ALIGNEMENT DE SÉQUENCES

OU COMMENT COMPARER DES LIVRES SUR LE MÊME SUJET

Alignement * IFT6299 A2005 * UdeM * Miklós Csűrös

les mutations s'accumulent pendant les années \rightarrow divergence de séquences d'origin commun

grand divergence \Rightarrow plus de temps et/ou moins de sélection négative

Distance entre deux mots

Distance d'édition : nombre d'opérations pour transformer un mot à un autre.

Opérations : sur caractères

- insertion (I insert)
- suppression (D delete)
- substitution (S substitute)
- identité (M match)

But : calculer le nombre minimal d'opérations pour la transformation.

Minimal : autant de M (identité) que possible.

Exemples : docment-document, docment-dorment, docment-doucement, docment-moments

On peut avoir plusieurs suites de la même taille minimale : abbc-axc

Idée : calculer les distances entre les préfixes successivement

Nos notions formelles :

- alphabet fini Σ (p.e. $\Sigma = \{\texttt{A}, \ldots, \texttt{z}\}$ ou $\Sigma = \{\texttt{T}, \texttt{G}, \texttt{A}, \texttt{C}\})$

- mot ou séquence : une suite de caractères de Σ

Soit S une séquence.

- taille de S, denotée par |S| = nombre de caractères
- caractère en position i: S[i]
- sous-mot S[i..j] : le mot formé par les caractères $S[i], S[i+1], \ldots, S[j]$
- préfixe : sous-mot de forme S[1..i].

Def. Distance d'édition entre deux séquences S_1 et S_2 : nombre minimal de I, D, S dans une suite d'opérations qui transforme S_1 en S_2 .

Thm. La distance d'édition est une fonction symétrique.Preuve. I ⇔ D.

Thm. La distance d'édition satisfait l'inégalité du triangle

Un fait intéressant :) la distance d'édition est parfois appellée *distance de Levenshtein*

Def. Soit S et T deux séquences. On définit D(i, j) par

$$D(i,j) = \begin{cases} \text{distance entre } S[1..i] \text{ et } T[1..j] & \text{si } i > 0 \text{ et } j > 0, \\ i & \text{si } j = 0 \\ j & \text{si } i = 0. \end{cases}$$

Donc D(i, j) est la distance entre les deux préfixes de tailles i et j.

Thm. Si i, j > 0, on a

$$D(i,j) = \min \left\{ D(i-1,j) + 1, \\ D(i,j-1) + 1, \\ D(i-1,j-1) + \{S[i] \neq T[j]\} \right\}.$$

Preuve. 1. La dernière opération pour achever D(i, j) doit être I, D, ou S/M. 2. Tous les trois sont possibles.

Donc on peut calculer D(|S|, |T|) par récursion... pas une bonne idée. (La même valeur sera calculée plusieurs fois.)

Distance: opra - uma

Quand même on n'a que $(1 + |S|) \times (1 + |T|)$ appels récursifs possibles.

Au lieu d'explorer l'arbre de récursions en descendant, il est mieux de le faire de manière ascendante.

Tableau de calculs

Les cases contiennent les D(i, j).

Parcours : ligne par ligne.

 $\text{Exemple}: \texttt{AAAC} \to \texttt{AGC}$

Temps de calcul : O(mn) (on remplit chaque case du tableau en un temps constant : trois comparaisons et deux ou trois additions)

Comment trouver une suite d'opérations qui correspond à D(i, j)? Enregistrer dans chaque case la direction du min de la recurrence.

Alignement

Déf. alignement=vecteur d'appariements

Types d'appariements :

(a, a) : occurence (match)
(a, b) : erreur (mismatch/substitution)
(a, -) et (-, a) : indel

Alignement pondéré

Tableau C de pondération d'appariements

	A	C	G	Т		ou :		A	C	G	Т	
A	1	-3	-3	-3	-5		A	91	-114	-31	-123	-300
C	-3	1	-3	-3	-5		C	-114	100	-125	-31	-300
G	-3	-3	1	-3	-5		G	-31	-125	100	-114	-300
T	-3	-3	-3	1	-5		Т	-123	-31	-114	91	-300
	-5	-5	-5	-5	X		_	-300	-300	-300	-300	

Score ou valeur de l'alignement : somme des valeurs des appariements

Problème : trouver l'alignement avec le score maximal PD pour maximiser la similarité

Chiaromonte et al. PSB 2002.

Génération d'une matrice de pondération

Modèle probabiliste pour une séquence : caractères aléatoires iid (indépendants et identiquement distribués) : $\mathbb{P}\{S[i] = \sigma\} = \pi_{\sigma}$

P.e., $\pi_{A} = \pi_{T} = 32\%$, $\pi_{C} = \pi_{G} = 18\%$: taux de (G + C) à 36%.

Modèle probabiliste pour évolution $S \to T$: substitutions aléatoires indépendantes : $\mathbb{P}\left\{T[i] = \sigma' \mid S[i] = \sigma\right\} = p_{\sigma \to \sigma'}$ (pas de trous !)

Matrice de subsitutions : $\mathbf{M} = \left[p_{\sigma \to \sigma'} \right]_{\sigma, \sigma' \in \Sigma}$

Matrice de pondération 2

Probabilité d'un «vrai» alignement : $P_1 = \mathbb{P}\{S, T\}$ Probabilité d'un alignement au hasard : $P_0 = \mathbb{P}\{S\}\mathbb{P}\{T\}$

$$P_{1} = \prod_{i=1}^{n} \mathbb{P}\{S[i], T[i]\} = \prod_{i=1}^{n} \pi_{S[i]} p_{S[i] \to T[i]}$$
$$P_{0} = \prod_{i=1}^{n} \mathbb{P}\{S[i]\} \mathbb{P}\{T[i]\} = \prod_{i=1}^{n} \pi_{S[i]} \pi_{T[i]}.$$

,

Matrice de pondération 3

Rapport de P_0 et P_1 : LODS (logarithmes des chances) $\log \frac{P_1}{P_0}$.

On a

$$LODS = \sum_{i=1}^{n} \log \frac{\pi_{S[i]} p_{S[i] \to T[i]}}{\pi_{S[i]} \pi_{T[i]}} = \sum_{i=1}^{n} \log \frac{p_{S[i] \to T[i]}}{\pi_{T[i]}}$$

Score de substitution $\sigma \rightarrow \sigma'$:

$$\mathbf{C} \begin{bmatrix} \sigma \\ \sigma' \end{bmatrix} = \Big[\alpha \log \frac{p_{\sigma \to \sigma'}}{\pi_{\sigma'}} \Big],$$

où α est une facteur d'échelle (notez qu'on utilise le plafond pour valeurs entières)

Matrice de pondération 4

Problème : comment estimer π_{σ} et $p_{\sigma \to \sigma'}$?

Solution : prendre de «bons alignements»

Exemples : BLOSUMnn (nn=45,62,80 pour nn% d'identité, protéines) ; PAMxxx (xxx=100,250,..., mesure divergence, protéines) ; Chiaromonte (pour ADN)

Graphe d'édition

ACGGT-CA ATGGTACA

Graphe d'édition 2

pondération des arêtes :

$$poids(v_{i-1,j-1} \rightarrow v_{i,j}) = \mathbf{C} \begin{bmatrix} S[i] \\ T[j] \end{bmatrix};$$
$$poids(v_{i-1,j} \rightarrow v_{i,j}) = \mathbf{C} \begin{bmatrix} S[i] \\ - \end{bmatrix};$$
$$poids(v_{i,j-1} \rightarrow v_{i,j}) = \mathbf{C} \begin{bmatrix} - \\ T[j] \end{bmatrix}.$$

alignement global : trouver le chemin de $v_{0,0}$ à $v_{|S|,|T|}$ avec poids maximal.

Alignement : variation

Trouver la région de similarité maximale entre deux séquences — alignement local

Dans le graphe d'édition : trouver le chemin de $v_{i,j}$ à $v_{i',j'}$ avec poids maximal pour $i' \ge i, j' \ge j$ quelconques

Les noms : Needleman-Wunsch : problème de l'alignement global Smith-Waterman : algorithme de l'alignement local

Alignement : chevauchements

Trouver le meilleur chevauchement entre un suffixe (de S) et un préfixe (de T).

Trous

Pénalisation d'un trou par sa taille :

- quelconque : δ (longueur)
- constante

- linéaire : $\delta(\ell) = \delta_{\text{ouvrir}} + \ell \delta_{\text{cont}}$ (avant on avait le cas spécial $\delta_{\text{ouvrir}} = 0$)

Récurrence pour pondération «quelconque» :

$$A(i,j) = \max \left\{ A(i-1,j-1) + C \begin{bmatrix} S[i] \\ T[j] \end{bmatrix}, \\ \max_{\ell=1,\dots,i} \{ A(i-\ell,j) + \delta(\ell) \}, \max_{\ell=1,\dots,j} \{ A(i,j-\ell) + \delta(\ell) \} \right\}.$$

Cas de base : $A(i,0) = \delta(i)$; $A(0,j) = \delta(j)$.

Temps de calcul : $O(nm^2 + mn^2)$ pour |S| = n, |T| = m.

Pondération — exemple

Trous longs (disons $\ell \geq 5$) en S avec pénalisation constante δ_{long} , trous courts avec pénalisation quelconque $\delta(\ell)$; trous en T avec pénalisation simple $\delta'\ell$.

Définir graphe d'alignement avec deux genres de sommets : $v_{i,j}$ pour alignements de préfixes qui finissent pas par trous longs et $t_{i,j}$ pour ceux qui finissent par trous longs.

Arêtes : $v_{i,j} \searrow v_{i+1,j+1}$ ponderée par $C\begin{bmatrix}S[i]\\T[j]\end{bmatrix}, v_{i,j} \downarrow v_{i+k,j}$ pour $k = 1, \ldots, 4$ ponderée par $\delta(k), v_{i,j} \rightarrow v_{i,j+1}$ ponderée par $\delta', t_{i,j} \rightarrow v_{i,j}$ ponderée par $0, v_{i,j} \downarrow t_{i+5,j}$ ponderée par $\delta_{\text{long}}, t_{i,j} \downarrow t_{i+1,j}$ ponderée par 0.

Calcul en espace linéaire

Calcul de score V(i, j) rangée par rangée de gauche à droite (trou de taille ℓ pondéré par $\delta \ell$)

On n'a besoin que de V(i-1,j'): $j' \ge j$ et de V(i,j''): $j'' \le j$.

Alignement * IFT6299 A2005 * UdeM * Miklós Csűrös

Espace linéaire 2

Algo ALI-LINESPACE
Entrée : séquences
$$S, T$$
 avec $n = |S|$ et $m = |T|$; matrice de coûts C
L1 $U[0] \leftarrow 0$; for $j \leftarrow 1..m$ do $U[j] \leftarrow U[j-1] + C\begin{bmatrix} -\\ T[j] \end{bmatrix}$
L2 for $i \leftarrow 1..n$ do
L3 $x \leftarrow U[0]; U[0] \leftarrow U[0] + C\begin{bmatrix} S[i] \\ -\end{bmatrix}$
L4 for $j \leftarrow 1..m$ do
L5 $\operatorname{tmp} \leftarrow U[j]$
L6 $U[j] \leftarrow \max \{ U[j-1] + C\begin{bmatrix} S[i] \\ -\end{bmatrix}, x + C\begin{bmatrix} S[i] \\ T[j] \end{bmatrix}, U[j] + C\begin{bmatrix} -\\ T[j] \end{bmatrix} \}$
L7 $x \leftarrow \operatorname{tmp}$

Affectations en Ligne L6

Espace linéaire 3

Mais comment trouver le meilleur alignement (et pas seulement son score) en espace linéaire ?

Idée de clé : trouver le noeud en ligne i du graphe par lequel le chemin du meilleur alignement doit passer

- 1. calculer $\forall j \colon V_{\text{pre}}(i, j)$, le score du meilleur alignment de S[1..i] et T[1..j] $(V_{\text{pre}}(i, j) = U[j]$ en ALI-LINESPACE si appellé avec S[1..i] et T)
- 2. calculer $\forall j \colon V_{Suf}(i, j)$, le score du meilleur alignement de S[i + 1..n] et T[j + 1..m].
- 3. le meilleur alignement doit croiser rangée i en colonne j^* qui maximise $V(i, j^*) = V_{\text{pre}}(i, j^*) + V_{\text{suf}}(i, j^*)$

On peut calculer V^* en espace linéaire avec un algorithme similaire à ALI-LINESPACE

Espace linéaire 4 — Hirschberg

Algo ALI-HIRSCHBERG
Entrée : séquences
$$S, T$$
 avec $n = |S|$ et $m = |T|$; matrice de coûts C
H1 if $m = 0$ then return alignement $\begin{bmatrix} S[1] \dots S[n] \\ - \dots - \end{bmatrix}$
H2 if $n = 1$ then
H3 trouver $j \in 1, \dots, m$ t.q. $C\begin{bmatrix} S[1] \\ T[j] \end{bmatrix}$ is maximal
H4 return alignement $\begin{bmatrix} - \dots - S[1] & - \dots - \\ T[1] & T[j-1] & T[j] & T[j+1] & T[m] \end{bmatrix}$
H5 soit $i \leftarrow \lfloor n/2 \rfloor$
H6 calculer $U[j] = V_{\text{pre}}(i, j)$ et $W[j] = V_{\text{suf}}(i, j)$ pour tout $j = 0, \dots, m$
H7 soit $M \leftarrow \max_{j=0,\dots,m} \{U[j] + V[j]\}$
H8 soit $j^* \leftarrow \min\{j: U[j] + W[j] = M\}$
H9 calculer l'alignement $A_1 \leftarrow \text{ALI-HIRSCHBERG}(S[1..i], T[1..j^*], C)$
H10 calculer l'alignement $A_2 \leftarrow \text{ALI-HIRSCHBERG}(S[i + 1..n], T[j^* + 1..m], C)$

(En lignes H9–H10, $T[1..0] = \varepsilon$ et $T[m + 1..m] = \varepsilon$)

Hirschberg, Comm. ACM, 18:341

Alignement plus rapide

1. méthodes heuristiques : hachage, arbres de suffixe, PD limitée (taille totale de trous bornée)

2. PD éparse (pour sous-séquence commune ou *chaînage* en alignement global heuristique)

Hachage

Deux séquences S, TFonction de hachage : h: {A, C, G, T}^k $\mapsto \mathcal{H}$ hit : (i, j) avec h(S[i..i + k - 1]) = h(T[j..j + k - 1])Technique : listes Occ(u) de positions où $h^{-1}(u)$ apparaît

1. pour $i \leftarrow 1, \ldots, |S| - k + 1$ faire

2.
$$\mathsf{Cl}\acute{e} \leftarrow h(S[i..i+k-1])$$

- 3. ajouter i à la fin de la liste Occ(Clé)
- 4. pour $j \leftarrow 1, \ldots, |T| k + 1$ faire
- 5. $\mathsf{cl}\acute{\mathsf{e}} \leftarrow h(T[j..j+k-1])$
- 6. traitement [extension?] des hits (i, j): $i \in Occ(Clé)$

Hachage — structure de données

Trouver les clés partagés : stocker les occurrences (Occ) de tous les clés de S en un tableau de hachage

Implantation facile en Java : on peut utiliser les sous-mots w comme clés directement, Hashtable calcule des clés de hachage automatiquement, liste chaînée pour chaque Occ(w)

(utilise plus de mémoire que nécessaire...)

Tableau de k-mers

Ma, Tromp et Li. Bioinformatics 18:440.

Implantation

1. Encodage des k-mers en 2k bits : A $\rightarrow 00, C \rightarrow 01, G \rightarrow 10, T \rightarrow 11.$

Java int : 32 bits ($k \le 16$); long : 64 bits ($k \le 32$).

2. Encodage des listes chaînées :

chaque position de la séquence n'apparaît qu'une fois!

Définir un tableau int [] successeur où successeur [i] donne la position qui suit i dans une des listes chaînées ou égale à -1 si i est la dernier objet dans une liste.

Tête de chaque liste est trouvée par un tableau int [] tete où tete[i] donne la première position ou le k-mer encodé par i se trouve.

Mémoire : $(4^k + |S|)$ fois taille de int (4 octets).

Implantation — Java

```
HT1 int[] tete=new int[1<<(2*k)];
HT2 int[] successeur=new int[S.length()-k+1];
HT3 pour tout i, tete[i] \leftarrow -1
HT4 for (int i=0; i<S.length()-k+1; i++) {
        calcul de l'encodage w pour le sous-mot S[i..i + k - 1];
HT5
HT6 successeur[i]=tete[w];
HT7 tete[w]=i;
HT8 \}
HT9 for (int j=0; j<T.length()-k+1; j++) {
         calcul de l'encodage w pour le sous-mot T[j..j + k - 1];
HT10
HT11
         int i=tete[w];
HT12
         while (i != -1) {
           extension du hit (i, j)
HT13
HT14
           i=successeur[i];
HT15
        }
HT16 }
```

Hachage — performance

Spécificité : mesurée par nombre de *hits* entre deux séquences sans homologies (p.e., aléatoires)

Sensibilité : mesurée par la probabilité de hit dans une région de homologie

Hachage — nombre de hits

Modèle : S aléatoire, avec nucléotides iid selon p; T aléatoire, avec nucléotides iid selon $q : \mathbb{P}\{S[i] = c\} = p_c$ et $\mathbb{P}\{T[j] = c'\} = q_{c'}$.

Fonction de hachage : identité $h(u) = u, \mathcal{H} = \Sigma^k (\Sigma = \{A, C, G, T\})$

Thm. Soit $\beta = \sum_{c \in \Sigma} p_c q_c$. Alors le nombre de *hits* en espérance est $st\beta^k$ où s = |S| - k + 1 et t = |T| - k + 1.

Détour — nombre de hits

L'espérance de nombre de hits est la même pour tous les sous-mots $w \in \Sigma^k$. Est-ce que la distribution est la même aussi ? Non !

Exemple : «pas tous les mots sont créés égaux»

Exemple : T est une séquence de longueur n «au hasard» au hasard : chaque caractère de T est 0 ou 1 avec probabilités $\frac{1}{2}$ - $\frac{1}{2}$.

Quelle est la probabilité de voir w = 00 ou w = 01?

Extension d'un hit

Techniques :

- extension rapide sur une diagonale
- X-drop
- programmation dynamique dans une bande

Extension rapide

Rester sur la même diagonale ; explorer jusqu'à ce que le score devienne 0, prendre le meilleur segment (*high-scoring segment pair*, HSP)
PD dans une bande

Bande de $\pm d$ sommets proches de la diagonale $D : \{v_{i,j} \colon |(i-j) - D| \leq d\}$

X-drop

à partir d'une case initiale, explorer vers $v_{0,0}$ et $v_{|S|,|T|}$; arrêter si le score tombe par X

(exploration de toute une région ou quelques [même 1] diagonales)

Altschul et al, Nucleic Acids Res. 25: 3389.

Détails : extension rapide [vers sud-est]

ER1 Entrée
$$i_0, j_0$$
 départ de l'extension, s_0 score initial
ER2 meilleur $\leftarrow s_0$; extension $\leftarrow 0$
ER3 $i \leftarrow i_0 + 1; j \leftarrow j_0 + 1;$ score $\leftarrow s_0$
ER4 tant que $i \le |S|, j \le |T|$, score ≥ 0
ER5 score \leftarrow score $+ C \begin{bmatrix} S[i] \\ T[j] \end{bmatrix}$
ER6 si score \ge meilleur alors meilleur \leftarrow score, extension $\leftarrow j - j_0$
ER7 $i \leftarrow i + 1, j \leftarrow j + 1$
ER8 retourner meilleur, extension

Détails : bande [vers sud-est]

B1 Entrée
$$i_0, j_0$$
 départ de l'extension, s_0 score initial, d épaisseur
B2 $A^* \leftarrow s_0, i \leftarrow i_0, D \leftarrow i_0 - j_0$
B3 tant que $i \le |S|$
B4 $j \leftarrow \max\{j_0, i - D - d\}$
B5 tant que $j \le \min\{|T|, i - D + d\}$
B6 calculer $A(i, j)$; si $A^* < A(i, j)$ alors $A^* \leftarrow A(i, j)$
B7 $j \leftarrow j + 1$
B8 si $\forall j : A(i, j) \le 0$ alors sauter à Ligne B10.
B9 $i \leftarrow i + 1$
B10 reporter A^*

Détails bande 2 — graphe

Détails bande 2 — code

Calcul en ligne B6 : pondération par C

$$- \operatorname{si} i = i, j = j_{0}, \operatorname{alors} A(i, j) = s_{0}$$

$$- \operatorname{si} i = i_{0}, \operatorname{et} j > j_{0}, \operatorname{alors} A(i, j) = A(i, j - 1) + C\begin{bmatrix} - \\ T[j] \end{bmatrix}$$

$$- \operatorname{si} i > i_{0} \operatorname{et} j = j_{0}, \operatorname{alors} A(i, j) = A(i - 1, j) + C\begin{bmatrix} S[i] \\ - \end{bmatrix}$$

$$- \operatorname{si} i > i_{0} + d \operatorname{et} j = i - D - d, \operatorname{alors}$$

$$A(i, j) = \max \left\{ A(i - 1, j - 1) + C\begin{bmatrix} S[i] \\ T[j] \end{bmatrix}, A(i - 1, j) + C\begin{bmatrix} S[i] \\ - \end{bmatrix} \right\}$$

Détails bande 2 — code (cont.)

$$- \text{ si } i > i_0 \text{ et } \max\{j_0, i - D - d\} < j < \min\{|T|, i - D + d\}, \text{ alors} \\ A(i, j) = \max\{A(i-1, j) + C\begin{bmatrix}S[i]\\-\end{bmatrix}, A(i-1, j-1) + C\begin{bmatrix}S[i]\\T[j]\end{bmatrix}, A(i, j-1) + C\begin{bmatrix}-\\T[j]\end{bmatrix}\} \\ - \text{ si } i > i_0 \text{ et } j = \min\{|T|, i - D + d\}, \text{ alors } A(i, j) = \max\{A(i-1, j-1) + C\begin{bmatrix}S[i]\\T[j]\end{bmatrix}, A(i, j-1) + C\begin{bmatrix}-\\T[j]\end{bmatrix}\} \\ 1) + C\begin{bmatrix}S[i]\\T[j]\end{bmatrix}, A(i, j-1) + C\begin{bmatrix}-\\T[j]\end{bmatrix}\}$$

Détails X-drop

Idée : maintenir A^* score du meilleur alignement et ne pas continuer l'extension si $A(i,j) < A^* - X$

Stocker colg, cold : colonnes de la dernière rangée que l'on a explorée.

(Ou code plus simple si l'exploration est dans une bande seulement : on n'a pas besoin de colg, col_d)

[Code pour extensions vers sud-est seulement]

Détails X-drop 2

```
XD1 Entrée i_0, j_0 départ de l'extension, s_0 score initial, X
 XD2 A^* \leftarrow s_0, \operatorname{col}_{\mathsf{q}} \leftarrow j_0, \operatorname{col}_{\mathsf{d}} \leftarrow |T|
 XD3 i \leftarrow i_0
 XD4 tant que i \leq |S|, \operatorname{col}_{\mathsf{g}} \leq \operatorname{col}_{\mathsf{d}}
               j \leftarrow \mathsf{col}_{\mathsf{a}}
 XD5
 XD6 tant que j \le \min\{\operatorname{col}_d + 1, |T|\}
 XD7
                           calculer A(i, j)
                           si A(i,j) > A^* alors A^* \leftarrow A(i,j)
 XD8
                           si A(i,j) < A^* - X alors A(i,j) \leftarrow -\infty
 XD9
                           i \leftarrow i + 1
XD10
              tant que \operatorname{col}_{\mathsf{q}} \leq \operatorname{col}_{\mathsf{d}} et A(i, \operatorname{col}_{\mathsf{q}}) = -\infty, \operatorname{col}_{\mathsf{q}} \leftarrow \operatorname{col}_{\mathsf{q}} + 1
XD11
                     \operatorname{col}_{d} \leftarrow \operatorname{col}_{d} + 1; tant que \operatorname{col}_{d} \geq \operatorname{col}_{q} et A(i, \operatorname{col}_{d}) = -\infty, \operatorname{col}_{d} \leftarrow \operatorname{col}_{d} - 1
XD12
XD13 i \leftarrow i + 1
XD14 retourner A^*
```

Détails X-drop 3

Calcul en ligne XD7 : pondération par ${f C}$

$$-\operatorname{si} i = i_{0} \operatorname{et} j > j_{0}, \operatorname{alors} A(i, j) \leftarrow A(i, j - 1) + C\begin{bmatrix} -\\ T[j] \end{bmatrix}$$
$$-\operatorname{si} i > i_{0} \operatorname{et} j = \operatorname{colg} \operatorname{alors} A(i, j) \leftarrow A(i - 1, j) + C\begin{bmatrix} S[i] \\ - \end{bmatrix} \end{bmatrix}$$
$$-\operatorname{si} i > i_{0} \operatorname{et} j = \operatorname{colg} + 1 \operatorname{alors} A(i, j) \leftarrow \max \left\{ A(i - 1, j - 1) + C\begin{bmatrix} S[i] \\ T[j] \end{bmatrix}, A(i, j - 1) + C\begin{bmatrix} -\\ T[j] \end{bmatrix} \right\}$$
$$-\operatorname{sinon} A(i, j) \leftarrow \max \left\{ A(i - 1, j) + C\begin{bmatrix} S[i] \\ - \end{bmatrix}, A(i - 1, j - 1) + C\begin{bmatrix} S[i] \\ T[j] \end{bmatrix}, A(i, j - 1) + C\begin{bmatrix} -\\ T[j] \end{bmatrix} \right\}$$

Un exemple : chevauchements en CAP3

Séquence combinée de tous les fragments:

- 1. Tableau de hachage des k-mers de la séquence combinée.
- 2. Chaque fragment f ainsi que son complément sont comparés à la séquence combinée, pour trouver des HSPs.
- 3. Les chevauchements potentiels de 2) sont évalués par alignement dans une bande.

Huang et Madan, Genome Res. 9:868.

Meilleur hachage : graines espacées

 $S = \{s_1, \dots, s_k\} : \text{graine (seed) } (\ell, k);$ fonction de hachage : $h(u) = u[s_1] \cdot u[s_2] \cdots u[s_k].$

BLAST : graine contigue (11-mer) $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ PatternHunter : graine espacée $S = \{1, 2, 3, 5, 8, 10, 13, 14, 16, 17, 18\}$

Ma et al. Bioinformatics 18:440

Graines espacées

Graine espacée est meilleure pour toutes distributions de similarité

Hit probability in function of mismatches (region length=64)

Problème : trouver la meilleure graine (NP-difficile), calculer la sensibilité (NP-difficile)

Calculer la sensibilité de la graine

Modèle : région de similarité de longueur ℓ , niveau de similarité p. Séquence d'indicateurs $X_1 X_2 \cdots X_{\ell}$ où $X_i = 1$ ssi un match en position i (avec probabilité p).

Hit en position i : si $X_{i+k-1} = 1$ pour tout $k \in S$.

Calculer cette probabilité

Indépendance de positions

Nombre de hits en espérance à peu près la même hits sont plus dense avec graine contigue

probabilité d'un deuxième hit : p^6 ou p^1

nombre de hits $H : \mathbb{E}H = \mathbb{E}\left[H \mid H > 0\right]\mathbb{P}\{H > 0\}$ or, $\mathbb{E}\left[H \mid H > 0\right]$ est plus large avec k-mer

Sensibilité de la graine 2

Graine = 101011

Alignement global dans les Megas

Procédure : (1) recherche de homologies (hachage+extension), (2) sélection d'ancres,(3) PD dans une bande autour de la chaîne d'ancres et dans les régions entre ancres

Liste de rectangles (alignements locaux) : rectangle R en position (R.s1, R.t1), (R.s2, R.t2) avec score R.v

chaîne : ensemble de rectangles non-chevauchant

Récurrence pour calculer V(R) : score maximum d'une chaîne qui finit par rectangle R

Clé : maintenir la liste \mathcal{L}_j de rectangles *actifs* pour j = 0, ..., |T|

Alignement * IFT6299 A2005 * UdeM * Miklós Csűrös

Déf. Rectangle R est actif pour j ssi (1) $R.t2 \le j$; et (2) $\forall R'$ avec $R'.t2 \le j$: si $R'.s2 \le R.s2$ alors $V(R') \le V(R)$. Lemme. Si R'.s2 = R.s2 et tous les deux sont actifs, alors V(R') = V(R).

 $\Rightarrow \mathcal{L}$ contient des rectangles actifs avec .s2 différents — choisir R avec R.t2 minimum si > 1 rectangles actifs avec le même .s2.

Trier les .t1, .t2 : liste \mathcal{J} , calculer \mathcal{L}_j pour $j \in J$ en ordre ascendant

en arrivant au côté gauche du rectangle R :

- trouver $R' \in \mathcal{L}_{R.t1}$ t.q. $R'.s2 \leq R.s1$ avec V(R') maximal - $V(R) \leftarrow V(R') + R.v$ (si aucun tel $R', V(R) \leftarrow R.v$

Lemme. Si $R, R' \in \mathcal{L}_j$, alors $R.s2 \neq R'.s2$ et R.s2 < R'.s2 ssi V(R) < V(R').

Preuve. Par définition de \mathcal{L}_{j} .

 \Rightarrow stocker \mathcal{L}_j dans l'ordre de .s2 et $V(\cdot)$ en même temps

en arrivant au côté droit du rectangle R — mise à jour de \mathcal{L} : - supprimer $R' \in \mathcal{L}$ t.q. $R'.s2 \geq R.s2$ et V(R') < V(R)- trouver $R' \in \mathcal{L}$ t.q. $R'.s2 \leq R.s2$ et V(R') max. : si V(R') = V(R) et R'.s2 < R.s2, ou si V(R') < V(R), alors insérer R dans \mathcal{L} juste après R' (ou s'il n'y a pas de R' avec $R'.s2 \leq R.s2$, insérer au début)

Temps de calcul : $O(r \log r)$ pour r rectangles (utiliser un arbre binaire balancé; chaque rectangle est inclus à ou est supprimé de \mathcal{L} une fois au plus)

Chaînage avec pénalisation de trous

Régions de PD complète

donne le score de joindre deux HSPs : modifier l'algorithme de sélection de chaîne pour inclure ce score aussi

Slater & Birney BMC Bioinformatics 6:31

LAGAN : alignement global avec ancres

sélection d'ancres : chaîne optimale d'alignements locaux

Brudno & al. Genome Res. 13:721

Alignement * IFT6299 A2005 * UdeM * Miklós Csűrös

Quelques autres idées

- recalcul de scores (alignement local avec trous : trouver le placement optimal du trou entre deux hits)

- génération de nouveaux ancres plus épais dans des régions sans ancres par hachage plus sensible

(B. transposition, C. inversion, D. duplication)

Dans des synténies humain-souris : par 1 Mbp on a en moyenne 2 inversions, 17 duplications, 7 transpositions, 200 deletions de longueur > 100 pb,

réarrangements : inversions et translocations sont permises

- A. alignements locaux
- B. chaîne 1-monotone
- C. LAGAN dans les blocs sans inversions

Brudno & al. Bioinformatics 19: i54

Visualisation des alignements : PIPs

PIP — percent identity plot

(on considère les blocs entre les trous, et on affiche le pourcentage de matchs dans chaque bloc)

Schwartz & al. Genome Res. 10:577

Constitution d'un génome 2

en Procaryotes : 90-97% codant

après Watson et al Molecular Biology of the Gene (2004)

Alignement * IFT6299 A2005 * UdeM * Miklós Csűrös

Alignement de génomes

Problème : beaucoup de réarrangements, insertions indépendantes dans les deux génomes

 \rightarrow n'utiliser que les chaînes d'alignements locaux

on veut détecter des régions synténiques — déscendantes de la même région dans l'ancêtre commun

(chromosomes humains coloriés par syntenies dans souris et rat)

http://www.genboree.org/

Alignement * IFT6299 A2005 * UdeM * Miklós Csűrös

Micro-réarrangements

Kent & al. PNAS 100 : 11484

BLASTZ

1. masquer les régions répetées

2. hits avec la graine espacée 1110100110010101111 (12 sur 19 positions) + une transition A-G ou T-C permise

3. extension sans trou + extension avec trou si score est assez grand

- 4. hit+extend dans les régions entre alignements locaux (hits avec 7-mers)
- 5. chaînage d'alignements proches

Schwartz & al Genome Res. 13: 103

PASH

Parallèlisation par diagonales + aucune extension

(humain-souris : 24 CPU jours vs. 481 avec BLASTZ)

Kalafus & al. Genome Res. 14:672

Alignement * IFT6299 A2005 * UdeM * Miklós Csűrös
Chains et nets

Chaînage récursive — chaînes imbriquées

Kent & al. PNAS 100 : 11484

Chains et nets 2

distribution de trous

Kent & al. PNAS 100 : 11484

74

Exemple : α **-globines dans le souris**

[breakpoint dans le souris]

Tufarelli & al. Genome Res. 14:623 (2004)

Tufarelli & al. Genome Res. 14:623 (2004)

Tufarelli & al. Genome Res. 14:623 (2004)

Alignment comme annotation

Annotation d'un génome : segments avec des propriétés (gène, promoteur, exon, intron, ...)

Alignment de deux ou plusieurs génomes : peut être consideré comme l'annotation d'un génome par les autres

Alignement : ensemble de blocs où chaque bloc est une région d'un seul génome, ou l'alignement local de multiples génomes

Blanchette & al. Genome Res. 14:708

Ensemble de blocs

Blanchette & al. Genome Res. 14:708

Exemple

Blanchette & al. Genome Res. 14:708