocker
enregistrements aux nœuds externes

recherche : nombre de pages à consulter =
j
logM(n + 1)

k

M = 1024 ou M = 256 sont valeurs typiques) «pratiquement» constante !
mais il faut refaire quasiment tout après insertion ou suppression



Accès indexé

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös ix

 The tree depicted in Figure 16.2 is an abstract device-independent representation of an index that is similar to many
other data structures that we have considered. Note that, in addition, it is not far removed from device-dependent
indexes that might be found in low-level disk access software. For example, some early systems used a two-level
scheme, where the bottom level corresponded to the items on the pages for a particular disk device, and the second
level corresponded to a master index to the individual devices. In such systems, the master index was kept in main
memory, so accessing an item with such an index required two disk accesses: one to get the index, and one to get the
page containing the item. As disk capacity increases, so increases the size of the index, and several pages might be
required to store the index, eventually leading to a hierarchical scheme like the one depicted in Figure 16.2. We shall
continue working with an abstract representation, secure in the knowledge that it can be implemented directly with
typical low-level system hardware and software.

 Many modern systems use a similar tree structure to organize huge files as a sequence of disk pages. Such trees
contain no keys, but they can efficiently support the commonly used operations of accessing the file in sequential
order, and, if each node contains a count of its tree size, of finding the page containing the kth item in the file.

 Historically, because it combines a sequential key organization with indexed access, the indexing method depicted in 
Figure 16.2 is called indexed sequential access. It is the method of choice for applications in which changes to the
database are rare. We sometimes refer to the index itself as a directory. The disadvantage of using indexed sequential
access is that modifying the directory is an expensive operation. For example, adding a single key can require
rebuilding virtually the whole database, with new positions for many of the keys and new values for the indexes. To
combat this defect and to provide for modest growth, early systems provided for overflow pages on disks and
overflow space in pages, but such techniques ultimately were not very effective in dynamic situations (see Exercise
16.3). The methods that we consider in Sections 16.3 and 16.4 provide systematic and efficient alternatives to such
ad hoc schemes.

 Property 16.1

 A search in an indexed sequential file requires only a constant number of probes, but an insertion can involve
rebuilding the entire index.

 We use the term constant loosely here (and throughout this chapter) to refer to a quantity that is proportional to logM
N for large M. As we have discussed, this usage is justified for practical file sizes. Figure 16.3 gives more examples.
Even if we were to have a 128-bit search key, capable of specifying the impossibly large number of 2128 different
items, we could find an item with a given key in 13 probes, with 1000-way branching. 

This document is created with the unregistered version of CHMaPDF Pilot

même structure pour accès rapide par position dans un fichier :
mettre clé = position/indice de l’enregistrement



Arbre de recherche

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös x

Stocker un arbre rouge et noir ? ?

Arbre 2-3-4 est plus efficace : on modifie «quelques» nœuds seulement

Comment améliorer ?
on généralise à M sous-arbres au lieu de 4



Arbre B

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xi

Données stockées aux nœuds externes : L enregistrements par nœud

Clés stockées aux nœuds internes : (M � 1) clés à un nœud interne, M enfants

Clé i : valeur minimale dans le sous-arbre (i + 1)

Racine : 2..M enfants
Nœuds internes : dM/2e..M enfants (taille=M · |clé| + (M � 1) · |addr|)
Externes : dL/2e..L enregistrements (taille= L · |enregistrement|)

Nœuds externes àla même profondeur

Choix de M et L : on veut une page par nœud



Arbre B

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xii

867 B-trees 

that can be in each node: we choose a parameter M (an even number, by convention)   
and build multiway trees where every node must have at most M ! 1 key-link pairs (we 
assume that M is sufficiently small that an M-way node will fit on a page) and at least
M/2 key-link pairs (to provide the branching that we need to keep search paths short), 
except possibly the root, which can have fewer than M/2 key-link pairs but must have 
at least 2.  Such trees were named B-trees by Bayer and McCreight, who, in 1970, were 
the first researchers to consider the use of multiway balanced trees for external search-
ing. Some people reserve the term B-tree to describe the exact data structure built by 
the algorithm suggested by Bayer and McCreight; we use it as a generic term for data 
structures based on multiway balanced search trees with a fixed page size. We specify 
the value of M by using the terminology “B-tree of order M.” In a B-tree of order 4, each 
node has at most 3 and at least 2 key-link pairs; in a B-tree of order 6, each node has at 
most 5 and at least 3 link pairs (except possibly the root, which could have 2 key-link 
pairs), and so forth. The reason for the exception at the root for larger M will become 
clear when we consider the construction algorithm in detail.

Conventions. To illustrate the basic mechanisms, we consider an (ordered) SET imple-
mentation (with keys and no values). Extending to provide an ordered ST to associate 
keys with values is an instructive exercise (see Exercise 6.16). Our goal is to support 
add() and contains() for a set of keys that could be huge. We use ordered keys be-
cause we are generalizing search trees, which are based on ordered keys. Extending our 
implementation to support other ordered operations is also an instructive exercise. In 
external searching applications, it is common to keep the index separate from the data. 
For B-trees, we do so by using two different kinds of nodes: 

Q� Internal nodes, which associate copies of keys with pages
Q� External nodes, which have references to the actual data

Every key in an internal node is associated with another node that is the root of a tree 
containing all keys greater than or equal to that key and less than the next largest key, if 

Anatomy of a B-tree set (M = 6)

2-node

external
3-node external 5-node (full)

 internal 3-node

 external 4-node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X Y

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes



Arbre B

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xiii

Thm. La hauteur h de l’arbre B est bornée par

h  1 + logdM/2e
N

2

 1 +

lg

n
L

lgM � 1

où N est le nombre de nœuds externes et n est le nombre d’enregistrements.

Exemple : blocs de 8k, clés de 32 octets, enregistrements de 256 octets, M = 228,
L = 32

h = 4 suffit jusqu’à N = 2.9 · 10

6 ou n = 47 · 10

6

) nombre d’accès au disque est determiné par h : très peu (en plus, on peut garder
la racine et peut-être même le premier niveau en mémoire principale)



Arbre B : insertion

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xiv

comme avec arbre 2-3-4

Insertion d’un enregistrement : s’il y a de la place dans la page, aucun problème

s’il n’y a pas de place : débordement

solution : découpage ! éléments distribués entre deux pages/nœuds de tailles
bL
2

c+ 1 et dL
2

e.

peut causer un débordement au parent : découpage (ou «éclatement») si nécessaire
(tailles ⇠M/2) en ascendant vers la racine

) la hauteur croı̂t en découpant la racine



Arbre B (cont)

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xv

Suppression d’un élément : si la page est toujours assez remplie, aucun problème

et si le nombre d’éléments tombe en-dessous de dL/2e ?

1. prendre des éléments des sœurs immédiates

2. si elles sont au minimum, alors fusionner les pages! le parent perd un enfant

3. continuer avec le parent de la même manière si nombre d’enfants < dM/2e

) la hauteur décroı̂t en enlevant la racine (quand elle a un enfant seulement)



Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös

TRI EN TEMPS LINÉAIRE



Tri linéaire ?

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xvi

distribution uniforme (ou connue) : O(n) en espérance

p.e., clés numériques uniformes sur [0.0,1.0] : partitionner en n intervalle : cha-
cune de taille 1 en espérance
(⇡ hachage avec f(x) = bn · xc)

clés de b bits : O(nb) au pire



Trier par compter

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xvii

seulement R clés possibles : compter chacune + placer selon compte

1. compter : count[]=new int[R+1];

2. calculer les cumuls = indices pour placement
3. remplir tableau auxiliaire, indices dans count mis à jour

Copy back. Since we accomplished the sort by moving the items to an auxiliary array, 
the last step is to copy the sorted result back to the original array. 

Proposition A.   Key-indexed counting uses 8N ! 3 R ! 1  array accesses to  stably 
sort N items whose keys are integers between 0 and R " 1.

Proof: Immediate from the code. Initializing the arrays uses N ! R ! 1 array ac-
cesses. The first loop increments a counter for each of the N items (2N array ac-
cesses); the second loop does R additions (2R array accesses); the third loop does 
N  counter increments and N data moves (3N array accesses); and the fourth loop 
does N  data moves (2N array accesses). Both moves preserve the relative order of 
equal keys.

 

Key-indexed counting is an extremely effective 
and often overlooked sorting method for applica-
tions where keys are small integers. Understand-
ing how it works is a first step toward understand-
ing string sorting. Proposition A implies that 
key-indexed counting breaks through the N log 
N lower bound that we proved for sorting. How 
does it manage to do so? Proposition I in SEc-
tion 2.2 is a lower bound on the number of com-
pares needed (when data is accessed only through 
compareTo())—key-indexed counting does no
compares (it accesses data only through key()). 
When R is within a constant factor of N, we have 
a linear-time sort.

int N = a.length;

String[] aux = new String[N]; 
int[] count = new int[R+1];

// Compute frequency counts. 
for (int i = 0; i < N; i++)
   count[a[i].key() + 1]++; 
// Transform counts to indices. 
for (int r = 0; r < R; r++)
   count[r+1] += count[r]; 
// Distribute the records. 
for (int i = 0; i < N; i++)
   aux[count[a[i].key()]++] = a[i]; 
// Copy back. 
for (int i = 0; i < N; i++)
   a[i] = aux[i];

Key-indexed counting (a[].key is an int in [0, R).

. . .... ...

count[R-1]

R-1 R-1 R-1

count[2]count[1]count[0]

aux[] R-12 21 ... 21 1 100

. . .

count[R-1]

R-1 R-1 R-1

count[2]count[1]count[0]

aux[] 2 21 1 10

. . .

count[R-1]count[2]count[1]count[0]

aux[]

Key-indexed counting (distribution phase)

before

during

after

7055.1 Q String Sorts

4. recopier au tableau original



Tri de clés binaires

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xviii

clé 1-bit – facile

0 0 1 0 0 1 0 1 1 1

i j

échanger

TRI01(A[0..n� 1]) // tri binaire

B1 i 0 ; j  n� 1

B2 loop
B3 while i < j && A[i] = 0 do i i + 1

B4 while i < j && A[j] = 1 do j  j � 1

B5 if i < j then échanger A[i]$ A[j]

B6 else return



Tri MSD

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xix

clé sur b bits — on peut trier en O(nb)

approche MSD (most significative digit) :
trier selon le bit de poids le plus significatif (BPS) + récurrence

TRIMSD(A[ ], g, d, k)

// tri de A[g..d] selon bits k, k + 1, . . . ; k = b� 1 est le BPS, k = 0 est le moins

significatif

B1 if g � d ou k < 0 then return
B2 i g; j  d

B3 loop // tri binaire selon le k-

`

eme bit

B4 while bit(A[i], k) = 0 et i < j do i i + 1

B5 while bit(A[j], k) = 1 et i < j do j  j � 1

B6 if i < j then échanger A[i]$ A[j] else sortir de la boucle
B7 if bit(A[i], k) = 0 then j  j + 1 // au cas o

`

u A[g..d] ⌘ 0

B8 TRIMSD(A, g, j � 1, k � 1)

B9 TRIMSD(A, j, d, k � 1)



Tri LSD

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xx

clé / string sur b caractères

approche LSD (least-significant digit) : sur toute position, du moins significatif vers
le plus significatif, trier avec un tri stable*

*tri stable = ordre d’éléments avec clés égales est préservé

tri comptage est stable ! (tri par fusion aussi)

for (int k = 0; k<b; k++)

{

int[] count = new int[R+1]; // 0<=A[i]<R

for (int i=0; i<A.length; i++) count[A[i].+1]++;

for (int r=0, r<R; r++) count[r+1] += count[r]; // cumuls

// ... tri comptage

}



Tri LSD 2

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxi

exemple :
4PGC938
2IYE230
3CIO720
1ICK750
1OHV845
4JZY524
1ICK750
3CIO720
1OHV845
1OHV845
2RLA629
2RLA629
3ATW723

2IYE230
3CIO720
1ICK750
1ICK750
3CIO720
3ATW723
4JZY524
1OHV845
1OHV845
1OHV845
4PGC938
2RLA629
2RLA629

3CIO720
3CIO720
3ATW723
4JZY524
2RLA629
2RLA629
2IYE230
4PGC938
1OHV845
1OHV845
1OHV845
1ICK750
1ICK750

2IYE230
4JZY524
2RLA629
2RLA629
3CIO720
3CIO720
3ATW723
1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
4PGC938

2RLA629
2RLA629
4PGC938
2IYE230
1ICK750
1ICK750
3CIO720
3CIO720
1OHV845
1OHV845
1OHV845
3ATW723
4JZY524

1ICK750
1ICK750
4PGC938
1OHV845
1OHV845
1OHV845
3CIO720
3CIO720
2RLA629
2RLA629
3ATW723
2IYE230
4JZY524

3ATW723
3CIO720
3CIO720
1ICK750
1ICK750
2IYE230
4JZY524
1OHV845
1OHV845
1OHV845
4PGC938
2RLA629
2RLA629

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938

input (W = 7) d = 6 d = 5 d = 4 d = 3 d = 2 d = 1 d = 0 output

ALGORITHM 5.1  LSD string sort

public class  LSD 
{
   public static void sort(String[] a, int W)
   {  // Sort a[] on leading W characters.
      int N = a.length;
      int R = 256;
      String[] aux = new String[N];

      for (int d = W-1; d >= 0; d--)
      { // Sort by key-indexed counting on dth char.

         int[] count = new int[R+1];     // Compute frequency counts.
         for (int i = 0; i < N; i++)
             count[a[i].charAt(d) + 1]++;

         for (int r = 0; r < R; r++)     // Transform counts to indices.
            count[r+1] += count[r];

         for (int i = 0; i < N; i++)     // Distribute.
            aux[count[a[i].charAt(d)]++] = a[i];

         for (int i = 0; i < N; i++)     // Copy back.
            a[i] = aux[i];
        }
    } 
}

To sort an array a[] of strings that each have exactly W characters, we do W key-indexed counting 
sorts: one for each character position, proceeding from right to left.

7075.1 Q String Sorts

[Sedgewick & Wayne]



Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös

DONNÉES EN ADN



Structure de données en ADN

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxii

Fun : utiliser l’ADN pour stocker de l’information

ADN : molécule dont la structure primaire est linéaire — séquence composée de
quatre nucléotides (A, C, G, T)

C’est durable (v. ADN de l’Homme de Néanderthal), efficace (séquençage et ma-
nipulation de très petites quantités)

On peut représenter 2 bits par nucléotides

Opérations élémentaires du «hardware»

- écriture : synthèse
- lecture : séquençage
- pointeurs : PCR



Polymerase Chain Reaction

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxiii

Access Excellence

http://www.accessexcellence.org/AB/GG/polymerase.html


Encodage

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxiv

Encodage d’information par ADN : c’est presque trivial :)

Exemple : message secret (microdot)

A=CGA K=AAG

B=CCA L=TGC

C=GTT M=TCC

...

«Bonjour la tristesse»! CCAGGCTCTAGT...



Message secret - 2

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxv

20 pb CCAGGCTCTAGT...

message

20 pb5' 3'

clé secret

mélanger le message secret avec d’autres molécules ADN

amplification du message par PCR — il faut savoir le clé secret (nombre de possi-
bilités : 440)

Clelland & al. Nature 399 :533 (1999)



Stockage d’information

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxvi

Tableau de 
pointeurs

E1

Enregistrements

...

E2

En

n+3

n+1
...

m

0

1

n-1
«fin»n

E2

?

E1

En

n+1

n+2

n+3

m

Implantation sur média physique (RAM ou disque)

PF1 PR1 ... PFn PRnF R

F PF1 E1 PR1 R

F PF2 E2 PR2 R

F PFn En PRn R

Implantation par molécules d'ADN

Structure de données

Bancroft & al. Science 293 :1763 (2001)



Un vrai exemple

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxvii

[livre stocké en ADN]

Information DNA 1

W   A   S          T   H   E         W   O   R   S   T         O    F         T   I     M   E   S
Reverse Primer

I     T         W   A   S         T    H   E          B   E    S    T          O   F          T    I    M   E    S          I    TCommon
Spacer

Information DNA 2
Common
Spacer

I    T        W  A   S        T   H   E         A  G   E         O   F        F   O  O    L   I    S   H   N   E   S   S   

Reverse Primer
I     T        W  A   S         T  H   E         E    P  O   C   H        O   F        B   E    L    I    E   F   

Experimental prototype: Readout (sequencing plus decoding) of Information DNAs. 

Bancroft & al. Science 293 :1763 (2001)



Meilleur encodage

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxviii

encodage de correction d’erreur en ternaire
! séquence ADN sans nucléotides répétés (p.e., ’AAA’)

of 25 bases, for which no segment was detected corresponding to the
original DNA. Each of these gaps was caused by the failure to sequence
any oligo representing any of four consecutive overlapping segments.
Inspection of the neighbouring regions of the reconstructed sequence
permitted us to hypothesize what the missing nucleotides should have
been (see Supplementary Information) and we manually inserted
those 50 bases accordingly. This sequence could also then be decoded.
Inspection confirmed that our original computer files had been recon-
structed with 100% accuracy.

An important issue for long-term digital archiving is how DNA-
based storage scales to larger applications. The number of bases of
synthesized DNA needed to encode information grows linearly with
the amount of information to be stored, but we must also consider the
indexing information required to reconstruct full-length files from
short fragments. As indexing information grows only as the logarithm
of the number of fragments to be indexed, the total amount of synthe-
sized DNA required grows sub-linearly. Increasingly large parts of
each fragment are needed for indexing however and, although it is
reasonable to expect synthesis of longer strings to be possible in future,
we modelled the behaviour of our scheme under the conservative
constraint of a constant 114 nt available for both data and indexing
information (see Supplementary Information). As the total amount of
information increases, the encoding efficiency decreases only slowly
(Fig. 2a). In our experiment (megabyte scale) the encoding scheme is
88% efficient; Fig. 2a indicates that efficiency remains .70% for data
storage on petabyte (PB, 1015 bytes) scales and .65% on exabyte (EB,
1018 bytes) scales, and that DNA-based storage remains feasible on
scales many orders of magnitude greater than current global data
volumes22. Figure 2a also shows that costs (per unit information
stored) rise only slowly as data volumes increase over many orders
of magnitude. Efficiency and costs scale even more favourably if we
consider the synthesized fragment lengths available using the latest
technology (Supplementary Fig. 5).

As the amount of information stored increases, decoding requires
more strings to be sequenced. A fixed decoding expenditure per byte of

encoded information would mean that each base is read fewer times
and so is more likely to suffer decoding error. But extension of our
scaling analysis to model the influence of reduced sequencing coverage
on the per-decoded-base error rate (see Supplementary Information)
revealed that error rates increase only very slowly as the amount of
information encoded increases to a global data scale and beyond
(Supplementary Table 4). This also suggests that our mean sequencing
coverage of 1,308 times was considerably in excess of that needed
for reliable decoding. We confirmed this by subsampling from the
79.6 3 106 read-pairs to simulate experiments with lower coverage.
Figure 2b indicates that reducing the coverage by a factor of 10 (or
even more) would have led to unaltered decoding characteristics,
which further illustrates the robustness of our DNA-storage method.

DNA-based storage might already be economically viable for long-
horizon archives with a low expectation of extensive access, such as
government and historical records23,24. An example in a scientific context
is CERN’s CASTOR system25, which stores a total of 80 PB of Large
Hadron Collider data and grows at 15 PB yr21. Only 10% is maintained
on disk, and CASTOR migrates regularly between magnetic tape for-
mats. Archives of older data are needed for potential future verification
of events, but access rates decrease considerably 2–3 years after collec-
tion. Further examples are found in astronomy, medicine and interplan-
etary exploration26. With negligible computational costs and optimized
use of the technologies we employed, we estimate current costs to be
$12,400 MB21 for information storage in DNA and $220 MB21 for
information decoding. Modelling relative long-term costs of archiving
using DNA-based storage or magnetic tape shows that the key para-
meters are the ratio of the one-time cost of synthesizing the DNA to the
recurrent fixed cost of transferring data between tape technologies or
media, which we estimate to be 125–500 currently, and the frequency of
tape transition events (Supplementary Information and Supplementary
Fig. 7). We find that with current technology and our encoding scheme,
DNA-based storage may be cost-effective for archives of several mega-
bytes with a ,600–5,000-yr horizon (Fig. 2c). One order of magnitude
reduction in synthesis costs reduces this to ,50–500 yr; with two orders

A

a

b

c

d

Base-3-encoded

DNA-encoded

DNA fragments

Alternate fragments
have file information

reverse complemented

DNA-encoded indexing
information added

Binary/text file

25 bp

Figure 1 | Digital information encoding in DNA. Digital information (a, in
blue), here binary digits holding the ASCII codes for part of Shakespeare’s
sonnet 18, was converted to base-3 (b, red) using a Huffman code that replaces
each byte with five or six base-3 digits (trits). This in turn was converted in silico
to our DNA code (c, green) by replacement of each trit with one of the three
nucleotides different from the previous one used, ensuring no homopolymers

were generated. This formed the basis for a large number of overlapping
segments of length 100 bases with overlap of 75 bases, creating fourfold
redundancy (d, green and, with alternate segments reverse complemented for
added data security, violet). Indexing DNA codes were added (yellow), also
encoded as non-repeating DNA nucleotides. See Supplementary Information
for further details.

RESEARCH LETTER

7 8 | N A T U R E | V O L 4 9 4 | 7 F E B R U A R Y 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013

5 fichiers, 5⇥ 10

6 bits

Goldman & al. 2013



Densité d’information

Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxix

très grande densité d’information

Next-Generation Digital Information
Storage in DNA
George M. Church,1,2 Yuan Gao,3 Sriram Kosuri1,2*

As digital information continues to accu-
mulate, higher density and longer-term
storage solutions are necessary (1). DNA

has many potential advantages as a medium for
immutable, high latency information storage needs
(2). For example, DNA storage is very dense. At
theoretical maximum, DNA can encode two bits
per nucleotide (nt) or 455 exabytes per gram of
single-stranded DNA (3). Unlike most digital stor-
age media, DNA storage is not restricted to a
planar layer and is often readable despite degra-
dation in nonideal conditions overmillennia (4, 5).
Lastly, DNA’s essential biological role provides
access to natural reading and writing enzymes
and ensures that DNA will remain a readable
standard for the foreseeable future.

Storing messages in DNA was first demon-
strated in 1988 (6), and the largest project to date
encoded 7920 bits (7). The small scale of pre-
vious work stems from the difficulty of writing
and reading long perfect DNA sequences and has
limited broader applications (table S1).We devel-
oped a strategy to encode arbitrary digital infor-
mation by using a novel encoding scheme that
uses next-generation DNA synthesis and sequenc-
ing technologies (fig. S1). We converted an html-
coded draft of a book that included 53,426 words,
11 JPG images, and one JavaScript program into
a 5.27-megabit bitstream (3). We then encoded
these bits onto 54,898 159-nt oligonucleotides
(oligos) each encoding a 96-bit data block (96 nt),
a 19-bit address specifying the location of the
data block in the bit stream (19 nt), and flanking
22-nt common sequences for amplification and
sequencing. The oligo library was synthesized by
ink-jet printed, high-fidelity DNA microchips
(8). To read the encoded book, we amplified the
library by limited-cycle polymerase chain reac-
tion and then sequenced on a single lane of an
Illumina HiSeq. We joined overlapping paired-
end 100-nt reads to reduce the effect of sequenc-
ing error (9). Then with only reads that gave the
expected 115-nt length and perfect barcode se-
quences, we generated consensus at each base
of each data block at an average of ~3000-fold
coverage (fig S2). All data blocks were recovered
with a total of 10 bit errors out of 5.27 million
(table S2), which were predominantly located with-
in homopolymer runs at the end of the oligo, where
we only had single sequence coverage (3).

Our method has at least five advantages over
past DNA storage approaches.We encode one bit
per base (A or C for zero, G or T for one), instead
of two. This allows us to encode messages many
ways in order to avoid sequences that are difficult

to read or write such as extreme GC content, re-
peats, or secondary structure. By splitting the bit
stream into addressed data blocks, we eliminate
the need for long DNA constructs that are diffi-
cult to assemble at this scale. To avoid cloning and
sequence verifying constructs, we synthesized,
stored, and sequenced many copies of each in-
dividual oligo. Because errors in synthesis and
sequencing are rarely coincident, each molecular
copy corrects errors in the other copies. We used
a purely in vitro approach that avoids cloning and
stability issues of in vivo approaches. Lastly, we
leveraged next-generation technologies in both
DNA synthesis and sequencing to allow for encod-
ing and decoding of large amounts of information
for ~100,000-fold less cost than first-generation
encodings.

The density (5.5 petabits/mm3 at 100× syn-
thetic coverage) and scale (5.27 megabits) of this
work compare favorably to other experimental
storage technologies while only using commer-
cially availablematerials and instruments (Fig. 1 and
table S3). DNA is particularly suitable for im-
mutable, high-latency, sequential access applica-
tions such as archival storage. Density, stability,
and energy efficiency are all potential advantages
of DNA storage (10), although costs and times
for writing and reading are currently impractical
for all but century-scale archives (3). However,
the costs of DNA synthesis and sequencing have

been dropping at exponential rates of 5- and
12-fold per year, respectively—much faster than
electronic media at 1.6-fold per year (11). Hand-
held, single-molecule DNA sequencers are becom-
ing available and would vastly simplify reading
DNA-encoded information (12). Our general ap-
proach of using addressed data blocks combined
with library synthesis and consensus sequencing
should be compatible with future DNA sequenc-
ing and synthesis technologies. Reciprocally, large-
scale use of DNA such as for information storage
could accelerate development of synthesis and
sequencing technologies (13). Future work could
use compression, redundant encodings, parity checks,
and error correction to improve density, error rate,
and safety. Other polymers or DNAmodifications
can also be considered to maximize reading,
writing, and storage capabilities (14).

References and Notes
1. J. Gantz, D. Reinsel, “Extracting value from chaos”

[International Data Corporation (IDC), Framingham, MA,
2011], www.emc.com/collateral/analyst-reports/
idc-extracting-value-from-chaos-ar.pdf.

2. C. Bancroft, T. Bowler, B. Bloom, C. T. Clelland, Science
293, 1763 (2001).

3. Information on materials and methods is available on
Science Online.

4. J. Bonnet et al., Nucleic Acids Res. 38, 1531 (2010).
5. S. Pääbo et al., Annu. Rev. Genet. 38, 645 (2004).
6. J. Davis, Art J. 55, 70 (1996).
7. D. G. Gibson et al., Science 329, 52 (2010); 10.1126/

science.1190719.
8. E. M. LeProust et al., Nucleic Acids Res. 38, 2522 (2010).
9. J. St. John, SeqPrep (2011), https://github.com/jstjohn/

SeqPrep.
10. L. M. Adleman, Science 266, 1021 (1994).
11. P. A. Carr, G. M. Church, Nat. Biotechnol. 27, 1151

(2009).
12. E. Pennisi, Science 336, 534 (2012).
13. S. Kosuri, A. M. Sismour, ACS Synth. Biol. 1, 109 (2012).
14. S. A. Benner, Z. Yang, F. Chen, C. R. Chim. 14, 372 (2011).

Acknowledgments: This work was supported by U.S. Office
of Naval Research (N000141010144), Agilent Technologies,
and the Wyss Institute. Agilent Technologies is a commercial
provider for DNA microchips. G.M.C. and S.K. designed and
performed all experiments and analyses and wrote the
manuscript; Y.G. performed the sequencing. We thank
J. Aach, C. Fracchia, S. Raman, H. H. Wang, A. W. Briggs,
J. Lee, T. Wu, and D. B. Goodman for helpful suggestions on
the manuscript.

Supplementary Materials
www.sciencemag.org/cgi/content/full/science.1226355/DC1
Materials and Methods
Supplementary Text
Figs. S1 and S2
Tables S1 to S3
References (15–35)

20 June 2012; accepted 7 August 2012
Published online 16 August 2012;
10.1126/science.1226355

BREVIA

1Department of Genetics, Harvard Medical School, Boston, MA
02115,USA. 2Wyss Institute for Biologically Inspired Engineering,
Boston, MA 02115, USA. 3Department of Biomedical Engineer-
ing, Neuroregeneration and Stem Cell Biology Program, Insti-
tute for Cell Engineering, Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Johns Hopkins University,
Baltimore, MD 21205, USA.

*To whom correspondence should be addressed. E-mail:
sri.kosuri@wyss.harvard.edu

Fig. 1. Comparison to other technologies.We plotted
information density (log10 of bits/mm

3) versus current
scalability asmeasured by the log10 of bits encoded in
the report or commercial unit (3).

28 SEPTEMBER 2012 VOL 337 SCIENCE www.sciencemag.org1628

on D
ecem

ber 1, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

pas cher à maintenir

[Church, Gao & Kosuri 2012]



Recherche et tri 2 ? IFT2015 A2017 ? UdeM ? Miklós Csűrös xxx

2 0  J U L Y  2 0 1 7  |  V O L  5 4 7  |  N A T U R E  |  3 4 5

LETTER
doi:10.1038/nature23017

CRISPR–Cas encoding of a digital movie into the 
genomes of a population of living bacteria
Seth L. Shipman1,2,3, Jeff Nivala1,3, Jeffrey D. Macklis2 & George M. Church1,3

DNA is an excellent medium for archiving data. Recent efforts 
have illustrated the potential for information storage in DNA 
using synthesized oligonucleotides assembled in vitro1–6. A 
relatively unexplored avenue of information storage in DNA is 
the ability to write information into the genome of a living cell 
by the addition of nucleotides over time. Using the Cas1–Cas2 
integrase, the CRISPR–Cas microbial immune system stores 
the nucleotide content of invading viruses to confer adaptive 
immunity7. When harnessed, this system has the potential to 
write arbitrary information into the genome8. Here we use the 
CRISPR–Cas system to encode the pixel values of black and white 
images and a short movie into the genomes of a population of 
living bacteria. In doing so, we push the technical limits of this 
information storage system and optimize strategies to minimize 
those limitations. We also uncover underlying principles of the 
CRISPR–Cas adaptation system, including sequence determinants 
of spacer acquisition that are relevant for understanding both 
the basic biology of bacterial adaptation and its technological 
applications. This work demonstrates that this system can capture 
and stably store practical amounts of real data within the genomes 
of populations of living cells.

By combining the principles of information storage in DNA with 
DNA-capture systems capable of functioning in living cells, we can 
create living organisms that capture, store, and propagate information 
over time. In prokaryotic viral defence, the CRISPR-associated (Cas) 
proteins, Cas1 and Cas2, function as an integrase complex to acquire 
nucleotides from invading viruses and store them in the CRISPR 
array7,9,10. In previous work, we found that we could direct the system 
to acquire synthetic sequences into the CRISPR array if those sequences 
are supplied as oligonucleotides8. Using this approach, we showed 
simple molecular recordings by supplying different oligonucleotide 
sequences over time.

Here we markedly scale up this approach to define the information 
capacity that the system can record, with an eye towards future bio-
logical recordings. Rather than arbitrary sequences, we encode real 
information (images) and optimize the method of delivery, nucleotide 
content of the sequences, and reconstruction method (for which we 
use a population of bacteria). In the Escherichia coli type I-E CRISPR–
Cas system, DNA from invading viruses is inserted into a genomic 
CRISPR array in 33-base units termed spacers11. The sequences from 
which spacers are derived are termed protospacers12. We began with an 
image (Extended Data Fig. 1a) and stored pixel values in a nucleotide 
code, distributed over many individual synthetic protospacer oligo-
nucleotides. We electroporated these oligonucleotides into a population 
of bacteria, each harbouring a functional CRISPR array and over-
expressing the Cas1–Cas2 integrase complex, allowing cells to acquire 
the oligonucleotides into their genome. We recover the information by 
high-throughput sequencing: newly acquired spacers are decoded to 
reconstruct the original image.

We first encoded images of a human hand using two different  
pixel-value-encoding strategies: a rigid strategy (handR), in which  
4 pixel colours were each specified by a different base (Extended 
Data Fig. 1b, c); and a flexible strategy (handF), in which 21 possible 
pixel colours were specified by a degenerate nucleotide triplet table  
(Fig. 1a, b). To distribute the information across multiple proto-
spacers, we gave each protospacer a barcode that defined which pixel 
set (denoted as ‘pixet’) was encoded by the nucleotides in that spacer. 
Four nucleotides define each pixet, and the pixels of a given pixet are 
distributed across the image (Fig. 1c, Extended Data Fig. 1d). We 
included a protospacer adjacent motif (PAM) on each protospacer, 
which increases the efficiency of acquisition and determines orientation 
of spacer insertion8,13–15. After adding the PAM and pixet, we were left 
with 28 bases per protospacer to encode pixel values.

For handR, each of the 28 bases encoded a pixel value, thereby distrib-
uting a 4-colour, 56 × 56 pixel image across 112 oligonucleotide proto-
spacers (total information content of 784 bytes). For handF, the 28 bases 
encoded 9 pixels, each specified by a nucleotide triplet. Specific triplet 
combinations were chosen to build sequences that we hypothesized 
might increase acquisition efficiency—GCcontent around 50%, no 
mononucleotide repeats >3 bp, and no internal PAMs. For the handF, 
we distributed a 21-colour, 30 × 30 pixel image across 100 protospacers 
(total information content of around 494 bytes). Oligonucleotide pro-
tospacers were supplied in a minimal hairpin format (design based on 
insights from the crystal structure16,17) to prevent segregation of the two 
strands into different cells during electroporation (see Supplementary 
Information, Extended Data Fig. 2).

For each image, we electroporated the pooled oligonucleotides 
into a population of E. coli containing a genomic CRISPR array and 
expressing the Cas1–Cas2 integrase18. Cells were then recovered, pas-
saged overnight, and the next day a sample of the genomic CRISPR 
arrays were sequenced. Newly acquired spacers were bioinformati-
cally extracted from the arrays, and those that were not derived from 
the plasmid or genome were analysed. Pixel values were assigned on 
the basis of the most numerous new spacer with a given pixet. Images 
reconstructed from the handR and handF images are shown in Extended 
Data Fig. 1e and Fig. 1d, respectively.

Using 655,360 reads, around 88% and around 96% of pixet sequences 
were accurately recalled from the handR and handF images, respectively. 
We found that handF was more resistant to errors by under-sampling 
(Fig. 1e, f, Extended Data Fig. 1f–g). By electroporating subsets of the 
oligonucleotides, we found that the number of reads required to achieve 
similar levels of accuracy in recall is linearly related to the number of 
oligonucleotides electroporated (Fig. 1g, Extended Data Fig. 1h, i), and 
that it took substantially more reads per oligonucleotide protospacer to 
reach 80% accuracy from handR (around 1,580 reads per protospacer) 
versus handF (around 150 reads per protospacer).

We also sampled time points of the bacterial culture following the 
electroporation of handF. Oligonucleotide-derived spacer acquisitions 

1Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA. 2Department of Stem Cell and Regenerative Biology, Center for Brain Science, 
and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, Massachusetts 02138, USA. 3Wyss Institute for Biologically Inspired Engineering, Harvard University, 
Cambridge, Massachusetts 02138, USA.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

encoder le fichier du film (GIF animé) + insérer dans des bactéries + faire croı̂tre la
population

LETTERRESEARCH

3 4 8  |  N A T U R E  |  V O L  5 4 7  |  2 0  J U L Y  2 0 1 7

population of bacteria — no individual cell can be used to recon-
struct the entire image series. Therefore, we leveraged many single-cell 
ordering comparisons among the population of bacteria to reconstruct 
the entire GIF (see Supplementary Information, Extended Data Fig. 6  
for detail).

We found that we could reconstruct each frame and the order of 
frames (Fig. 3d), and that increasing read depth aided the accuracy 
of the reconstruction (to >90% overall accuracy) (Fig. 3e). Despite 
optimization of the protospacer sequence, we still found a range of 
efficiencies between the protospacers of any given frame (Fig. 3f). We 
again found a sequence motif at the AAM location, suggesting that we 
allowed for too large a range of nucleotide triplets in the final posi-
tion (Fig. 3g) or this range may reflect an inherent competition among 
protospacers, either for Cas1–Cas2 or the genomic array. As the pro-
tospacers themselves contain no code to specify frame position, we 
tested the robustness of our reconstruction strategy by delivering the 
oligonucleotide frame sets in reverse order. We were able to accurately 
reconstruct the reversed GIF, demonstrating reconstruction of an oth-
erwise ambiguous signal based on time (Fig. 3h).

In summary, we found that not all protospacer sequences are equally 
effective at transferring data into the genome, and for this reason advo-
cate for the use of a flexible encoding scheme to allow optimization of 
sequence content. We found that sequences with controlled GC content, 
a lack of mononucleotide repeats, and no internal PAMs outperformed 
those that lacked such optimization. Further, the inclusion of invariant 
nucleotides at both the leading (AAG) and trailing (GA) end of the 
protospacer has large effects on the frequency of acquisition. We were 
able to track the presence of 104 separately barcoded sequence elements 
over five time points (520 unique sequence elements), yielding confi-
dence that this system will be capable of recording multidimensional 
biological information (see Supplementary Information, Extended Data 
Figs 7, 8 for discussion into error-correction/compression, obstacles to 

single-cell storage, and a comparison of information storage in DNA 
versus silicon25–29).

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.

Received 22 August 2016; accepted 2 June 2017. 
Published online 12 July 2017.

1. Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage 
in DNA. Science 337, 1628 (2012).

2. Goldman, N. et al. Towards practical, high-capacity, low-maintenance 
information storage in synthesized DNA. Nature 494, 77–80 (2013).

3. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically 
synthesized genome. Science 329, 52–56 (2010).

4. Clelland, C. T., Risca, V. & Bancroft, C. Hiding messages in DNA microdots. 
Nature 399, 533–534 (1999).

5. Adleman, L. M. Molecular computation of solutions to combinatorial problems. 
Science 266, 1021–1024 (1994).

6. Davis, J. Microvenus. Art J. 55, 70–74 (1996).
7. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in 

prokaryotes. Science 315, 1709–1712 (2007).
8. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular  

recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 
(2016).

9. Amitai, G. & Sorek, R. CRISPR–Cas adaptation: insights into the mechanism of 
action. Nat. Rev. Microbiol. 14, 67–76 (2016).

10. Sternberg, S. H., Richter, H., Charpentier, E. & Qimron, U. Adaptation in 
CRISPR–Cas Systems. Mol. Cell 61, 797–808 (2016).

11. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. 
CRISPR-based adaptive and heritable immunity in prokaryotes. Trends 
Biochem. Sci. 34, 401–407 (2009).

12. Deveau, H. et al. Phage response to CRISPR-encoded resistance in 
Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

13. Paez-Espino, D. et al. Strong bias in the bacterial CRISPR elements that confer 
immunity to phage. Nat. Commun. 4, 1430 (2013).

14. Westra, E. R. et al. Type I-E CRISPR–Cas systems discriminate target from 
non-target DNA through base pairing-independent PAM recognition. PLoS 
Genet. 9, e1003742 (2013).

2 h 2 h

a b

c
1

Pixet

1 2 3 54 6 7 8 9

10,000,000

00 = C
01 = T
10 = A
11 = G

Bases 
31 + 32

Bases 
33 – 35

0000 = TGA
1000 = AGA
0100 = TAA
1100 = CAC
0010 = GAC
1010 = AGC
0110 = GGA
1110 = TGG

Binary (reversed)1

24

7 5 3 9

8 6

16 h 2 h 2 h 16 h 2 h 2 h16 h 2 h 2 h16 h 2 h 2 h16 h 16 h

lo
g-

od
ds

 o
f t

he
 b

in
om

ia
l p

ro
ba

bi
lit

y

6.83

3.45

3.45

6.83

Top 10%

1,
31

0,
72

0
16

3,
84

0
40

,9
60

5,
12

0

Reads sampled

3 4 5

A
cc

ur
at

el
y 

re
ca

lle
d 

pi
xe

ts
 (%

)

10 102 103 104 105 106

Reads sampled

A
cq

ui
re

d 
sp

ac
er

s 
(%

)

Spacer number
(ranked by acquision frequency)

e f g

107

4,
37

2,
48

9 h

1,
31

0,
72

0

L spacer spacer spacer
Position 1 Position 2 Position 3

2

d

0

10

20

30

40

50

60

1

Sample point
1           5

Frame1

Frame1

Frame2

Frame2

Frame3

Frame3

Frame4

Frame4

Frame5

Frame1
Frame2
Frame3
Frame4
Frame5

Frame5

Plasmid
Genome

A
rr

ay
s 

ex
pa

nd
ed

 (%
)

Frame
5
4
3
2
1

0

20

40

60

80

100

0

2

4

6

8

10

12

0 20 40 60 80 100

Frame
5
4
3
2
1

Encoded GIF

Recalled GIF

GC ~50%, no mononucleotide 
repeats >3 bp, 

no internal PAMs

Recalled GIF

Figure 3 | Encoding a GIF in bacteria. a, GIF to be encoded (adapted 
from Eadweard Muybridge, Human and Animal Locomotion, plate 626, 
thoroughbred bay mare ‘Annie G.’ galloping, Wikimedia Commons), 
along with an example of one pixet protospacer. b, Schematic of recording 
process. c, Percentage of arrays with expansions in the first three positions, 
by protospacer origin, at each sample point. Bars show mean ± s.e.m. 
(n = 3). d, Accurately recalled pixets as a function of reads (on the x axis)  
and frame (denoted by colour). Points show individual biological 

replicates. e, Examples of the result at different sequence depths (see 
dotted grey lines in d). f, Protospacer acquisition frequency for individual 
protospacers (of oligonucleotide-derived acquisitions) by frame, ranked 
by acquisition frequency. Points show 3 biological replicates. g, pLogo30 
of the top 10% of protospacers (all protospacers as background). Red line 
indicates P < 0.05. Over-representation is positive, under-representation 
is negative. h, Result of electroporating the same oligonucleotides in the 
reverse order. Statistical details in Supplementary Table 1.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

LETTERRESEARCH

3 4 8  |  N A T U R E  |  V O L  5 4 7  |  2 0  J U L Y  2 0 1 7

population of bacteria — no individual cell can be used to recon-
struct the entire image series. Therefore, we leveraged many single-cell 
ordering comparisons among the population of bacteria to reconstruct 
the entire GIF (see Supplementary Information, Extended Data Fig. 6  
for detail).

We found that we could reconstruct each frame and the order of 
frames (Fig. 3d), and that increasing read depth aided the accuracy 
of the reconstruction (to >90% overall accuracy) (Fig. 3e). Despite 
optimization of the protospacer sequence, we still found a range of 
efficiencies between the protospacers of any given frame (Fig. 3f). We 
again found a sequence motif at the AAM location, suggesting that we 
allowed for too large a range of nucleotide triplets in the final posi-
tion (Fig. 3g) or this range may reflect an inherent competition among 
protospacers, either for Cas1–Cas2 or the genomic array. As the pro-
tospacers themselves contain no code to specify frame position, we 
tested the robustness of our reconstruction strategy by delivering the 
oligonucleotide frame sets in reverse order. We were able to accurately 
reconstruct the reversed GIF, demonstrating reconstruction of an oth-
erwise ambiguous signal based on time (Fig. 3h).

In summary, we found that not all protospacer sequences are equally 
effective at transferring data into the genome, and for this reason advo-
cate for the use of a flexible encoding scheme to allow optimization of 
sequence content. We found that sequences with controlled GC content, 
a lack of mononucleotide repeats, and no internal PAMs outperformed 
those that lacked such optimization. Further, the inclusion of invariant 
nucleotides at both the leading (AAG) and trailing (GA) end of the 
protospacer has large effects on the frequency of acquisition. We were 
able to track the presence of 104 separately barcoded sequence elements 
over five time points (520 unique sequence elements), yielding confi-
dence that this system will be capable of recording multidimensional 
biological information (see Supplementary Information, Extended Data 
Figs 7, 8 for discussion into error-correction/compression, obstacles to 

single-cell storage, and a comparison of information storage in DNA 
versus silicon25–29).

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.

Received 22 August 2016; accepted 2 June 2017. 
Published online 12 July 2017.

1. Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage 
in DNA. Science 337, 1628 (2012).

2. Goldman, N. et al. Towards practical, high-capacity, low-maintenance 
information storage in synthesized DNA. Nature 494, 77–80 (2013).

3. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically 
synthesized genome. Science 329, 52–56 (2010).

4. Clelland, C. T., Risca, V. & Bancroft, C. Hiding messages in DNA microdots. 
Nature 399, 533–534 (1999).

5. Adleman, L. M. Molecular computation of solutions to combinatorial problems. 
Science 266, 1021–1024 (1994).

6. Davis, J. Microvenus. Art J. 55, 70–74 (1996).
7. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in 

prokaryotes. Science 315, 1709–1712 (2007).
8. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular  

recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 
(2016).

9. Amitai, G. & Sorek, R. CRISPR–Cas adaptation: insights into the mechanism of 
action. Nat. Rev. Microbiol. 14, 67–76 (2016).

10. Sternberg, S. H., Richter, H., Charpentier, E. & Qimron, U. Adaptation in 
CRISPR–Cas Systems. Mol. Cell 61, 797–808 (2016).

11. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. 
CRISPR-based adaptive and heritable immunity in prokaryotes. Trends 
Biochem. Sci. 34, 401–407 (2009).

12. Deveau, H. et al. Phage response to CRISPR-encoded resistance in 
Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

13. Paez-Espino, D. et al. Strong bias in the bacterial CRISPR elements that confer 
immunity to phage. Nat. Commun. 4, 1430 (2013).

14. Westra, E. R. et al. Type I-E CRISPR–Cas systems discriminate target from 
non-target DNA through base pairing-independent PAM recognition. PLoS 
Genet. 9, e1003742 (2013).

2 h 2 h

a b

c
1

Pixet

1 2 3 54 6 7 8 9

10,000,000

00 = C
01 = T
10 = A
11 = G

Bases 
31 + 32

Bases 
33 – 35

0000 = TGA
1000 = AGA
0100 = TAA
1100 = CAC
0010 = GAC
1010 = AGC
0110 = GGA
1110 = TGG

Binary (reversed)1

24

7 5 3 9

8 6

16 h 2 h 2 h 16 h 2 h 2 h16 h 2 h 2 h16 h 2 h 2 h16 h 16 h

lo
g-

od
ds

 o
f t

he
 b

in
om

ia
l p

ro
ba

bi
lit

y

6.83

3.45

3.45

6.83

Top 10%

1,
31

0,
72

0
16

3,
84

0
40

,9
60

5,
12

0

Reads sampled

3 4 5

A
cc

ur
at

el
y 

re
ca

lle
d 

pi
xe

ts
 (%

)

10 102 103 104 105 106

Reads sampled

A
cq

ui
re

d 
sp

ac
er

s 
(%

)

Spacer number
(ranked by acquision frequency)

e f g

107

4,
37

2,
48

9 h

1,
31

0,
72

0

L spacer spacer spacer
Position 1 Position 2 Position 3

2

d

0

10

20

30

40

50

60

1

Sample point
1           5

Frame1

Frame1

Frame2

Frame2

Frame3

Frame3

Frame4

Frame4

Frame5

Frame1
Frame2
Frame3
Frame4
Frame5

Frame5

Plasmid
Genome

A
rr

ay
s 

ex
pa

nd
ed

 (%
)

Frame
5
4
3
2
1

0

20

40

60

80

100

0

2

4

6

8

10

12

0 20 40 60 80 100

Frame
5
4
3
2
1

Encoded GIF

Recalled GIF

GC ~50%, no mononucleotide 
repeats >3 bp, 

no internal PAMs

Recalled GIF

Figure 3 | Encoding a GIF in bacteria. a, GIF to be encoded (adapted 
from Eadweard Muybridge, Human and Animal Locomotion, plate 626, 
thoroughbred bay mare ‘Annie G.’ galloping, Wikimedia Commons), 
along with an example of one pixet protospacer. b, Schematic of recording 
process. c, Percentage of arrays with expansions in the first three positions, 
by protospacer origin, at each sample point. Bars show mean ± s.e.m. 
(n = 3). d, Accurately recalled pixets as a function of reads (on the x axis)  
and frame (denoted by colour). Points show individual biological 

replicates. e, Examples of the result at different sequence depths (see 
dotted grey lines in d). f, Protospacer acquisition frequency for individual 
protospacers (of oligonucleotide-derived acquisitions) by frame, ranked 
by acquisition frequency. Points show 3 biological replicates. g, pLogo30 
of the top 10% of protospacers (all protospacers as background). Red line 
indicates P < 0.05. Over-representation is positive, under-representation 
is negative. h, Result of electroporating the same oligonucleotides in the 
reverse order. Statistical details in Supplementary Table 1.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

// prochaine étape : bactéries qui peuvent enregistrer une obsérvation dans leur

https://upload.wikimedia.org/wikipedia/commons/d/dd/Muybridge_race_horse_animated.gif


génome


