RÉGULATION ET CONSERVATION

Motifs II * IFT6299 A2006 * UdeM * Miklós Csűrös

Signaux de régulation de transcription

éléments *trans*-régulateurs (facteurs de transcription) et séquences *cis*-régulatrices (sites de liaison)

TFBS : site de liaison de facteur de transcription ; CRM : module cis-régulatoire

Wasserman & Sandelin Nat Rev Genet 5 :276 (2004)

Enhancers

animation (enhancer) : http://www.maxanim.com/genetics/

Évaluation de méthodes de recherche

Comment peut-on mesurer le succès de recherche de sites de liaison?

Validation experimentale [site connu] : vérifier la liaison pour les sites dans le labo

Affinité et prédiction

On trouve beaucoup d'instances par un modèle de site de liaison de type PSSM.

ĢŢŢĄĄŢ 20 16 - 25 7 1410 A 7 20-99-99-99 -4 -25 - 993 2 19 17 2-99 20 20-25 2 20 7 6 2 2

Est-ce que c'est le modèle que n'est pas assez spécifique ou plutôt le facteur de transcription?

Tronche & al J Mol Biol 266 :231 (1997)

Affinité et prédiction

C'est vraiment aussi non-spécifique (0.1% des instances avec un rôle régulatoire)

Tronche & al J Mol Biol 266 :231 (1997)

Motifs II * IFT6299 A2006 * UdeM * Miklós Csűrös

Évaluation de méthodes de recherche 2

Validation experimentale [prédiction de novo] : utiliser des sites connus, compiler des données de test

nTP, nFN, nTN, nFP (nuclétoides, {false, true} × {pos, neg}) sTP, sFN, sFP (sites)

sensibilité (*sensitivity*) : $xSn = \frac{xTP}{xTP+xFN}$ avec x=s (site) ou x=n (nucléotide) valeur prédictive $xPPV = \frac{xTP}{xTP+xFP}$ coefficient de performance $xPC = \frac{xTP}{xTP+xFP+xFN}$

Problème : il y a des inconnus inconnus — on ne connaît pas tous les sites de liaison

Évaluation de méthodes 3

(humain, souris, mouche, levure; pas comparative)

Tompa & al. Nat Biotech 23 :137 (2005)

Motifs II * IFT6299 A2006 * UdeM * Miklós Csűrös

Évaluation de méthodes 4

(E. coli ; succès en fonction de la longueur de séquence)

Hu & al Nucleic Acids Res 33 :4899 (2005)

Motifs II * IFT6299 A2006 * UdeM * Miklós Csűrös

Génomique comparative

Principe de génomique comparative : éléments fonctionnels sont plus conservés (séléction négative) que les éléments non-fonctionnels (évolution neutre)

Miller & al. Annu Rev Genomics Hum Genet 5:15 (2004)

Méthodes comparatives?

Est-ce que les signaux cis évoluent plus lentement?

- M Multiple sites overlapping
- ★ No available information for function in rodents
- Human-specific binding site
- Rodent-specific binding site

Dermitzakis & Clark Mol Biol Evol 19:1114 (2002)

Évolution de sites de liaison

1. le taux d'évolution est variable

(comparaison de la variance de divergence entre séquences aléatoires et vraies)

2. divergence (Kimura 2P) entre humain et souris TF : 0.27 ± 0.18 , synonyme : 0.47 ± 0.17 , non-syn : 0.09 ± 0.1 , background : 0.4 ± 0.18

3. turnover : à peu près 1/3 des sites sont spécifique à un des espèces (humain ou souris)

Dermitzakis & Clark Mol Biol Evol 19:1114 (2002)

Évolution de sites de liaison 2

enhancer du gène eve dans Drosophila

TGCATAACAATGGAACCCGAACCGTAACTGGGACAGATCGAAAA..... mel TGCATAACAATGGGCAAGGACCAGGGTTCCGTTTCGCGAGATAAGGTTCTTTGACGGTTC pse -BC-5-.....GCTGGCCTGGTTTCTCG....CTGTGTGTGCCGTGTTAATCCGTTTGCCA mel pse -BC-4 TCAGCGAGATTATTAGTCAATTG.....CAGT.....TGCAG....CGTTTCGCTT mel TCAGCAAGATTATTAGTCAATTTTCATATTTCCAGTCGAGTCGCAGTTTTGGTTTCACTT pse TC.....GTCCTCGTTTCACTT..... mel TCCTCCTTTGCCACTTCTTGCCTTGCCTCATGTGGATGCCGATGCCGATGCCGTTGCCGT pseTCGAGTTAGACTTTATTGCAGCĂŤĊŤTGAACAATCGTCG mel TGCCGTTGCCGTTGCCGACCGACGAGTTAGATTTTATTGCAGCATCTTGAACAATCAACT pse CA. GTTTGGTAACACGCTG...TGCCA.....TACTTTC..... mel GGAATTTGGTAACATGCTGCGCGGCCTAACCCTGGAGATTGCTCTACTTTCGCCTCAATT pse BLOCK-1 -BC-3-.....ATTTAGACGGAAT.CGAGGGACCCTGGACTATAATCGCACAACGAGACC..GG mel GAATCGGAGTTAGGCGGAAGACGGCGGACCCTTGCG.....ACCAAGG pse GTTGC.....GAAGTCAGGGCATTCCGCCGATCTAGCCATCGCCATCTTCTGCGGGCGTT mel GTTGTCTCCTGGCCTCAGGAGTTTCCACAGTCAACGCTTTCGCT....GGTTTGTTTATT pse -BC-2 TGTTTGTTTGTTTGTTTAGCCAGGATTAGCCCGAGGGCTTGACTTGGAACCCGA.CCAAAGCC pse ***** C.....TAGCCCGATCCCAATCCCAATC mel AAGGGCTTTAGGGCATGCTCAAGAGATCCCTATATCCCTATCCCTGTCGCGATCCCTAAA pse -BC-1-- BC-1-KR-3-AAGGGATTAGG.....GGCGCGCAGGTCCAGGC...AACGCAATTAACGGACTA 504 mel AAGGGATTAAGATTAAGGGACGCACACACAGGCAGCAGGATCATTAACGGACTA 691 pse

* préservé parmi 13 espèces, . trou

Ludwig & al. Nature 403 :564 (2000)

Évolution de sites de liaison 3

L'expression de eve est la même ...

Est-ce que les différences dans l'enhancer ont des conséquences fonctionnels?

Oui : si on remplace par des séquences chimeras (Dmel+Dpse), l'expression change.

Donc les mutations dans l'élément *cis* sont accompagnées par des mutations dans les éléments *trans*

Phylo-HMM

phastCons

émissions : colonnes de l'alignement multiple, avec probabilités de transition $e^{\mathbf{Q}t}$ (neutre) ou $e^{\rho \mathbf{Q}t}$ (sélection négative avec $\rho < 0$)

Siepel & al Genome Res 15 :1034 (2005)

Turnover

Modélisation par phylo-HMM

Siepel & al. RECOMB 2006

Siepel & al. RECOMB 2006

Regulatory potential

ordre 5, alphabet de 10 symboles pour alignment de humain-souris-rat

Syn	ib=1	2	1	3	4	5	6	7	8	9	10
ACG	G-C	AAA	AAC	TAG	ACC tv	AA-	CCC	GGG	TTT	ATT tv	CAA tv
AC-	G-G		AAG	TAT	AGA ts	AGG ts		1.200	-CC	CTT ts	CGG tv
AGC	G-T		AAT	TC-	<u>A</u>	CTC ts				GGA ts	GCC tv
ATG	TAC		ACA	TGA	CC-	TCT ts				TGG tv	GG-
AT-	TA-		ACT	TGT	GAA ts	TT-				<u>T</u>	<u>G</u>
A-C	TCA		AGT	TTA	GAG ts		1			<u>-T-</u>	TAA tv
A-G	TCC		AG-	TTG	TTC ts					C	- <u>A-</u>
A-T	TCG		ATA	T-C	T-T						-GG
CAT	TGC		ATC	<u>A</u>	-AA						<u>-G-</u>
CA-	TG-		A-A		<u>G</u>						-TT
CCT	T-A		CAC		<u>T</u>				e l'		
CGA	T-G		CAG								
CGT	-AC		CCA								
CG-	-AG		CCG								
CTG	-AT		CGC								
C-A	-CA		СТА	1							
C-C	-CG		CT-						0.00		
C-G	-CT		C-T								
GAC	<u>-C-</u>		<u>C</u>								
GA-	-GA		GAT								
GCA	-GC		GCG								
GC-	-GT		GCT								
GTA	-TA		GGC								
GTT	-TC		GGT								
GT-	-TG		GTC								
G-A			GTG								

Kolbe & al Genome Res 14 :700 (2004)

Regulatory potential 2

RP score : RP =
$$\sum_{i} \log \frac{p_{\mathsf{REG}}(S[i]|S[i-k..i-1])}{p_{\mathsf{AR}}(S[i]|S[i-k..i-1])}$$

 p_{REG} : paramètres estimés d'un échantillon de sites *cis*-régulatoires p_{AR} : paramètres estimés d'un échantillon d'éléments ancients répétés

Performance

King & al Genome Res 15 :1051 (2005)

Conservation extrème

On peut chercher des cas d'évolution ralentie partout dans le génome (et non pas seulement près de gènes)

Élément ultra-conservé : 100% d'identité, longueur au moins 200pb (p.e., entre humain-souris)

Peut-être en exons, en introns, ou en régions intergéniques

Bejerano & al Science 304 :1321 (2004)

Conservation extrème 2

Quelle est la fonction des éléments ultra-conservés?

Possibilités : gènes ARN ou sites cis-régulatoires

Beaucoup d'entre eux s'alignent avec poulet et même poisson (Fugu)

Ils se trouvent souvent dans des déserts de gènes

Régulation de développement

Éléments non-codants conservés (p.e. humain-souris au moins 70% identité et longueur 100pb)

Nobrega & al Science 302 :413 (2003)

(humain, souris, rat)

Woolfe & al PLoS Biology 3 :e7 (2005)

Motifs II * IFT6299 A2006 * UdeM * Miklós Csűrös

Woolfe & al PLoS Biology 3 :e7 (2005)

Régulation de développement 4

Dernier exemple (démonstration de rôle régulatoire)

Pennacchio & al Nature doi :10.1038/nature05295

Régulation de développement 5

à peu près 45% des éléments conservés entre humain et Fugu ou ultra-coonservé entre humain, souris et rat ont démontré d'être des enhancers

extraction des plus fréquents motifs (énumeration de 5-mers) + scoring d'autres éléments fréquents par l'occurrence de ces motifs \rightarrow mieux qu'utiliser seulement la conservation

Pennacchio & al Nature doi :10.1038/nature05295

Conservation?

expérience de Fisher & al (2006) : séquences conservés en poissons, et en mammifères (mais pas entre les deux !) dans la région régulatoire du gène *ret*

Fisher & al Science 312 :276 (2006)

Conservation??

les séquences humaines implantées dans des embryos de poisson ont contrôlé l'expression du gène

Constructs	Brain	SC	CG	ENS	NTC	OLF	Retina	Heart	IM/PND	Fin bud
ZCS-83	+	+	+			+				
ZCS-50	+	+	+		+			+		+
ZCS-36	+								+*	
ZCS-34	+								+	
ZCS-31	+								+	
ZCS-19.7	+	+	+	+			+		+	
ZCS-14.7	+	+								
ZCS-9.5	+	+	+							
ZCS+7.6									+	
ZCS+35.5		+	+	+				+		
HCS-32	+	+	+					+		+
HCS-30									+	
HCS-23					+					
HCS-12		+							+*	
HCS-8.7									+	
HCS-7.4										
HCS-5.2	+					+			+	
HCS+9.7				+					+	
HCS+16	+									
HCS+19	+	+								

Fisher & al Science 312 :276 (2006)

Inventoire

Groupage d'éléments non-codant conservés

1. identification

	Human-mouse-rat sequence conservation	Fractione	Antiports
	Top ~5%	5.11%	1055823
	Extend/merge	5.835%	969857
	Remove repeats	5.393%	959820
	Remove coding exons	4.541%	1074181
Filters	Remove cds-like	4.239%	1084945
	Remove non-syntenic	4.086%	1072148
	Remove seg. dups.	4.006%	1043450
	Remove pseudogenes	4.001%	1042608
	Remove <50bp	3.727%	699647

Final set of conserved regions used for clustering

Bejerano & al Bioinformatics 20 :i40 (2004)

8

S

Inventoire 2

2. groupage

Bejerano & al Bioinformatics 20 :i40 (2004)

Inventoire 3

Groupes

- gènes ARN
- nouveaux gènes codant
- éléments de régulation de transcription ou épissage

Origines

D'où viennnent les éléments cis-régulatoires?

une théorie ancienne : Britten & Davidson (1971)

|) A portion of the genome containing a new saltatory replication (

4) In this way new regulative pathways could arise, for example:

Britten & Davidson Q Rev Biol 46 :111 (1971)

Transposition

Animation : http://www.maxanim.com/genetics/Transposition/Transposition.swf

Cordaux & al. PNAS 103 :8101 (2006); Jordan PNAS 103 :7941 (2006)

D'autres exemples

éléments cis-regulatoires provenant de l'insertion d'éléments répétés

Α

TTTTTTTTTGAGACGGAGTCTCGCCCTGTCGCCCAGGCTGGAGTGCCGCGCGCG
TTTTTTTTTGAGACGGAGTCTCGCCTATCTCGCCCAGGCTGGAGTGCGAGTGCGGATCTCGGCTCACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTC
TCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCCGCCACCACGCCCGGCTAATTTTTGTATTTTAGT
TCCTGCCTCAACCTCCCAAGTAGCTGGGACFACAGGCACCCGCCCAGCTGGGACTACAGGCACCCGCCACAACACCCCGGCTAATTTTTGTATTTTTAGT
AGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAG
$a {\rm Gagaccgcgctttcacccctgtctcgcccccgatcgcctcgatccccgatcccccccc$

В

L2	CAATCCATCAGCAAATQCTGTTGGCTCTACCT-TCAA-AATATATCCAGAATCCGACCACTTCTCACCACCTCCACTGCCACCACCTGGTCCA
Hs GPIIb	-AGTTTATTACCATGT¢CTATTGGTTCTGCCTATCAAT\$ATGTCTCTTGAATCTTTACCCCATCTCTACTACCACCGTGCTAGTCCA
Mm GPIIb	-AGCTCACCTCCATGTQCTGTTGTCTCTGTTTTCTCAGCCACAGCCCGGCAATCCCCTTTCTCTTTTCTCTTCTC
L2	AGCCACCATCATCTCTCGCCTGGATTACTGCAATAGCCTCCTAACTGGTCTCCCTGCTT-CCACCCTTGCCCCCCTNCAGT-CTA-TTCTC
UG CDITh	
HS GPIID	AGCCACCATCACTTTCTGCTTGGGATAGCGTGATTGTGAACTGGTCCATACTTGTCTACTCTAGCCTACAGTLCTA-ATCTC

С

MaLR	TAATCCCCAATGTGATGGTATTAGGAGGTGGGGGCCTTTG <mark>GGAGGTGATTAGGAT</mark> FAGATGAGGTCATGAGGGCGGGGGCCCTCATAA <mark>T</mark> GGGATTAGTG	GCCC
Hs globin	caactcccaac- <u>fgaccttatctgf</u> gggggggggggggttttgaaagtaattaggttfagctgaggtcataagagcagatccc-catca <u>taaaattattt</u>	FTCC
MaLR	TTAT-AAAAGAGACCYCAGAGAGACCCCCTTGCCCCTTCCGCCATGTGAGGACACAGTGAGAAGGC-GCCGTCTACGAACCAGGGAATGAGCCCT	FCAC

Mariño-Ramírez & al Cytogenet Genome Res 110 :333 (2005)

Un élément ancien

Un élément répété (LF-SINE) identifié dans Latimeria menadœnsis

Pouyaud & al CR Académie des Sciences III 322 :261 (1998) ; Bejerano & al Nature 441 :87 (2006)

Un élément ancien 2

chevauchant un élément exonique ultra-conservé

Bejerano & al Nature 441 :87 (2006)

Un élément ancien 3

dans un désert intergénique proche de gène ISL1 impliqué dans le développement de neurones

c'est en fait un enhancer (démontré en embryos de souris transgéniques)

Bejerano & al Nature 441 :87 (2006)