FILES À PRIORITÉS

File à priorités

Type abstrait d'une file à priorités (priority queue)

Objets : ensembles d'objets avec clés comparables (abstraction : nombres naturels)

Opérations:

insert(x, H): insertion de l'élément x dans H

deleteMin(H) : enlever l'élément de valeur minimale dans H

Opérations parfois supportées :

 $merge(H_1, H_2)$: fusionner deux files

findMin(H): retourne (mais ne supprime pas) l'élément minimal

delete(x, H) : supprimer élément x

(ou définition équivalente avec deleteMax et findMax — mais pas max et min en même temps)

Applications

simulations d'événements discrets (p.e., collisions)

systèmes d'exploitation (interruptions)

algorithmes sur graphes, recherche opérationnelle (plus cours chemins, arbre couvrant)

statistiques : maintenir l'ensemble des m meilleurs éléments

Implantations inefficaces

- tableau / liste chaînée avec des éléments non-ordonnés approche paresseuse
 - insert en O(1)
 - deleteMin en O(n)
- tableau / liste chaînée avec des éléments ordonnés approche impatiente
 - insert en O(n)
 - deleteMin en O(1)

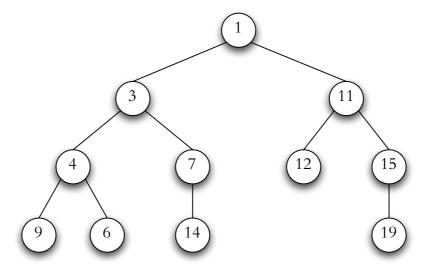
On veut une meilleure solution...

Tas

on va implanter la file de priorité à l'aide d'une arborescence dont les nœuds sont dans

l'ordre de tas:

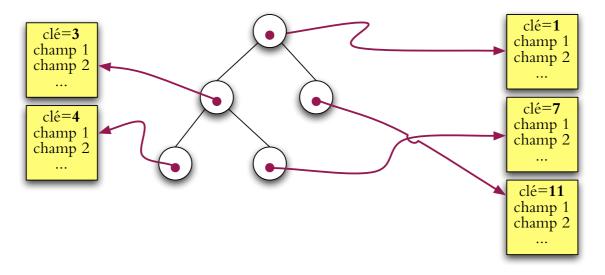
si x n'est pas la racine, alors $val(parent(x)) \le val(x)$.



Opération findMin en O(1): retourner val(racine)

Tas (cont)

Les valeurs ne sont pas stockées avec les nœuds mais plutôt par un pointeur vers les données associées (en Java, il n'y a pas de différence syntaxique : val est un objet Comparable)



```
class NoeudTas
{
    NoeudTas enfants[], parent;
    Comparable val;
}
```

Tas (cont)

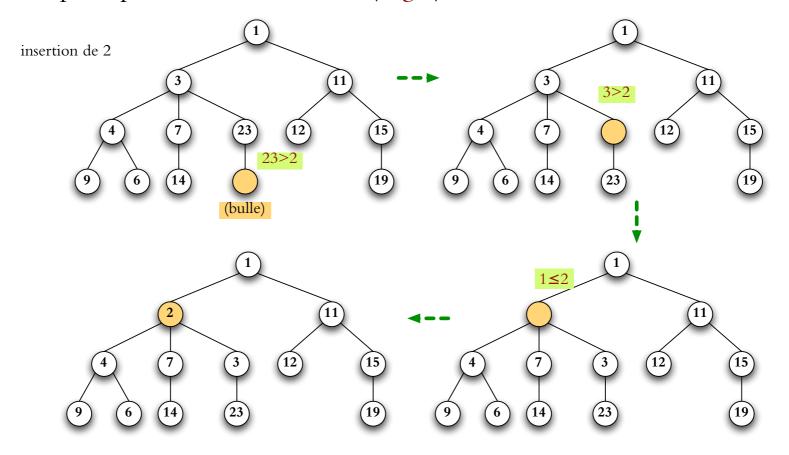
Comment insérer et supprimer?

Idée de base : on ne change pas la structure de l'arbre - affectation de pointeurs val seulement

(Donc il s'agit d'une structure exogène...)

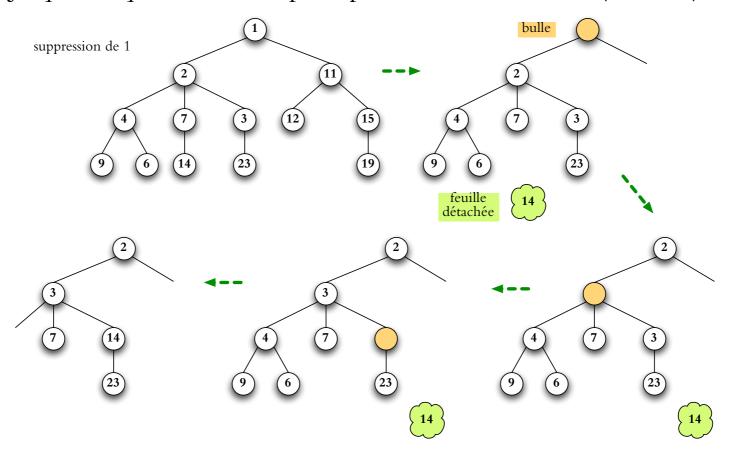
Tas — insertion

ajouter une feuille vide («bulle») + monter la bulle vers la racine jusqu'à ce qu'on trouve la place pour la nouvelle valeur (nager)



Tas — suppression

remplacer le nœud par une «bulle», enlever une feuille et pousser la bulle vers les feuilles jusqu'à ce qu'on trouve la place pour la nouvelle valeur (sombrer)

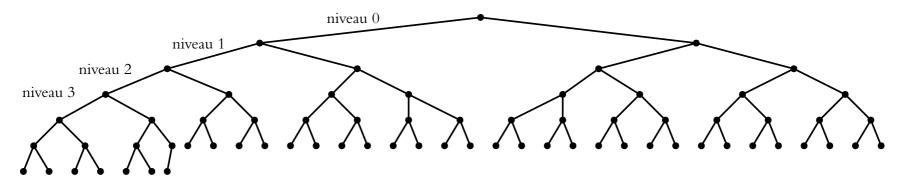


Tas — efficacité

Temps pour insertion : dépend du niveau où on crée la bulle

Temps pour suppression : dépend du nombre des enfants des nœuds échangés avec la bulle

Une solution simple : utiliser un **arbre binaire complet** de hauteur h : il y a 2^i nœuds à chaque niveau $i=0,\ldots,h-1$; les niveaux sont «remplis» de gauche à droit

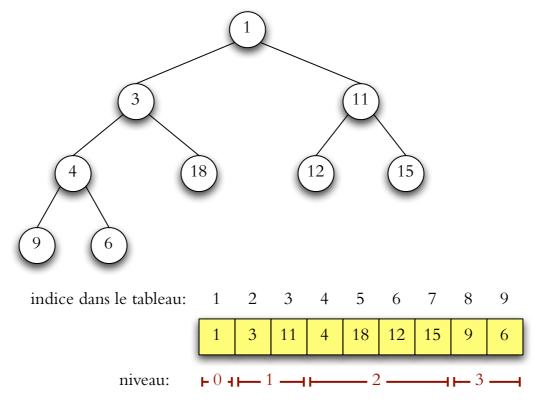


Tas binaire

Arbre binaire complet \rightarrow pas de pointeurs parent, left, gauche!

Les n clés sont placées dans un tableau H[1..n].

Parent de nœud i est à $\lceil (i-1)/2 \rceil$, enfant gauche est à 2i, enfant droit est à 2i+1.



Tas binaire — insertion

INSERT(v,H) // tas binaire dans $H[\mathbf{1}..|H|]$ I1 NAGER $(v,|H|+\mathbf{1},H)$

NAGER
$$(v,i,H)$$
 // tas binaire dans $H[1..|H|]$
N1 $p \leftarrow \lceil (i-1)/2 \rceil$
N2 tandis que $p \neq 0$ et $H[p] > v$ faire
N3 $H[i] \leftarrow H[p]$
N4 $i \leftarrow p$
N5 $p \leftarrow \lceil (i-1)/2 \rceil$
N6 $H[i] \leftarrow v$

(NAGER est swim dans le livre)

en N1 et N5, on peut juste faire un décalage binaire (p=i>>1 en Java) — très rapide

Tas binaire — suppression

```
DELETEMIN(H) // tas dans H[1..|H|]
D1 r \leftarrow H[1]
D2 \operatorname{si}|H| > 1
D3 \operatorname{alors} v \leftarrow H[|H|]; H[|H|] \leftarrow \operatorname{null}; SOMBRER(v, 1, H)
D4 \operatorname{retourner} r
```

```
SOMBRER(v, i, H) // tas dans H[1..|H|]
C1 c \leftarrow \text{MINCHILD}(i, H)
C2 tandis que c \neq 0 et H[c] < v faire
C3 H[i] \leftarrow H[c]
C4 i \leftarrow c
C5 c \leftarrow \text{MINCHILD}(i, H)
C6 H[i] \leftarrow v
```

(COULER est implanté par sink dans le livre)

```
MINCHILD(i,H)
// retourne l'enfant avec clé minimale ou 0 si i est une feuille
```

Tas binaire — efficacité

Hauteur de l'arbre est toujours $\lceil \lg n \rceil$

 $deleteMin : O(\lg n)$

 $insert : O(\lg n)$

findMin : O(1)

Tas d-aire

Tas d-aire : on utilise un arbre complet d-aire avec une arité $d \geq 2$.

L'implantation utilise un tableau A:

parent de l'indice i est $\lceil (i-1)/d \rceil$, enfants sont à d(i-1)+2..di+1

ordre de tas :

$$A[i] \ge A\left\lceil \left\lceil \frac{i-1}{d} \right\rceil \right\rceil$$
 pour tout $i > 1$

 $deleteMin : O(d log_d n)$ dans un tas d-aire sur n éléments

 $insert : O(\log_d n)$ dans un tas d-aire sur n éléments

findMin : O(1)

NAGER et SOMBRER : $O(\log_d n)$ et $O(d\log_d n)$

Permet de balancer le coût de l'insertion et de la suppression si on a une bonne idée de leur fréquence

Files à priorité

Autres implantations existent (nécessaires pour un merge efficace) : binomial heap, skew heap, Fibonacci heap

	liste triée	liste non- triée	binaire	binomial
deleteMin	O(1)	O(n)	$O(\log n)$	$O(\log n)$
insert	O(n)	O(1)	$O(\log n)$	$O(\log n)$
merge	O(n)	O(1)	O(n)	$O(\log n)$
decreaseKey	O(n)	O(1)	$O(\log n)$	$O(\log n)$

opération decreaseKey : change la priorité d'un élément — dans un tas binaire on peut le faire à l'aide de NAGER

decreaseKey est important dans quelques algorithmes fondamentaux sur des graphes (plus court chemin, arbre couvrant minimal)

Tas d-aire — construction

Opération heapify (A) met les éléments de la vecteur A[1..n] dans l'ordre de tas.

Triviale?

$$H \leftarrow \emptyset$$
; for $i \leftarrow 1, \dots, n$ do insert $(A[i], H)$; $A \leftarrow H$ \Rightarrow prend $O(n \log_d n)$

Meilleure solution:

HEAPIFY
$$(A)$$
 // vecteur arbitraire $A[1..n]$
H1 **pour** $i \leftarrow n, ..., 1$ **faire** SOMBRER $(A[i], i, A)$

 \Rightarrow prend O(n)

Tas d-aire — construction (cont)

Preuve du temps de calcul : si i est à la hauteur j, alors il prend O(j) de faire SOMBRER (\cdot, i, \cdot) . Il y a $\leq n/d^j$ nœuds à la hauteur j. Donc temps est de

$$\sum_{j} \frac{n}{d^{j}} O(j) = O\left(n \sum_{j} \frac{j}{d^{j}}\right) = O(n).$$

«Évidemment», O(n) est optimal pour construire le tas.

Preuve formelle:

- Trouver le minimum des élements dans une vecteur de taille n prend n-1 comparaisons, donc un temps de $\Omega(n)$ est nécessaire pour trouver le minimum.
- Avec n'importe quelle implantation de heapify, on peut appeler findMin après pour retrouver le minimum en O(1).
- Donc le temps de heapify doit être $\Omega(n)$, sinon on pourrait trouver le minimum en utilisant heapify+findMin en un temps o(n) + O(1) = o(n).