13 Table de symboles et arbres binaires de recherche

13.1 Table de symboles

Type abstrait **table de symboles** (*symbol table*) ou **dictionnaire** : ensemble d'objets avec clés. Typiquement (mais pas toujours!) les clés sont comparables (abstraction : nombres naturels).

Opération principale:

 \star search(k): recherche d'un élément à clé $k \leftarrow$ opération fondamentale — peut être fructueuse ou infructeuse.

Opérations souvent supportées :

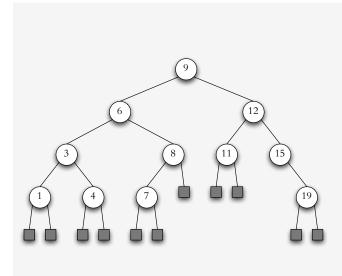
- \star insert(x): insertion de l'élément x (clé+info)
- \star delete(k) : supprimer élément avec clé k
- \star select(i) : sélection de l'i-ème élément (selon l'ordre des clés)

Implantations élémentaires

- \star liste chaînée ou tableau non-trié : recherche séquentielle temps de $\Theta(n)$ au pire (même en moyenne), mais insertion/suppression en $\Theta(1)$ [si non-trié]
- * tableau trié : recherche binaire temps de $\Theta(\log n)$ au pire, mais insertion/suppression en $\Theta(n)$ au pire cas

13.2 Arbre binaire de recherche (ABR)

 $W_{(fr)}$



chaque nœud interne possède une clé : les clés sont comparables.

Définition 13.1. Dans un arbre binaire de recherche (ABR), les nœuds internes possèdent des clés comparables, en respectant un ordre parmi les enfants gauches et droits : le parcours infixe énumère les nœuds internes dans l'ordre croissant de clés.

On spécifie l'ABR par sa racine root. Accès aux nœuds:

- * x.left et x.right pour les enfants de x (null si l'enfant est un nœud externe)
- ★ x.parent pour le parent de x (null à la racine)
- ★ x.key pour la clé d'un nœud interne x (en général, un entier dans nos discussions)

Normalement, on indique les nœuds externes par null (donc, p.e., x.parent n'est pas valide quand x est un nœud externe).

Théorème 13.1 (Ordre d'ABR). Soit x un nœud interne dans un arbre binaire de recherche. Si $y \neq x$ est un nœud interne dans le sous-arbre gauche de x, alors y.key < x.key. Si $y \neq x$ est un nœud interne dans le sous-arbre droit de x, alors y.key > x.key.

13.3 Opérations sur l'ABR

Opérations : la structure ABR permet l'implantation efficace de **recherche** d'une valeur particulière (opération principale du TAD dictionnaire), **insertion** et **suppression** d'éléments (opérations optionnelles pour dictionnaires dynamiques), et même recherche de **min** ou **max** (permettant l'implantation de file à priorité), et beaucoup d'autres.

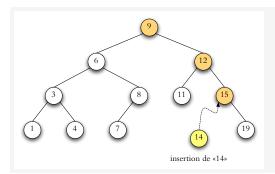
Recherche. SEARCH(root, v) retourne (a) soit un nœud dont la clé est égale à v, (b) soit null s'il n'y a pas de nœud avec clé v. Théorème 13.1 mène àux algorithmes suivants basés sur la même logique.

Solution récursive

```
SEARCH(x, v) // trouve dé v dans le sous-arbre de x S1 if x = \text{null} ou v = x.key then return x S2 if v < x.key S3 then return SEARCH(x.\text{left}, v) S4 else return SEARCH(x.\text{right}, v)
```

Solution itérative

```
SEARCH(x, v) // trouve dé v dans le sous-arbre de x
S1 while x \neq null et v \neq x.key do
S2 if v < x.key
S3 then x \leftarrow x.left
S4 else x \leftarrow x.right
S5 return x
```

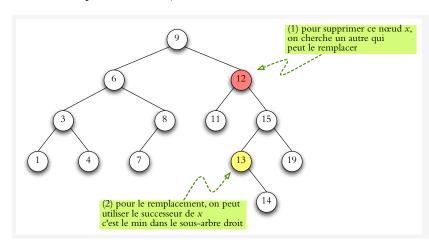


Insertion. Pour insérer une clé v il suffit d'attacher son nœud interne en remplaçant un seul nœud externe, identifié à l'échec de SEARCH(v).

```
// insère la clé v dans l'arbre
  INSERT(v)
I1 x \leftarrow \mathsf{root}; y \leftarrow \mathsf{nouveau} \ \mathsf{nœud}; y.\mathsf{key} \leftarrow v
I2 if x = \text{null then root} \leftarrow y; return
                                                                          // boucler : conditions d'arrêt testées dans le corps
I3 loop
          if v = x.key then erreur
                                                                                       // on ne permet pas de clés dupliquées
I4
          if v < x.key
15
          then if x.left = null
16
I7
              then x.left \leftarrow y; y.parent \leftarrow x; return
                                                                                     ^{\prime\prime} attacher y comme enfant gauche de x
              else x \leftarrow x.left
18
          else if x.right = null
19
                then x.right \leftarrow y; y.parent \leftarrow x; return
I10
                                                                                       // attacher y comme enfant droit de x
I11
                else x \leftarrow x.right
```

Suppression du nœud x.

- 0. triviale si x n'a **pas d'enfants** internes : faire $x.parent.left \leftarrow null$ si x est l'enfant gauche de son parent, ou $x.parent.right \leftarrow null$ si x est l'enfant droit
- 1. facile si x a seulement **1 enfant**: faire x-parent.left x-right; x-right.parent x-parent si x a un enfant droit et x est l'enfant gauche de son parent (il y a 4 cas en total dépendant de la position de x et celle de son enfant)
- 2. un peu plus compliqué si x a **2 enfants** : on trouve d'abord remplacement (successeur ou prédecesseur dans le parcours infixe)



Lemme 13.2. Le nœud avec la clé minimale dans le sous-arbre droit de x n'a pas d'enfant gauche.

⇒ il est facile d'enlever le successeur (d'un nœud à deux enfants)...

```
DELETE(z)
                                                                                                       // supprime le nœud z
D1 if z.left = null ou z.right = null alors y \leftarrow z
                                                                                                                // cas 1. ou 2.
D2 else y \leftarrow \text{MIN}(z.\text{right})
                                                                                                                       // cas 3.
                                         // c'est le nœud y qu'on enlève physiquement : un de ses enfants est externe
D3 if y.\mathsf{left} \neq \mathsf{null} then x \leftarrow y.\mathsf{left} else x \leftarrow y.\mathsf{right}
                                                                                     // le nœud x remplace y à son parent
D4 if x \neq \text{null then } x.\text{parent} \leftarrow y.\text{parent}
D5 if y.parent = null then root \leftarrow x
                                                                                                           // y était la racine
D6 else
                                                                                                                // on remplace
D7
           if y = y.parent.left then y.parent.left \leftarrow x
                                                                                                        // y est enfant gauche
                                                                                                          // y est enfant droit
           else y.parent.right \leftarrow x
D8
D9 if y \neq z then remplacer nœud z par y dans l'arbre
                                                                                       // copier contenu : z.\text{key} \leftarrow y.\text{key}
```

Exercice 13.1. \blacktriangleright Écrire l'algorithme SUCCESSEUR(x) qui trouve le successeur du nœud x dans le parcours infixe. \blacktriangleright Montrer que le temps de calcul de SUCCESSEUR(x) est $\Theta(h)$ dans le pire cas où h est la hauteur de l'arbre. \blacktriangleright Montrer que le temps de calcul est $\Theta(1)$ en moyenne (quand x est un nœud aléatoire dans l'arbre). **Indice** : considérer un parcours infixe en utilisant l'itération $x \leftarrow \text{SUCCESSEUR}(x)$.

Sélection Théorème 13.1 suggère immédiatement la démarche pour trouver le minimum ou le maximum.

```
MIN(r) // nœud à clé minimale dans le sous-arbre de r
1 x \leftarrow r; y \leftarrow \text{null}
2 while x \neq \text{null} do y \leftarrow x; x \leftarrow x.gauche
3 return y

MAX(r) // nœud à clé maximale dans le sous-arbre de r
1 x \leftarrow r; y \leftarrow \text{null}
2 while x \neq \text{null} do y \leftarrow x; x \leftarrow x.droit
3 return y
```

Exercice 13.2. Pour implanter l'opération select(i) (qui retourne le i-ème élément selon l'ordre de clés), on a besoin de stocker la taille de chaque sous-arbre à sa racine par la variable x.size : x.size est le nombre d'internes dans le sous-arbre enraciné au nœud interne x. ▶ Donner une définition récursive pour x.size. ▶ Donner un algorithme récursif pour initialiser x.size partout dans un ABR donné. ▶ Montrer comment mettre à jour x.size lors d'une insertion ou suppression.

13.4 Temps de calcul des opérations

Les opérations prennent O(h) au pire dans les implantations de §13.3.

Hauteurs extrêmes. Par Théorème 7.2 (v. aussi Exercice 7.2), la hauteur h d'un arbre binaire avec n nœuds internes est bornée comme $\lceil \lg(n+1) \rceil \le h \le n$ avec égalités dans le cas d'un arbre binaire complet à la borne inférieure, et l'arbre résultant de l'insértion succéssive d'éléments $1, 2, 3, 4, \ldots, n$.

Arbre «moyen».

Définition 13.2. Un **ABR** aléatoire se construit en insérant les valeurs 1, 2, ..., n selon une permutation aléatoire, choisie à l'uniforme.

REMARQUE. Notez que cette notion est tout à fait différente de celle d'une streuture choisie à l'uniforme : les 6 permutations des clés $\{1,2,3,\}$ mènent à juste 5 arbres possibles.

Théorème 13.3 (Bruce Reed & Michael Drmota). La hauteur d'un ABR aléatoire sur n clés est $\mathbb{E}h = \alpha \lg n - \beta \lg \lg n + O(1)$ en espérance où $\alpha \approx 2.99$ et $\beta = \frac{3}{2\lg(\alpha/2)} \approx 1.35$. La variance de la hauteur aléatoire est O(1).

Le théorème 13.3 applique au pire cas des opérations (nœud externe le plus distant) d'un ABR aléatoire. Il montre que les opérations prennent $O(\log n)$ en moyenne. La preuve du thèorème est trop compliquée pour les buts de ce cours.

Profondeur moyenne. Le temps moyen de la recherche (ou d'insertion) correspond au niveau moyen de nœuds internes parce que c'est où la recherche se termine. On va démontrer que la profondeur moyenne est $O(\log n)$. La preuve exploîte la correspondance à une exécution du tri rapide : le pivot du sous-tableau correspond à la racine du sous-arbre.

Définition 13.3. Soit x un nœud interne d'un ABR, et soit T_x le sous-arbre enraciné à x. Pour tout nœud interne $y \in T_x$, la distance d(x,y) est définie comme la longueur du chemin de x à y. On définit $d(x) = \sum_{y \in T_x} d(x,y)$ comme la somme des profondeurs des nœuds internes dans le sous-arbre T_x enraciné à x.

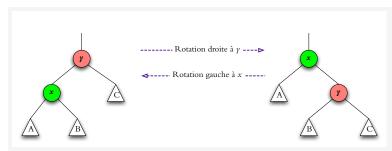
Avec cette définition, d(root, y) est la profondeur (ou niveau) du nœud y et $\frac{d(\text{racine})}{n}$ est la moyenne des profondeurs dans l'arbre.

Théorème 13.4. Soit $D(n) = \mathbb{E}d(\mathsf{root})$ l'espérance de la somme des profondeurs dans un arbre aléatoire avec n clés comme en Théorème 13.3. Alors, $D(n)/n = O(\log n)$

Démonstration. Preuve comme pour Théorème 12.1 (temps de calcul moyen du tri rapide).

13.5 Rotations $W_{(en)}$

Vu que la performance d'un ABR est déterminée par sa hauteur, des implantations efficaces visent à maintenir un arbre équilibré.



La technique principale dans l'établissement de l'équilibre est la **rotation**. Les rotations (gauche ou droite) — préservent la propriété des arbres de recherche et prennent seulement O(1).

```
ROTR(y) // rotation droite à y
R1 x \leftarrow y.left; B \leftarrow x.right; p \leftarrow y.parent
R2 x.right \leftarrow y; y.parent \leftarrow x
R3 y.left \leftarrow B; if B \neq \text{null then } B.parent \leftarrow y
R4 x.parent \leftarrow p
R5 if p \neq \text{null then}
R6 if y = p.left then p.left \leftarrow x
R7 else p.right \leftarrow x
```

```
ROTL(x) // rotation gauche à x
L1 y \leftarrow x.right; B \leftarrow y.left; p \leftarrow x.parent
L2 y.left \leftarrow x; x.parent \leftarrow y
L3 x.right \leftarrow B; if B \neq null then B.parent \leftarrow x
L4 y.parent \leftarrow p
L5 if p \neq null then
L6 if x = p.left then p.left \leftarrow y
L7 else p.right \leftarrow y
```

Il existe de nombreuses implantations efficaces qui utilisent des rotations :

(Randomisation) En maintenant une variable x.size à chaque nœeud interne x (v. Exercice 13.2) qui stocke le nombre de nœuds internes dans le sous-arbre de x, on peut simuler l'ABR aléatoire de Déf. 13.2, indépendamment de l'ordre des insertions. L'idée est de décider lors de la descente dans INSERT(v) au hasard que v devienne la racine du sous-arbre Pour un tel arbre, les opérations prennent $O(\log n)$ en moyenne (individuellement). (Mais un temps de calcul de $\Theta(n)$ arrive avec une probabilité positive.)

(Amortisation) Dans un arbre *splay*, on remonte un nœud jusqu'à la racine par des rotations selon une logique analogue à celle de compression de chemin par réduction à moitié d'Union-find (*path halving*, v. §6.5). Dans un tel arbre, une séquence quelconque de m opérations s'exécute en $O(m \log n)$ au pire cas², donc les opérations prennent $O(\log n)$ de *temps amorti*.

(Optimisation) La hauteur est $O(\log n)$ au pire cas (individuellement) pour beaucoup de genres d'arbres de recherche équilibrés : arbre AVL, arbre rouge-noir, arbre 2-3-4. Il faut toujours stocker au moins une variable additionnelle à chaque nœud interne pour guider la démarche de rotations.

¹ Plus précisement, au nœud interne x, on performe une «insertion à la racine» avec probabilité 1/(x.size + 1): après avoir inseré v dans le sous-arbre de x selon la démarche usuelle, on remonte à x, en performant des rotations jusqu'à x.

²ici, *n* est la taille maximal de l'arbre pendant la séquence