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GÈNES∗ DANS LE GÉNOME

∗ codant pour protéines



Gènes
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Question principale : quel genre de gènes ?

Procaryotes [pas d’introns, opérons] et Eucaryotes [introns, signalisation compliquée]

Gènes traduits en protéines

Gènes non-traduits (gènes ARN)

Gènes non-transcrits (signaux de réplication, recombinaison, ségrégation [meio-
sis], . . . )



Code génétique
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20 acides aminés encodés par 4 nucléotides ?

Encodages par triplets : 64 codons

AAA = Phe AAG = Phe AAT = Leu AAC = Leu
AGA = Ser AGG = Ser AGT = Ser AGC = Ser
ATA = Tyr ATG = Tyr ATT = FIN ATC = FIN

. . .

3 triplets d’arrêt, 1 triplet de début (encode aussi Met)



De l’ADN à protéine
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1. transcription : copie du brin informatif à ARN messager
(ARN : utilise Uracile au lieu de Thymine)

2. traduction : ARNm à protéine (par le ribosome) : acides aminés fournis par ARN
de transfert

Mécanisme universelle !



Gènes traduits — procaryotes
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Procaryotes (pas d’exons !) — GeneMark

Lukashin & Borodovsky Nucleic Acids Res 26 : 1107 (1998)



ADN d’Eucaryotes
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Baldi et al J Mol Biol 263 : 503 (1996)



Gènes traduits — eucaryotes
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5'

3'

boîte GC
(GGGCGG)*

boîte CAAT

boîte TATA

5' UTR

3' UTR

exon

GT AG

après Graur & Li (2000)



De l’ADN à protéine
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[animation] [animation]

Lodish & al. Molecular Biology of the Cell, 2002



Prédiction de gènes (Genscan)
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Eucaryotes — GENSCAN

Burge & Karlin J Mol Biol 268 : 78 (1997)



Méthode comparative pour la recherche de

gènes
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Alignement de deux régions aide à l’identification d’exons : les exons sont plus
préservés (sélection négative)

Principe de génomique comparative : éléménts fonctionnels sont plus [séléction
négative] ou moins [séléction positive] préservés que des éléments non-fonctionnels
[évolution neutre]

Miller & al. Annu Rev Genomics Hum Genet 5 :15 (2004)



Prédiction de gènes (SGP2)

Gènes ? IFT6299 A2005 ? UdeM ? Miklós Csűrös 11

séquences de référence
(p.e., génome d'un autre organisme)

prédictions initiales
(ab initio)

alignements locaux

nouveau score combine 
celui de la prédiction initiale et 

celui des alignements

Parra & al. Genome Res 13 :108 (2003)



Terminologie
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similarité : notion algorithmique de relation entre séquences

homologue : relié par un ancêtre commun

→ orthologue : relié par événement de spéciation

→ paralogue : relié par événement de duplication

→ xenologue : acquis par un autre mécanisme (transfert latéral)

similarité n’implique pas toujours la homologie : évolution convergente

homologie n’implique pas toujours la similarité non plus. . .



Gènes homologues

Gènes ? IFT6299 A2005 ? UdeM ? Miklós Csűrös 13

orthologues : B1–A1, B1–C1
paralogues : B1–B2 (in-paralog), B1–C2 (out-paralog)
xenologues : A1–AB1 co-orthologues : {C1, C2, C3}–{B1, B2}

Fitch Trends in Genetics 16 :227 (2000)



Génomique comparative
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Alignement de deux séquences :
- évidence de homologie
- conservation indique la fonctionnalité
- étudier les mécanismes de mutation
- étudier les forces d’évolution

p.e. comparer le taux de mutations synonymes (entre codons encodant le même
acide aminé) et celui de mutations non-synonymes

évolution neutre : aucune différence
évolution/sélection purificatrice/négative : synonyme plus fréquent
sélection positive [évolution Darwinien] : non-synonyme plus fréquent



Familles d’orthologues

Gènes ? IFT6299 A2005 ? UdeM ? Miklós Csűrös 15

BeT : [BLAST] Best hit (chaque “gène” de génome A comparé à ceux de génome
B)

COGs (Clusters of Orthologous Groups) : déterminé par le graphe de BeTs

triangles formés par BeTs symétriques → squelette d’un COG
+ ajouter d’autres gènes avec des BeTs symétriques avec le groupe
+ inspection humaine

Tatusov & al. Science 278 :631 (1997)



Groupage — INPARANOID
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Pour deux génomes

graphe BeTs symétriques — arêtes pondérées par score BLAST

tout automatique

Remm & al J Mol Biol 314 :1041 (2001)



Règles — INPARANOID
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Pour des groups chevauchant

Remm & al J Mol Biol 314 :1041 (2001)



BUS — best unambiguous subset
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Algorithme utilisé pour déterminer les orthologues parmi des levures

Graphe de BeTs — arêtes pondérées par identité aa et longueur

Kellis & al J Comput Biol 11 :319 (2004)



BUS
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1. construction du graphe biparti

2. enlever les arêtes sous-optimales : score et longueur inférieurs à la 80% de la
meilleure arête au sommet [ ! seuil relatif]

3. enlever des arêtes sortant de blocs de synténiques [ ! pas un «sac de gènes»]

4. composantes connexes dans le graphe de meilleures arêtes ⇒ sous-ensembles
non-ambigus



BUS — blocs synténiques
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bloc : au moins trois paires de gènes proches — paires sont formés par des cycles de
taille 2 après étape 2

si un gène dans génome A est proche de ce bloc, alors on élimine les arêtes entre
ce gène et des gènes dans génome B qui ne sont pas proches au bloc

«proche» : distance ≤ 20kbp (moyenne entre gènes 2kbp)

Kellis & al J Comput Biol 11 :319 (2004)



BeTs ne suffissent pas
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on considère des in-paralogs

est-ce que l’orthologue est toujours le best hit ?

A

B1

B2

spéciation duplication

BeT symétrique

2ème BeT

Notebaart & al Nucleic Acids Res 33 :6164 (2005)



BeTs et contexte
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obtained from several pairwise genome-comparison datasets;
(i) Gram-positive bacteria, (ii) Proteobacteria, (iii) Archaea,
(iv) Gram-positive bacteria and Proteobacteria, (v) Gram-
positive bacteria and Archaea, (vi) Proteobacteria and
Archaea and (vii) Gram-positive bacteria, Proteobacteria
and Archaea.

RESULTS

Consistency and inconsistency between sequence
similarity and gene-neighborhood conservation

To measure the evolution of inparalogs, within two-to-one
co-ortholog groups, we classified and counted the occurrences
of various possible evolutionary outcomes in terms of gene-
neighborhood conservation and sequence similarity (Figure 2).
We are specifically interested in those cases where one of
the two inparalogs has lost all traces of the ancestral gene-
neighborhood while the other still retains it. We expect that the
inparalog that has retained the ancestral gene-neighborhood
is the preferred copy for the biological process that this chro-
mosomal gene cluster performs. Such cases raise the question
how the relative sequence similarity of the inparalogs (which
is an important parameter in orthology detection) relates to
retaining the ancestral gene-neighborhood. In order to analyze
this, we refer to the inparalog with the highest similarity as
the BBH and the inparalog with the lowest similarity as the
SBH (of the single-ortholog). Inconsistencies are then defined
as cases where the SBH has a conserved gene-neighborhood
while at the same time the BBH does not and vice versa
for the consistencies. Although the majority of investigated
cases show a consistent pattern between sequence similarity
and gene-neighborhood conservation, a substantial fraction,
29–38%, does not (Figure 3).

Although the number of observed inconsistencies varies
between the several genome-comparison datasets, the percent-
ages of inconsistencies are similar. Therefore, inconsistencies
are not limited to specific genome comparisons. Furthermore,
consistencies and inconsistencies are also found in which both

BBH and SBH have a conserved gene-neighborhood, but with
unequal numbers (Figure 2, class 3 and 4). Because the total
number of such cases is lower, the variance in the percentage
of inconsistencies is larger: 13–61%.

Inconsistencies are not caused by inparalog
detection artifacts

It is known that relative BLAST hits do not necessarily reflect
the actual evolutionary history of genes. One type of event that
is likely to be a problem is an ancient gene duplication which
has taken place before speciation, resulting in what is referred
to as outparalogs (4). It is possible that BLAST hit driven
methods call two genes co-orthologous to a single-ortholog
(thus inparalogs), while in fact, according to phylogenetic tree

Figure 2. Number of co-ortholog groups per class for several genome-comparison data sets; 1, only the BBH has a conserved gene-neighborhood; 2, only the SBH
has a conserved gene-neighborhood; 3, unequal number of conserved neighboring genes, but BBH conserves a higher number; 4, unequal number of conserved
neighboring genes, but SBH conserves a higher number; 5, no gene-neighborhood conservation; and 6, equal number of conserved neighboring genes. The
genome-comparison datasets include species from Gram-positive bacteria (G+), Proteobacteria (P) and Archaea (A). Note that the 2:1 co-ortholog relationships in
which the inparalogs are 100% identical on the sequence level are excluded (owing to BBH and SBH definition).

Figure 3. Percentage of inconsistency for the several genome-comparison
datasets. An inconsistency is found when the SBH (sequences with relatively
the lowest sequence similarity) has a conserved gene-neighborhood in
contrast to the BBH.

6166 Nucleic Acids Research, 2005, Vol. 33, No. 19

[groupes : (A) archebactéries (P) protéobactérie (G+) bactéries Gram+]

notion de contexte est beaucoup plus compliquée dans des eucaryotes : pas d’opérons

Notebaart & al Nucleic Acids Res 33 :6164 (2005)



BeTs et contexte
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pourcentage de cas où il ya de la préservation de contexte pour un des co-orthologues
mais le vrai orthologue est le deuxième best hit :

obtained from several pairwise genome-comparison datasets;
(i) Gram-positive bacteria, (ii) Proteobacteria, (iii) Archaea,
(iv) Gram-positive bacteria and Proteobacteria, (v) Gram-
positive bacteria and Archaea, (vi) Proteobacteria and
Archaea and (vii) Gram-positive bacteria, Proteobacteria
and Archaea.

RESULTS

Consistency and inconsistency between sequence
similarity and gene-neighborhood conservation

To measure the evolution of inparalogs, within two-to-one
co-ortholog groups, we classified and counted the occurrences
of various possible evolutionary outcomes in terms of gene-
neighborhood conservation and sequence similarity (Figure 2).
We are specifically interested in those cases where one of
the two inparalogs has lost all traces of the ancestral gene-
neighborhood while the other still retains it. We expect that the
inparalog that has retained the ancestral gene-neighborhood
is the preferred copy for the biological process that this chro-
mosomal gene cluster performs. Such cases raise the question
how the relative sequence similarity of the inparalogs (which
is an important parameter in orthology detection) relates to
retaining the ancestral gene-neighborhood. In order to analyze
this, we refer to the inparalog with the highest similarity as
the BBH and the inparalog with the lowest similarity as the
SBH (of the single-ortholog). Inconsistencies are then defined
as cases where the SBH has a conserved gene-neighborhood
while at the same time the BBH does not and vice versa
for the consistencies. Although the majority of investigated
cases show a consistent pattern between sequence similarity
and gene-neighborhood conservation, a substantial fraction,
29–38%, does not (Figure 3).

Although the number of observed inconsistencies varies
between the several genome-comparison datasets, the percent-
ages of inconsistencies are similar. Therefore, inconsistencies
are not limited to specific genome comparisons. Furthermore,
consistencies and inconsistencies are also found in which both

BBH and SBH have a conserved gene-neighborhood, but with
unequal numbers (Figure 2, class 3 and 4). Because the total
number of such cases is lower, the variance in the percentage
of inconsistencies is larger: 13–61%.

Inconsistencies are not caused by inparalog
detection artifacts

It is known that relative BLAST hits do not necessarily reflect
the actual evolutionary history of genes. One type of event that
is likely to be a problem is an ancient gene duplication which
has taken place before speciation, resulting in what is referred
to as outparalogs (4). It is possible that BLAST hit driven
methods call two genes co-orthologous to a single-ortholog
(thus inparalogs), while in fact, according to phylogenetic tree

Figure 2. Number of co-ortholog groups per class for several genome-comparison data sets; 1, only the BBH has a conserved gene-neighborhood; 2, only the SBH
has a conserved gene-neighborhood; 3, unequal number of conserved neighboring genes, but BBH conserves a higher number; 4, unequal number of conserved
neighboring genes, but SBH conserves a higher number; 5, no gene-neighborhood conservation; and 6, equal number of conserved neighboring genes. The
genome-comparison datasets include species from Gram-positive bacteria (G+), Proteobacteria (P) and Archaea (A). Note that the 2:1 co-ortholog relationships in
which the inparalogs are 100% identical on the sequence level are excluded (owing to BBH and SBH definition).

Figure 3. Percentage of inconsistency for the several genome-comparison
datasets. An inconsistency is found when the SBH (sequences with relatively
the lowest sequence similarity) has a conserved gene-neighborhood in
contrast to the BBH.

6166 Nucleic Acids Research, 2005, Vol. 33, No. 19

Notebaart & al Nucleic Acids Res 33 :6164 (2005)



Profiles phylétiques

Gènes ? IFT6299 A2005 ? UdeM ? Miklós Csűrös 24

pour un COG — enregistrer dans quels espèces il y a au moins un membre du
groupe

ABCD -BCD A-BCD

→ prédiction de fonction (profiles pareils)

→ évolution de répertoire de gènes

→ phylogénie d’espèces

→ validation d’annotation
Tatusov & al BMC Bioinformatics 4 :41 (2003)



Prédiction de fonction
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Pellegrini & al PNAS 96 :4285 (1999)



Fonction et profile phylétique
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(synthèse de histidine — les profiles proches incluent aussi d’autres protéines de
métabolisme d’acides aminés)

Pellegrini & al PNAS 96 :4285 (1999)



Profiles complémentaires
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Il y a des exemples ou la fonction d’un COG était déterminé par complementarité
à un COG de fonction connue

Exemple : synthase de thymidilate

COG0207 (fonction connue) : a-m---y--drlb-efghsn-j---w

Recherche d’un profile complémentaire (c’est un enzyme essentiel)

COG1351 (fonction inconnue) : -o-pkz-qv-r--c------u-xit-

NOGD — Non-orthologous gene displacement

exemple de Koonin & Galperin Sequence-Evolution-Function (2003)



Évolution du répertoire de gènes
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Scénarios d’évolution

et d’autres scénarios avec plus d’événements

On peut calculer le meilleur scénario par parcimonie

Mirkin & al BMC Evol Biol 3 :2 (2003)



Évolution du répertoire de gènes
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questions : (1) est-ce que le gène à la racine est pénalisé ? ; (2) quel est le score rélatif
des gains et des pertes ?

Mirkin & al BMC Evol Biol 3 :2 (2003)



Gènes de LUCA
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LUCA (Last Universal Common Ancestor) : le plus récent ancêtre commun de
toutes les organismes vivantes

NATURE REVIEWS | MICROBIOLOGY VOLUME 1 | NOVEMBER 2003 | 133
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Without knowing the true ratio (or ratios, because
these might differ in different phylogenetic lineages) of
the frequencies of gene loss and HGT, how can we
choose the optimal g value for the evolutionary recon-
struction? A definitive solution is probably out of our
reach, but a crude one can be obtained by reverting to
the minimal gene-set approach or, more precisely,
examination of the state of essential functional niches in
the reconstructed gene-set of LUCA. It is possible to
trace how these niches are filled with the increasing size
of the reconstructed LUCA or, to use technical jargon,
with an increasing g value. This type of analysis
becomes particularly convincing when, as well as indi-
vidual functions, the completion of entire metabolic
pathways is examined, as illustrated in FIG. 6. A sys-
tematic survey showed that most, if not all, known
essential pathways are filled up with genes at g = 1 —
when one assumes that gene loss and HGT are equally
common, and ~600 genes are assigned to LUCA42. Of
course, the possibility that the number of essential
functional niches is underestimated in these recon-
structions should always be considered. This would
lead to a more complex LUCA, and functional argu-
ments for a greater complexity of LUCA have indeed
been made58. With that caveat, the results seem to be
compatible with the notion of a relatively simple LUCA,
with a genome that is considerably smaller than those of
any known extant free-living prokaryotes.

Of course, the approaches to ancestral gene-set
reconstruction described here are over-simplified in
more than one important respect. First, only phyletic
patterns and the species tree, but not the phylogenetic
trees for individual genes, are taken into account. When
such phylogenetic trees are analysed, some genes that
are extremely widespread and are assigned to LUCA by
phyletic-pattern analysis might actually have had a later
origin and been disseminated by HGT; this has been
noticed, in particular, for several ribosomal-protein
genes that are generally considered to be refractory to
HGT59–61. Such cases of hidden HGT could further
reduce the number of genes traced back to LUCA.
Second, it is assumed that the same g value is valid for
the entire history of microbial life, from LUCA to the
present day, and this is certainly an oversimplification.
On one hand, it is likely that HGT between closely
related species occurs at higher rates than that between
distant lineages46. Conversely, in the early days of
microbial evolution, at the time LUCA existed and
shortly thereafter, HGT might have been much more
rampant than it was after the main phylogenetic lin-
eages were fully established62. These opposing trends
would add uncertainty to our estimates of the ancestral
gene-sets; narrowing the margin of error will require
much more comparative-genomic analysis.

Minimal gene-sets and LUCA
The phrases ‘minimal genome’ and ‘minimal gene-set’
sound appealing and encroach on the fundamentals of
life but, in reality, we learn relatively little from a com-
putationally derived, hypothetical minimal gene-set
or from an experimentally defined set of essential

most parsimonious one. If g >>1, the contribution of
HGT is negligible; by contrast, if g < 1, the scenario is
dominated by HGT.

The most parsimonious scenario for each gene
(COG) shows either the presence or absence of the
given gene in each of the internal (ancestral) nodes of
the species tree, and therefore contributes to the recon-
struction of the gene complements of these ancestors,
including LUCA (FIG. 4). The combination of the scenar-
ios for all COGs gives a conservative (because some
ancestral genes might have been lost in all extant species
with sequenced genomes) approximation of the most
likely gene repertoire for each of the ancestors. Clearly,
the size and composition of the reconstructed ances-
tral gene-sets depend critically on the value of the 
g parameter — the relative rates of gene loss and HGT.
At high g values, when HGT is practically disallowed,
genes with scattered phyletic patterns (for example, see
FIG. 4b) will be assigned to ancestors and, in many cases,
to LUCA, indicating that LUCA was a complex organ-
ism. By contrast, low g values indicate a simple LUCA
with far fewer genes. FIGURE 5 shows the strong depen-
dence of the number of genes in the reconstructed
LUCA gene-set on the g value. The reconstructed ances-
tral gene-sets depend not only on the relative rates of
gene loss and HGT but also on the topology of the
species tree that is used for the reconstruction.However,
examination of the gene sets for LUCA obtained with
alternative species-tree topologies showed that the effect
of these differences is not dramatic, at least quantitatively
(as long as reasonable tree topologies are considered)42.

EVOLUTIONARY PARSIMONY

A methodological approach in
evolutionary biology that aims
to explain an observed
distribution of character states
(for example, the phyletic
pattern of a gene in a species
tree) by postulating the minimal
number of events in the course
of evolution that could have led
to that distribution.

LUCA — genome tree

LUCA — RNA tree
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Figure 5 | Dependence of the number of genes in a reconstructed last universal common

ancestor on the relative rates of gene loss and horizontal gene transfer. The sizes of the

smallest extant genome (Mycoplasma genitalium) and the smallest genomes of free-living

prokaryotes (Aquifex aeolicus, Prochlorococcus marinus and Thermoplasma acidophilum) are

indicated for comparison. The genome tree was constructed on the basis of concatenated

analysis of ribosomal proteins52 and the ribosomal-RNA tree is described in REF. 69. COGs,

clusters of orthologous groups of proteins; g, gain penalty; HGT, horizontal gene-transfer; LUCA,

last universal common ancestor.

Koonin Nat Rev Microbiol 1 :127 (2003)



Métabolisme de LUCA
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genes. The important realization that came from this
type of analysis is the remarkable evolutionary plasticity
of even the central, essential biological functions.Only a
tiny group of genes (nearly all of them associated with
translation and transcription) is truly ubiquitous among
living things63 (TABLE 2). Although a detailed examina-
tion of the reconstructed gene-sets is not possible here, it
is interesting to note that the reconstructed gene-set of
LUCA (within a broad range of g values) lacks some of
the main components of the DNA-replication machin-
ery (such as the replicative polymerase and helicase), in
agreement with the hypothesis that LUCA might not
have had a modern-type DNA genome and replication
system64,65. An alternative hypothesis is that LUCA did
have a DNA-replication system,but this ancestral system
was obliterated by NOGD in one of the principal
branches of life, probably bacteria66–68. This remains 
a distinct possibility but, at present, the scheme for a
mixed RNA–DNA replication system of LUCA, with 
a genome distributed among multiple RNA segments,
seems to be the most parsimonious reconstruction64.

There seems to be a limited number of indispensable
cellular functions, but the number of unique realiza-
tions of the minimal gene-set for cellular life is likely to
be astronomically large. Construction of minimal
gene-sets allows a researcher to systematically identify
cases of NOGD for subsequent experimental analysis,
which is crucial for uncovering the diversity of essen-
tial cellular systems. In the (perhaps not so distant)
future, when experimental manipulations with
genome-scale gene-sets become as routine as working
with recombinant plasmids is today, theoretically
derived minimal gene-sets might have an inportant role
in attaining a new level of understanding of the cell. At
that time, it should become clear whether organisms
with minimal genomes might be good starting material
for biotechnological designs, as suggested recently by 
J. Craig Venter and others11.

The immortal dictum of Theodosius Dobzhansky
states that “Nothing makes sense in biology except in
the light of evolution”. Minimal gene-sets certainly
don’t. These constructs, whether theoretical or experi-
mental, are intimately linked to the problem of the
reconstruction of ancestral genomes. I think
Dobzhansky’s saying could be extended to point out
that “Nothing about (at least prokaryotic) evolution
makes sense except in the light of horizontal gene-
transfer and lineage-specific gene-loss” (taken loosely
from a recent paper by Gogarten, Doolittle and
Lawrence46). The apparent preponderance of HGT
makes evolutionary reconstruction both challenging
and interesting. Knowledge of the parameters of the
evolutionary process, particularly the relative rates of
gene loss and HGT, is crucial for enabling parsimony-
type algorithms to produce realistic reconstructions
of ancestral gene-sets. Examination of the population
of the minimal set of functional niches in different
versions of reconstructed ancestors (for example,
LUCA) helps in determining the optimal evolution-
ary parameters, thereby linking the functional and evo-
lutionary aspects of minimal gene-sets.
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Figure 6 | Essential functions for different versions of the last universal common

ancestor: glycolysis and gluconeogenesis. Enzyme names are accompanied by COG

(clusters of orthologous groups of proteins) numbers and gene names (from Escherichia coli,

unless indicated otherwise as follows: APE, Aeropyrum pernix; BS, Bacillus subtilis; PH,

Pyrococcus horikoshii). Phyletic patterns are shown using the following species abbreviations:

Eukaryotes: y, Saccharomyces cerevisiae. Archaea: a, Archaeoglobus fulgidus; 

k, Pyrococcus horikoshii; m, Methanococcus jannaschii and Methanothermobacter

thermoautotrophicus; o, Halobacterium sp.; p, Thermoplasma acidophilum; z, Aeropyrum pernix.

Bacteria: b, Bacillus subtilis; c, Synechocystis sp.; d, Deinococcus radiodurans; e, Escherichia coli;

f, Pseudomonas aeruginosa; g, Vibrio cholerae; h, Haemophilus influenzae; i, Chlamydia

trachomatis and Chlamydophila pneumoniae; j, Mesorhizobium loti; l, Lactococcus lactis and

Streptococcus pyogenes; n, Neisseria meningitidis; q, Aquifex aeolicus; r, Mycobacterium

tuberculosis; s, Xylella fastidiosa; t, Treponema pallidum and Borrelia burgdorferi; u, Helicobacter

pylori and Campylobacter jejuni; v, Thermotoga maritima; w, Mycoplasma genitalium and

Mycoplasma pneumoniae; x, Rickettsia prowazekii. Pairs of related species designated by the

same letter were treated in all analyses as a single entity. The COGs that first appear in different

reconstructed versions of the last universal common ancestor (LUCA; designated according to the

g value (gain penalty) are colour-coded as follows: LUCA0.9, yellow; LUCA1.0, green; LUCA2.0,

purple; LUCA3.0, red; COGs that do not appear in LUCA, blue). Multiple COGs corresponding to

the same reaction are cases of non-orthologous gene displacement. dhnA, DhnA-type fructose

1,6-bisphosphate aldolase, and related enzymes; eno, enolase; fba, fructose/tagatose

bisphosphate aldolase; gapA, glyceraldehyde-3-phosphate dehydrogenase A/erythrose-4-

phosphate dehydrogenase; gpmA, phosphoglycerate mutase 1; MJ, predicted phosphoglycerate

mutase family; pfkA, phosphofructokinase A; pgi, glucose-6-phosphate isomerase; pgk,

phosphoglycerate kinase; pgm, phosphoglyceromutase; ppsA, phosphoenolpyruvate synthase

A/pyruvate phosphate dikinase; pykA, pyruvate kinase A; tpi, triose phosphate isomerase.

Modified with permission from REF. 42 © (2003) BioMed Central.

couleur coût de gain (g)
jaune 0.9
vert 1
violet 2
bleu non-LUCA

avec g = 1, presque tous les chemins essentiels sont présents dans LUCA : ≈ 600

gènes

Koonin Nat Rev Microbiol 1 :127 (2003)
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Transfert latéral est rélativement fréquent
(0–7% de gènes dans un génome bactérien)

? power law ?

HGT vine width distribution
We define the HGT vine width as a summary of all horizontal
transfer events between two nodes on the tree, subsequently fix-
ated within the genome. The distribution of HGT vine widths, or
number of genes transferred between any two nodes on the tree,
is shown in Figure 1. All data sets and trees produce virtually
identical frequency distribution (Fig. 1), following a power law
(Table 2A), with the STRING data shifted by an order of magni-
tude, due to lower coverage of genomes (Table 1).

Connectivity of the network
To investigate the properties of the HGT network, we removed
the underlying (vertical inheritance) tree from the net of life.
Since our inference of HGT vine widths is probabilistic (see Meth-
ods), we had to select a meaningful threshold to depict the in-
ferred events. Thus, to investigate the connectivity of the HGT
network, we experimented with several thresholds, namely, one
(a single HGT), five, and 10. Irrespectively of the tree used and
data set, the HGT network displays small-world behavior, with
the diameter of the network fluctuating between five and six.

When higher thresholds are chosen for the analysis, the
network also demonstrates power law distribution of connectiv-
ity of nodes (Table 2B), once again irrespectively of the data set or
the tree used (Fig. 2). This power-law signal is obscured at the
lowest thresholds, where many nodes appear to have high con-
nectivity. We suggest that this deviation from the power law is a
result of noise inevitable when a probability model is examined
at low thresholds, namely, possibly containing more false-
positive instances. Our usage of thresholds higher than one for
evidence of HGT is indeed reinforced by biological observations
that genes often travel between organisms as groups rather than
singletons (Boucher et al. 2003). We thus conclude that the HGT
network is likely to have a power-law
distribution of connectivity, and thus be
scale-free.

HGT champions
We aimed at investigating the HGT net-
work in search of hubs and the widest
HGT vines. Unlike the global properties
of the network, which are virtually iden-
tical and independent on the data set,
the exact number of predicted gene
transfers between two nodes is highly
dependent on the tree structure. Incor-
rect tree architecture can cause the mis-
taken inference of high amounts of
HGT, particularly when two related or-
ganisms are positioned distantly on a
tree. We thus aimed to exclude tree ar-

chitecture bias from our analysis
and examined results consistent be-
tween different tree architectures.
Also, since the tree architectures are
different, inner nodes (i.e. ancestral
states) are often incomparable, and
thus we limited the analysis to the
leaves (terminal nodes) of the tree,
i.e., the sequenced genomes from
contemporary species.

When examining 165 microbial genomes for the network
hubs, certain species came out on the top of the connectivity list
with a remarkable consistency between the results obtained from
different trees and data sets (Table 3). We found Pirellula sp.,
Bradyrhizobium japonicum, and Erwinia carotovora always at the
top of the list of (terminal) nodes with the largest number of HGT
partners. Interestingly, the original genome report for Pirellula sp.
provides certain hints for HGT events in this species (Glockner et
al. 2003). Furthermore, there is evidence for HGT between B.
japonicum and E. carotovora in the literature (Streit et al. 2004). In
conclusion, these hubs can serve as bacterial “gene banks,” pro-
viding a medium to acquire and redistribute genes in the micro-
bial communities, caused either by specific genetic mechanisms
or by virtue of their close proximity to and interaction with other
species in their environmental niches.

We have also examined HGT vines that are reported to be
wide and consistent across data sets and trees. One of the widest
HGT vines is observed between the Bradyrhizobium genus (or
sometimes the broader Rhizobiales group) of Alpha Proteobacte-
ria and the Beta Proteobacterium Ralstonia solanacearum. Phylo-
genetically distant, both these species are soil bacteria, penetrat-
ing plant roots and forming—symbiotic in case of Bradyrhizobium
(Kiers et al. 2003) and parasitic in case of Ralstonia (Alfano and
Collmer 2004; Genin and Boucher 2004)—relationships with
plants. Both cause tumor-like structures, and possess complex
molecular mechanisms to interact with the host plants (Sawada
et al. 2003). Both bacteria are reported to have acquired large
number of genes horizontally (Kaneko et al. 2002; Salanoubat
et al. 2002). Careful analysis of the genes that are transferred
between the two bacteria can help to understand the mecha-
nisms of pathogen–host interactions in these species, as well in
other cases of HGT detected between species with similar life
styles.

Table 1. Summary of settings and results from various experimental designs

Orthology
data Tree reconstruction method Organisms HGT events Gene loss

Vertical
transfers

OFAM Average ortholog similarity 165 39,005 88,834 640,328
OFAM Gene content 165 36,385 89,951 646,791
OFAM Genome conservation 165 39,589 84,630 635,056
STRING Gene content 98 9968 32,943 288,225

Figure 1. Distribution of HGT vine widths.

Phylogenetic network reconstruction

Genome Research 955
www.genome.org

[symboles dénotent des méthodes différentes de reconstruction phylogénétique et des données d’or-

thologie]

Kunin & al Genome Res 15 :954 (2005)
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le mécanisme classique d’invention

quand un gène est dupliqué, une des copies peut acquérir une nouvelle fonction
sans pression purificatrice (Ohno 1970)

cas très intéressant : grande expansion d’une famille de gènes
(LSE - Lineage Specific Expansion)

→ fonction très avantageuse pour l’organisme (sélection positive)

typiquement 10–20% de gènes d’un procaryote
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méthode : (1) groupage de gènes dans un génome, (2) BeTs contre un génome de
référence — un groupe de LSE devrait avoir le même BeT dans l’autre génome ou
aucun hit

of the genome made up of recently duplicated genes
(Fig. 2B); an exception to this general trend is Myco-
plasma pneumoniae, a small genome with a high level of
lineage-specific gene family expansion (Table 1; Fig.
2B). This correlation may reflect the fact that genomes
consist of a subset from a finite pool of gene families
(Chothia 1992; Zhang and DeLisi 1998; Wolf et al.
2000). As genome size increases and the number of
families represented in the given genome approaches
the total number of gene families, the likelihood of
adding a new family falls and the proportion of the
genome made up by paralogous genes, including re-
cently duplicated ones, is expected to increase. A
complementary explanation would posit that lineage-
specific duplications possess significant adaptive value
(see also below) and, thereby, are favored in certain
lineages, resulting in the overall increase in the ge-
nome size.

Consistent with the notion that these analyses re-
veal recently duplicated genes, the majority of lineage-
specific clusters consist of very few genes. While cluster
size ranges from two to 90 genes, >70% of the clusters
are of size 2, and clusters of sizes 2–4 genes account for
>90% of all clusters (Fig. 3). Large clusters are much
more rare; for instance, there are only 13 clusters of size
!20. The frequency distribution (99% quantile) of
cluster sizes was fit with the logarithmic approxima-
tion (Fig. 3). Previously, frequency distributions for

gene families for a number of different genomes were
found to be compatible with power law distributions
(Huynen and van Nimwegen 1998). Because the lin-
eage-specific expansions analyzed here represent more
recent duplications, the cluster sizes are smaller and
the distribution has a less substantial tail than those
seen for more ancient gene families (Huynen and van
Nimwegen 1998). The logarithmic approximation fits
the distribution seen here slightly better than the
power law approximation, although the difference be-
tween the two fits is not significant. However, neither
theoretical distribution has a significant fit to the data,
and so it is difficult to reach any meaningful biological
conclusion concerning the shape of the cluster size fre-
quency distribution.

Levels of sequence similarity among the encoded
products of the clusters detected here were assessed us-
ing score density in the protein sequence alignment as
the criterion (see Methods). The average cluster score
densities per genome also provide some indication that
the clusters are comprised of relatively recently dupli-
cated genes. Most of these average values are in the
narrow range between 0.6 and 0.9 (Table 1), with an
average over all genomes of ∼0.73, which corresponds
to an average of ∼40% pairwise sequence identity. For
comparison, the median of the distribution of the
identity level between orthologs in pairs of genomes
from different bacterial lineages typically lies at ∼30%

Figure 1 Cluster sizes in number of genes (Y-axis, gray bars) for four representative species, (A) Campylobacter jejuni, (B) Methanococcus
janaschii, (C) Mycoplasma pneumoniae, and (D) Treponema pallidum, compared to the average number of best hits (BeTs) for each cluster
(Y-axis, black bars) in all other completely sequenced bacterial genomes.

Lineage-Specific Gene Expansions

Genome Research 557
www.genome.org

[gris : taille du groupe, noir : nombre moyen de BeTs dans un autre génome]

Jordan & al Genome Res 11 :555 (2001)
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are also seen in many other lineages. The presence of
multiple lineage-specific signal-transduction histidine
kinases probably allows microbes to process environ-
mental cues in a highly specific manner. Interestingly,
A. fulgidus encodes far fewer response regulators than
signal-transduction histidine kinases (Klenk et al.
1997). Seemingly, each response regulator must be ca-
pable of receiving multiple inputs from different sig-
nal-transduction histidine kinases. Such interactions
mediated by multiple unique signal-tansduction histi-
dine kinases could result in combinatoric levels of
complexity and facile adaptive responses to challenges
posed by differing environments.

Yet another type of adaptation is probably repre-
sented by the major expansion of LysR-family tran-
scriptional regulators in Escherichia coli (Table 4) that
provide for the versatility of metabolic regulation criti-
cal for this bacterium’s lifestyle.

In addition to true functional diversification, it is
conceivable that the adaptive value of some of the lin-
eage-specific gene family expansions could lie in the
potential for dosage regulation of the respective gene
proteins and/or differential regulation of gene expres-
sion in response to environmental stimuli.

Genome Clustering Based on the Distribution
of Lineage-Specific Expansions
The procedure employed to assess the robustness of the

clusters encompassing lineage-specific expansions re-
lied on a COG-like approach where, for each organism
analyzed, the number of BeTs corresponding to each
cluster was recorded. This analysis resulted in a wealth
of data with potential relevance to the relationships
between bacterial genomes. Specifically, the presence
or absence of counterparts (typically, in the form of
single genes; see above) to the lineage-specific clusters
present in the given genome in another genome can be
taken as a measure of similarity between the two ge-
nomes. Similar approaches have been employed using
the presence or absence of all proteins encoded by a set
of complete genomes (Fitz-Gibbon and House 1999;
Snel et al. 1999; Tekaia et al. 1999b). The narrow phy-
letic distribution of genes homologous to any given
cluster may have some added utility for this type of
approach because clusters and their counterparts rep-
resent a data set enriched for shared derived character
states (synapomorphies) that can unite related ge-
nomes via a parsimony graph.

For each of the 32 complete archaeal and bacterial
genomes, each of the 2730 clusters was scored with 0 if
there were no homologs to cluster members or with 1
if there was at least one homolog. This resulted in a
binary matrix with 2730 character states for each ge-
nome. This matrix was used in parsimony graph recon-
struction of the 32 complete archaeal and bacterial ge-
nomes (Fig. 5). The resulting graph does not represent

Table 4. Domain Composition and Functions of Lineage-Specific Clusters of Size ≥ 20a

Species
Cluster

size

Average
score

density Domain organizationb Function

M. tuberculosis 90 0.38 Multitransmembrane proteins; PPE family Predicted surface protein, interaction with
host cells

M. tuberculosis 67 0.37 Signal-peptide-containing, non-globular
proteins, consist mostly of glycine-
rich repeats; PE family

Predicted surface protein, interaction with
host cells

H. pylori 34 0.34 Outer membrane protein Predicted surface protein, interaction with
host cells

E. coli 31 0.30 Helix-turn-helix DNA-binding domain
(LysR family), solute-binding domain

Transcription regulation of various metabolic
operons

Synechocystis sp. 30 0.26 Histidine kinase Signal transduction, sensing of environmental
stimuli

M. pneumoniae 25 0.62 Predicted non-globular domain Unknown
M. tuberculosis 24 0.21 Signal-peptide-containing protein Predicted surface protein (mce1), interaction

with host cells
A. fulgidus 24 0.23 Histidine kinase Signal transduction, sensing of environmental

stimuli
Synechocystis sp. 22 0.39 Diguanylate cyclase/phosphodiesterase

(GGDEF and EAL domains)
Signal transduction, sensing of environmental

stimuli
M. tuberculosis 21 0.29 Short chain dehydrogenase Dehydrogenases with different specificities

(related to short-chain alcohol
dehydrogenases)

M. tuberculosis 20 0.45 Beta-ketoacyl synthase, acyl transferase,
thioesterase

Polyketide synthase

aTwo more clusters of size !20a included transposases and were omitted.
bAnalyzed using the SMART, PSI-BLAST and SEG programs.
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pathogènes

invasion des cellules 
de l'hôte

[similarité moyenne entre deux 
membres dans une position alignée]

Jordan & al Genome Res 11 :555 (2001)


