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CONSERVATION DE SÉQUENCE



Génomique comparative
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Principe de génomique comparative : éléments fonctionnels sont plus conservés
(séléction négative) que les éléments non-fonctionnels (évolution neutre)

Miller & al. Annu Rev Genomics Hum Genet 5 :15 (2004)



L’ombre de sélection dans une fenêtre
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hypothèse 0 = substitutions par e−µQt

hypothèse 1 = substitutions par e−ρµQt. Vrai-
semblances L0, L1 et

LLR = log
L1

L0

En haut : LLR dans un fenêtre de 50 pb glissant
dans l’alignement multiple de 5 primates, avec des
exons indiqués. En bas : % identité humain-souris.

(Ici, on connaı̂t µ,Q, ρ)

Boffelli & al. Science 299 :1391 (2003)
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Détection dans une fenêtre de 50 pb selon % identité
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Figure 3 Discrimination at increasing neutral divergence. (a) The solid curve shows
the probability distribution of pairwise identity between two 50-bp sequences diverged
by 0.05 subs/site under the Jukes-Cantor (J-C) model. The dashed curve gives the
distribution of conserved sequences that have diverged by 0.025 subs/site, equal to half
the neutral distance. Both curves plot the probability mass function against percent
sequence identity. (b) As in (a), assuming a neutral distance of 0.5 subs/site and a
constrained distance of 0.25 subs/site. (c) As in (a), assuming a neutral distance of
5 subs/site and a constrained distance of 2.5 subs/site.

elements (7, 99). It must be borne in mind, however, that elements detectable by
such comparisons are a small minority of all human functional elements.

Although more rapidly evolving functional elements may be rendered imper-
ceptible by saturation, the inclusion of additional vertebrate genomes is straight-
forward. By contrast, the augmentation of comparisons of closely related species
is hindered by a restrictive phylogenetic scope. Put another way, although one
well-placed species can improve a comparison of distant sequences dramatically,
the sequences of many closely related species are required to obtain the aggregate
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elements (7, 99). It must be borne in mind, however, that elements detectable by
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Although more rapidly evolving functional elements may be rendered imper-
ceptible by saturation, the inclusion of additional vertebrate genomes is straight-
forward. By contrast, the augmentation of comparisons of closely related species
is hindered by a restrictive phylogenetic scope. Put another way, although one
well-placed species can improve a comparison of distant sequences dramatically,
the sequences of many closely related species are required to obtain the aggregate

Stone, Cooper & Sidow. Annu. Rev. Genomics Hum Genet. 6 :143, (2005).
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Détection dans une fenêtre de 100 pb selon % identité
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Figure 2 Efficacy of pairwise analyses. (a) The ability of 100-bp human-mouse sequence
comparisons [at a neutral distance of 0.55 subs/site (24)] to resolve classes of functional
elements is described in terms of false positive rates (right vertical axis, log scale) and false
negative rates (horizontal axis, log scale). False positive rates are governed by the percent
identity thresholds shown on the left vertical axis. False negative rates depend both on that
threshold and the relative rate of neutral evolution at which conserved elements evolve; classes
of relative rates are indicated by shaded regions of the plot, increasing in tint from light to
dark. Calculations here and subsequent assume a Jukes-Cantor (J-C) one-parameter model of
evolution (54). (b) The ability of 100-bp human-chicken sequence comparisons [at a neutral
distance of 1.66 subs/site (49)] to resolve classes of functional elements is shown as in (a).
(c) The plot of (a), with relative rates of functional elements now shown in steps of 0.01 as
shaded contours. Both black circles correspond to the detection of elements evolving at 20%
of the neutral rate. The lower left circle shows the performance of detection at a threshold of
70% identity; the upper right circle shows the same at a threshold of 80%.

Stone, Cooper & Sidow. Annu Rev Genomics Hum Genet 6 :143, 2005).
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However, the picture changes when one considers com-
prehensive detection of features that are conserved but not
invariant (Figure 1). To detect 50% of sites evolving 5-fold
slower than neutral, we need 25 comparative genomes at
mouse-like distances at the same (arbitrary) false positive
threshold of less than 0.006. For a comprehensive screen that
would detect 99% of conserved single nucleotides with a FP
of less than one per 10 kb, the model predicts about 120
comparative genomes at mouse-like distances are needed.

Detectable Feature Size Scales Inversely with Genome
Number

The large genome numbers in Figure 1 might appear to
conflict with the known power of comparing just two genomes,
such as human and mouse. This is because recognizing
conserved sequences is easier than recognizing conserved
single nucleotides; the size of the conserved feature matters.

Figure 2 shows how many genomes are required to detect
small features like transcription factor binding sites (L; 8) or
larger features like short coding exons (L ; 50). One genome
at about human/mouse distance is sufficient for reasonable
strength in coding exon detection. For a range of reasonable

sensitivity and specificity stringencies, three to 15 genomes at
human/mouse distance are sufficient for detecting tran-
scription factor binding sites.
There is a general, intuitive explanation for this. The

strength of an analysis will depend on the difference in the
expected number of substitutions in neutral features versus
conserved features. This difference will be proportional to
NL, the total number of aligned sites. Thus, for a constant
stringency, the required number of comparative genomes is
expected to scale inversely with the size of the feature to be
detected (N } 1/L): to detect conserved features ten times
smaller, it takes ten times as many comparative genomes.
(This scaling behavior is seen directly later.)

No Clear Optimum for Evolutionary Distance, but Close
Distances Disfavored
Figures 1 and 2 show two other notable behaviors. First,

there is no sharp optimum for the neutral distance D. The
number of genomes required is relatively flat for a wide
range, from about 0.4 to well beyond 1.0. Within a broad
range, the exact choice of one comparative genome versus
another has little impact.
This is shown more directly in Figure 3, in which a measure

of overall statistical strength is plotted against neutral
distance over an unrealistically long range of D, out to 4.0
substitutions/site. For conserved features evolving 5-fold

Figure 2. Number of Genomes Required for 8-nt or 50-nt Resolution

Top: identifying 8-nt conserved features (‘‘transcription factor
binding sites’’; L = 8); bottom: identifying 50-nt conserved features
(‘‘exons’’; L = 50). Parameter settings are indicated at top right, in
same order as the plotted lines. The parameters are the same as those
used in Figure 1.
DOI: 10.1371/journal.pbio.0030010.g002

Figure 3. A Measure of Statistical Strength As a Function of Neutral
Evolutionary Distance

One convenient threshold-independent measure of the strength of a
comparative analysis is an expected Z score, the expected difference
Dc in the number of substitutions in a neutral feature alignment
versus a conserved feature alignment, normalized to units of standard
deviations. E(Z) is readily calculated for the binomial distribution:

EðZÞ ¼ EðDcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDcÞ

p ¼
ffiffiffiffiffiffiffi
NL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn $ pc

pnð1$ pnÞ þ pcð1$ pcÞ

r" #
; ð3Þ

where pn and pc are the probabilities of observing a change at one
aligned comparative nucleotide according to the Jukes-Cantor
equation.
The plots here are for N = 5 and L = 8. The shape of the curve is
independent of N and L, while the absolute magnitude of Z scales asffiffiffiffiffiffiffi
NL

p
. The x-axis is shown from D = 0 to D = 4, beyond the more

realistic range of Figures 1 and 2, to show the mathematically
optimum D if homologous conserved features were present,
recognized, and accurately aligned at any D.
DOI: 10.1371/journal.pbio.0030010.g003
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The model’s single distance parameter, D, abstractly
represents the independent neutral branch length contrib-
uted by each comparative genome [7]. In a phylogenetic tree
of the target with N . 1 comparative genomes that are as
independent from each other as possible, we can roughly
consider the independent branch length contributed by each
comparative genome to be one-half its pairwise distance to
the target genome, because in a real tree (with unknown
common ancestors, as opposed to placing the target at the
root of a uniform star topology) all comparative genomes
share at least one branch leading to the target. Thus the
figures highlight D = 0.03, 0.19, and 0.31 as ‘‘baboon-like,’’
‘‘dog-like,’’ and ‘‘mouse-like’’ distances from human, 50% of
one set of pairwise neutral distance estimates of 0.06, 0.38,
and 0.62, respectively, arbitrarily chosen from the literature
[7]. These labels are solely to give some intuition for what the
model’s D parameter means. The correspondence between D
and real branch lengths is crude. Real neutral distance
estimates are a subject of substantial (up to about 2-fold)
uncertainty in the literature, and there are regional varia-
tions and strong context effects on neutral substitution rates
in mammalian genomes [16,17]. More importantly, the
model’s uniform star topology, though it allows a high-level
analysis in terms of just two parameters, D and N, makes
direct comparison to real phylogenies difficult. Large
numbers of equidistant, independently evolved mammalian
genomes do not occur in reality. Real genomes are not
independent, and will generally contribute an independent
neutral branch length of less than one-half of their pairwise
distance to the target genome.

Critically, the model assumes that homologous features are
present, correctly detected, and correctly aligned. In reality,
with increasing evolutionary distance, features can be gained,
lost, or transposed [14,18,19,20,21], the ability to detect
homology by significant sequence similarity decreases, and
alignments become less reliable [22]. The frequency of effects
like loss, gain, and transposition depend on the biology of
particular types of features, so departures from the model’s
‘‘alignment assumptions’’ are difficult to model abstractly.
However, minimally, we can posit a maximum neutral
distance, Dmax, beyond which the alignment assumptions will
not hold, based just on the ability of alignment programs to
recognize and align homologous DNA sequences. Roughly
speaking, reliability of DNA sequence alignments begins to
break down at about 70% pairwise identity. For alignments of
conserved features evolving 5-fold slower than neutral, this
suggests Dmax ; 0.15/0.2 = 0.75; Figures 1 and 2 show results
out a little further, to Dmax = 1.0.

Two different FP settings are used as illustrative examples:
0.006 (the e!5 threshold used by Cooper et al. [7]) and the
more stringent 10!4. For consistency, the same two FP
thresholds are used to illustrate scaling behaviors for all
three feature sizes (L = 1, L = 8, and L = 50). However, for a
real analysis, one wants to consider the appropriate choice of
FP carefully. In a genome sequence of length M, the total
number of false positive feature predictions in all over-
lapping possible windows of length L is M! Lþ 1, multiplied
by FP per feature. In most analyses, we would probably merge
overlapping predicted features into a single predicted
conserved region, resulting in a lower number of false
positive regions in a genome. This overlap correction (from
the number of false features to the number of false regions)

depends on the parameters, but for the parameters in Figures
1 and 2 it varies from 1.5- to 2-fold less for L = 8 sites and 4-
to 8-fold less for L = 50 sites, based on simulations. Thus, for
example, FP = 10!4 corresponds to one false positive feature
per 10 kb, and (for the parameters here) somewhere between
one false positive conserved region per 20–100 kb, depending
on the feature. For ‘‘small exon’’ detection, this means
40,000–300,000 false region/feature predictions in the 3-Gb
human genome; for ‘‘transcription factor binding sites,’’ this
means one false positive feature or region per 10–20 kb. FP
= 10!4 therefore seems a reasonable stringency for L = 8 or
L = 50 feature analyses. If one carried out a single nucleotide
resolution analysis on a genome-wide scale, FP = 10!4 would
mean that 99.8% of the predictions for conserved bases in
the 3-Gb human genome would be correct, assuming about
5% of the bases are truly conserved and detected with high
sensitivity. However, it is likely that one would actually carry
out single nucleotide resolution analyses on a subset of
conserved features that had already been identified (exons,
for example), so a less stringent FP might be required. The
setting of FP = 0.006 might therefore be more appropriate
for evaluating single nucleotide resolution, where FP is closer
to the traditional statistical choices of a 0.01 or 0.05
significance level.

Single Nucleotide Resolution Requires Many Genomes
The Cooper model concluded that for invariant conserved

sites, sequencing comparative genomes to achieve a total
branch length of five neutral substitutions per site would give
single nucleotide resolution, with a FP of e!5 (0.006) [7]. Under
my model, detection of invariant nucleotides takes about 17
genomes at mouse-like distances, essentially as predicted by
Cooper et al. (Figure 1).

Figure 1. Number of Genomes Required for Single Nucleotide Resolution

The red line plots genome number required for identifying invariant
sites (x = 0) with a FP of 0.006, essentially corresponding to the
Cooper model [7]. Black lines show three more parameter sets:
identifying 50% (FN , 0.5) of conserved sites evolving 5-fold slower
than neutral (x = 0.2) with FP , 0.006, doing likewise but with a
more-stringent FP of 0.0001, and identifying 99% of conserved sites
instead of just half of them. Values of N at baboon-like, dog-like, and
mouse-like neutral distances are indicated with diamonds, squares,
and circles, respectively. Jaggedness of the lines here and in
subsequent figures is an artifact of using discrete N, L, and cutoff
threshold C to satisfy continuous FP and FN thresholds.
DOI: 10.1371/journal.pbio.0030010.g001
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Eddy. PLoS Biology 3 :e10 (2005)
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Scale
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and variance of the scores rather than the mean. Unfortunately,
this is impossible to quantify exactly due to confounding factors
such as differences in alignment quality and depth.

Estimating Detectable Constraint
The only major parameter for GERP++ is a false positive rate

cutoff that determines at what point the algorithm should stop
generating predictions in order to avoid too many false discoveries.
Throughout its execution GERP++ keeps track of the constrained
elements predicted so far, as well as estimates of the number and total
size of false positive predictions for the specified cutoff level.

Examining how these quantities grow as the cutoff parameter
increases permits us to estimate the amount of total constraint that
can be detected using this methodology and give an approximate
upper bound on the amount of constraint within the human genome.

Let B(c) be the number of bases within constrained elements
predicted at false positive cutoff c, and let B*(c) = B(c)2F(c) be the
same quantity adjusted for false positive predictions by subtracting
the estimated number of false positive bases (as found in shuffled
alignments) at cutoff c. Fig 3 shows B and B* as a function of c from
0 to 50%: while B continues to increase, B* starts to level off right
as B begins to grow linearly. This suggests that maxc B*(c) can be

Figure 1. Overview of GERP++. (1) For each position of the multiple alignment we compute the conservation score in rejected substitutions by
subtracting the estimated evolutionary rate from the neutral rate. The neutral rate is computed by removing species gapped at that position from the
phylogenetic tree and summing the branch lengths of the resulting projected tree; the evolutionary rate is estimated by computing the maximum
likelihood rescaling of the projected tree. (2) Given position-specific conservation scores, we generate a set of candidate elements. (3) For each
candidate element, we compute a p-value to represent the likelihood of observing a segment of equal length and greater than or equal score under
the null model. We then select a non-overlapping set of elements in order of increasing p-value.
doi:10.1371/journal.pcbi.1001025.g001

Constrained Element Detection Using GERP++
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Constrained Element Detection Using GERP++
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Questions : (1) classes de taux fixées ou non ; (2) estimation du taux neutre ; (3)
groupage de positions consécutives ; (4) statistique pour détecter la conservation ;
(5) alignement / trous / séquences manquantes

Davydov & al. PLoS Comput Biol 6 :e1001025 (2010)
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Selon la méthode d’inférence et les données, on arrive à des conclusions différentes
sur la fraction α de régions conservées. . .

these closely related species share more than 5.5-fold more func-
tional noncoding sequence than the more divergent species pairs.

The Meader et al. (2010) results support the Smith et al. (2004)
finding that asel ! p values decline exponentially with divergence
(Fig. 3). Their study predicts that half of the functional noncoding
sequence is lost in the time that it takes for two substitutions to
occur in 10 bp of neutral sequence; that is, the half-life is about 0.2
in units of nucleotide divergence. Thus, the amount of constrained
noncoding sequence shared between human and mouse (1.5% at
a divergence, d, of ;0.6) is approximately half that for human and
dog (3.0% at d ; 0.4); this, in turn, is about half that for mouse and
rat (6.1% at d ; 0.2); and, finally, this amount is approximately
half the presumed amount of constrained noncoding sequence
present in extant genomes (13.8% at d ; 0). Similarly, this implies
that about one-quarter of human constrained noncoding se-
quence is not shared with rhesus macaque (d ; 0.075) and ;4% is
not shared with chimpanzee (d ; 0.012). The neutral indel model
also predicts a much higher figure for the constrained portion of
the human genome than other approaches: a0

sel = 14.9% (Fig. 2).
However, such estimates should be treated with caution as they
have wide confidence limits and may be susceptible to non-
uniformities in the indel rate that may not have been fully
accounted for. Extrapolation furthermore relies on the accuracy of
the single-rate exponential decay model to small divergences, for
which currently no supporting data exist. For these reasons,
Meader et al. (2010) more conservatively estimate a0

sel to be 10%.

Experimental evidence for turnover
and conservation of functional sequence
DNA sequences involved in regulating gene expression comprise
one of the larger classes of functional noncoding sequences. While
some gene regulatory sequences have been preserved over long
phylogenetic distances, others are subject to turnover. The rapid rate
by which these sequences are turned over appears to be compatible
with the estimates derived from the neutral indel model.

Strong purifying selection on noncoding DNA sequences has
been a productive approach to discovering gene regulatory se-
quences. An early example was the observation of strikingly
similar DNA sequences within an intron of the human, mouse,
and rabbit IGK genes encoding the immunoglobulin k light chain
(Emorine et al. 1983). Experimental assays showed that this con-
strained intronic sequence functions as an enhancer (Emorine
et al. 1983; Picard and Schaffner 1984). Employing many more
genomic sequences, and one of the rigorous methods discussed
above for finding DNA sequences likely to be under selection
(phastCons elements) (Siepel et al. 2005), it is clear that this
intronic enhancer is subject to purifying selection (Fig. 4). High-
throughput assays (Wold and Myers 2008) provide direct bio-
chemical evidence that it is bound by the transcription factor
complex NFKB in lymphoblastoid cells (Fig. 4; Kasowski et al.
2010; The ENCODE Project Consortium 2011). Many studies over
the past 25 yr have successfully utilized signatures of purifying
selection in noncoding DNA sequences for predicting regulatory
regions (e.g., Aparicio et al. 1995; Gottgens et al. 2000; Flint et al.
2001; Woolfe et al. 2005; Pennacchio et al. 2006; Wang et al. 2006;
Visel et al. 2008).

However, results of other lines of investigation emphasize
evolutionary changes in regulatory regions. Some enhancers are
lineage-specific, found, for example, only in primates (Bodine and
Ley 1987) or in mice (Valverde-Garduno et al. 2004). Almost half of
the functional transcription factor binding sites in human pro-
moters are not functional in rodents (Dermitzakis and Clark 2002).
Putative regulatory regions identified by high-throughput analyses
of chromatin immunoprecipitated, factor-bound DNA in 1% of
the human genome are rarely deeply conserved across vertebrates,
and many do not show clear evidence of evolutionary constraint
(The ENCODE Project Consortium 2007; King et al. 2007). Tech-
nical limitations in the ability to detect constraint or the accuracy
of functional assignments are likely to account for only a small
proportion of the large amount of apparently unconstrained but
functional DNA sequences. Instead, this lack of constraint could

Figure 2. Estimates of asel from 16 studies ranked by increasing values. Lower and upper bound values are indicated in blue and red, respectively.

Functional fraction of the human genome
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On a un alignement multiple. . .
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On veut capturer le taux de substitution varie au long d’un alignement multiple. . .
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On veut capturer le taux de substitution varie au long d’un alignement multiple. . .

x1[j] = C, x2[j] = T, x3[j] = T, x4[j] = T
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colonne = nucléotides homologues
⇒ inférer la variation de contraintes évolutives dans le génome
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Substitutions sur la phylogénie
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on veut capturer la variation du taux de substitution
⇒ employer un modèle phylogénétique d’évolution

procéssus de Markov à temps continu avec matrice de taux Q :

M(t) =

pA→A(t) pA→C(t) pA→C(t) pA→G(t)
pC→A(t) pC→C(t) pC→C(t) pC→G(t)
pG→A(t) pG→C(t) pG→C(t) pG→G(t)
pT→A(t) pT→C(t) pT→C(t) pT→G(t)

 = exp
(
Qt
)

M(t) décrit les probabilités de substitution sur une arête de longueur t

?
?

?
T

T

T

C
M(a)

M(b)

M(a+b)

colonne de l'alignement 
=

étiquetage des nœuds terminaux
(observé) 

b
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Taux variable — GERP++
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(1) arbre neutre : longueur vient de sites «dégénerés» (p.e., codon GT N = valine)
(2) définir la vraisemblance L(r) pour facteur d’échelle r > 0 — appliquerM(rt)
sur arête de longueur t
(3) maximiser la fonction L(r) pour choisir r ; score RS = (1−r)

∑
uv∈arêtes tuv
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Davydov & al. PLoS Comput Biol 6 :e1001025 (2010)



Distribution d’éléments conservés
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Beaucoup d’éléments dans les régions introniques et intergéniques : régulation,
gènes ARN

Figure 4. Relationship between CEs and known functional elements. (A) Mean rejected substitution scores for entire human genome,
constrained elements predicted by GERP++, and known annotated exons, introns, and UTR regions. (B) Breakdown of constrained element positions
by region type.
doi:10.1371/journal.pcbi.1001025.g004

Constrained Element Detection Using GERP++

PLoS Computational Biology | www.ploscompbiol.org 6 December 2010 | Volume 6 | Issue 12 | e1001025

Davydov & al. PLoS Comput Biol 6 :e1001025 (2010)



Composition variable — SiPhy
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Utiliser une matrice de taux, varier échelle ω (comme r avant) et distribution sta-
tionnaire π
score dans une fenêtre de longueur k

LO = log
maxπ,ω P

{
x1[j..j + k − 1], x2[j..j + k − 1], . . . , xn[j..j + k − 1]

∣∣∣ π, ω}
P
{
x1[j..j + k − 1], x2[j..j + k − 1], . . . , xn[j..j + k − 1]

∣∣∣ π0, ω0

}

meilleure séparation par composi-
tion que par vitesse
(4D = 3e position du codon
dégéneré avec 4 choix ; 2D = 3e
position du codon dégéneré avec 2
choix)

Garber & al. Bioinformatics 25 :i64 (ISMB 2009)



Effet de voisinage — SCONE
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On veut capturer les dépendences entre nucléotides consécutifs :

(1) considérer des triples de nucléotides consécutifs, calculer les taux neutres pour
AAA→ AAA, AAA→ AAT, . . .
(2) dans colonne j : reconstruire les caractères ancestraux par parcimonie dans co-
lonnes j − 1 et j + 1, utiliser probabilité de substitutions

px[j]→y[j] =
P
{
x[j − 1..j + 1]→ y[j − 1..j + 1]

}
∑
a,b P

{
x[j − 1..j + 1]→ ay[j]b

}
score = espérance postérieure avec m catégories d’échelle ωk (pondération par
vraisemblance L(ωk))

Eω =

∑m
k=1 ωk · L(ωk)∑m
k=1L(ωk)

P-value : vérifier distribution de Eω dans évolution simulée (10000 fois) sur l’arbre
neutre



SCONE
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(intron et une région intergénique)

Asthana & al. PLoS Computational Biology 3 :e254 (2007)



Effet de voisinage — PhyloHMM
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phastCons

elegans, and S. cerevisiae genomes serving as reference genomes
(see Methods and Table S2 in the Supplemental material). Using
the phastCons program, a two-state phylogenetic hidden Markov
model (phylo-HMM) (see Fig. 1) was then fitted separately to
each alignment by maximum likelihood, subject to certain con-
straints (see Methods). The estimated parameters included
branch lengths for all branches of the phylogeny and a parameter
! representing the average rate of substitution in conserved re-
gions as a fraction of the average rate in nonconserved regions
(Fig. 2). The tree topologies were assumed to be known (see
Supplemental material).

The estimated “nonconserved” branch lengths for verte-
brates were fairly consistent with recent results based on (appar-
ently) neutrally evolving DNA in mammals (Cooper et al. 2004),
but were not accurate representations of the neutral substitution
process in all respects. In particular, the branches to the more
distant species (chicken and Fugu) were significantly under-
estimated, because the genomes of these species are, in general,
alignable to the human, mouse, and rat genomes only in regions
that are under at least partial constraint. Similar effects were ob-
served with the insect, worm, and yeast phylogenies. Neverthe-
less, inaccuracies in the estimates of some (particularly longer)
nonconserved branch lengths do not appear to have strongly
influenced our results (see Supplemental material). Moreover,
our method has certain advantages over more traditional meth-
ods for estimating neutral substitution rates, such as by using
fourfold degenerate (4d) sites in coding regions—e.g., it does not
depend on 4d sites being free from selection or being suitable
proxies for neutrally evolving sites in general; and as an “unsu-
pervised” learning method (see Methods), it is not dependent on
possibly incomplete and/or erroneous annotations.

As an approximate way of calibrating our methods across
species groups, we constrained the model parameters such that
the coverage of known coding regions by predicted conserved
elements (i.e., the fraction of coding bases falling in conserved
elements) was equivalent in all groups. We chose a target cover-
age of 65% (!1%), as estimated from human/mouse compari-

sons (Chiaromonte et al. 2003). This number was adjusted for
alignment coverage in coding regions, yielding 56% for the
worm data set and 68% for the insects and yeasts. The degree of
“smoothing” of the phylo-HMM was also constrained by forcing
the expected amount of phylogenetic information (in an infor-
mation theoretic sense) required to predict a conserved element
to be equal for all data sets (see Methods). Our results are, in
general, not highly sensitive to the precise level of target cover-
age used in this calibration procedure (see Supplemental mate-
rial).

Based on the estimated parameters, conserved elements
were then identified in each set of multiple alignments, using the
phastCons program (see Methods). About 1.31 million conserved
elements were predicted for the vertebrate data set, about
472,000 for the insects, about 98,000 for the worms, and about
68,000 for the yeasts. Each predicted element was assigned a
log-odds score indicating how much more likely it was under the
conserved state of the phylo-HMM than under the nonconserved
state (see Supplemental material). A synteny filter, designed to
eliminate predictions that were based on alignments of nonor-
thologous sequence (especially transposons or processed pseudo-
genes), reduced the numbers of predictions for vertebrates and
insects to about 1.18 million and 467,000, respectively; align-
ments of nonorthologous sequence were less prevalent in the
worm and yeast data sets, so the filter was omitted in these cases.
The remaining predicted elements cover 4.3% of the human ge-
nome, 44.5% of D. melanogaster, 26.4% of C. elegans, and 55.6%
of S. cerevisiae. These numbers are somewhat sensitive to the
methods used for parameter estimation. Various different meth-
ods produced coverage estimates of 2.8%–8.1% for the verte-
brates, 36.9%–53.1% for the insects, 18.4%–36.6% for the worms,
and 46.5%–67.6% for the yeasts (see Supplemental material).
Note that the vertebrate coverage is similar to recent estimates of
5%–8% for the share of the human genome that is under puri-
fying selection (Chiaromonte et al. 2003; Roskin et al. 2003; Coo-
per et al. 2004), despite the use of quite different methods and
data sets.

(In the discussion that follows, specific estimates of quanti-
ties of interest will be given, rather than ranges of estimates. The
reader should bear in mind that, while these estimates are gen-
erally not highly sensitive to the method used for parameter
estimation, they do change somewhat from one method to an-
other. Further details are given in the Supplemental material.)

The 1.18 million vertebrate elements, in addition to cover-
ing 66% of the bases in known coding regions (approximately
the target level), cover 23% of the bases in known 5" UTRs and
18% of the bases in known 3" UTRs—15.5-fold, 5.3-fold, and
4.3-fold enrichments, respectively, compared with the expected
coverage if the predicted conserved elements were distributed
randomly across 4.3% of the genome (Fig. 3). Almost nine of 10
(88%) known protein-coding exons are overlapped by predicted
elements, as well as almost two of three known UTR exons (63%
of 5"-UTR exons and 64% of 3"-UTR exons; when an exon con-
tains both UTR and coding sequence, the UTR portion is consid-
ered to be a separate “UTR exon”). Regions not in known genes,
but matching publicly available mRNA or spliced EST sequences
(“other mRNA” in Fig. 3) show 9.2% coverage by conserved ele-
ments (a 2.1-fold enrichment), and regions not in known genes
or other mRNAs, but transcribed according to data from the Af-
fymetrix/NCI Human Transcriptome project (“other trans”; see
Methods), which presumably include a mixture of undocu-
mented coding regions, UTRs, noncoding RNAs, and other

Figure 1. State-transition diagram for the phylo-HMM used by phast-
Cons, which consists of a state for conserved regions (c) and a state for
nonconserved regions (n). Each state is associated with a phylogenetic
model ("c and "n); these models are identical except for a scaling pa-
rameter ! (0 # ! # 1), which is applied to the branch lengths of "c and
represents the average rate of substitution in conserved regions as a
fraction of the average rate in nonconserved regions (see Methods). Two
parameters, µ and $ (0 # µ, $ # 1), define all state-transition probabili-
ties, as illustrated. The probability of visiting each state first (indicated by
arcs from the node labeled “begin”) is simply set equal to the probability
of that state at equilibrium (stationarity). The model can be thought of as
a probabilistic machine that “generates” a multiple alignment, consisting
of alternating sequences of conserved (dark gray) and nonconserved
(light gray) alignment columns (see example at bottom).

Siepel et al.

1036 Genome Research
www.genome.org

 on November 9, 2006 www.genome.orgDownloaded from 

émissions : colonnes de l’alignement multiple, avec probabilités de transition eQt

(neutre) ou eρQt (sélection négative avec ρ < 0)

Siepel & al Genome Res 15 :1034 (2005)
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Modélisation par phylo-HMM
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Fig. 1. (A) State-transition diagram for DLESS. The probability of beginning with each
state (not shown) is taken to be that state’s probability at stationarity. (B) Neutral
phylogenetic model (ψn), with a branch i indicated, and derived phylogenetic models
for a “gain” (ψgi

) and “loss” (ψli
) of a conserved element on branch i.

sequences; these states are associated with two phylogenetic models, ψc and ψn,
respectively, which are identical except that the branch lengths of ψc are scaled
by a factor ρ ∈ (0, 1). Based on this two-state model, phastCons parses an align-
ment into likely “conserved” and “nonconserved” segments. DLESS works by the
same principle, but also allows for conserved elements that have been “gained”
or “lost” on any branch of the phylogeny. The new model has 2k + 2 states,
labeled c (the “fully conserved” state), n (“nonconserved”), g1, . . . , gk (“gain”),
and l1, . . . , lk (“loss”), where k is the number of branches in the tree in question
(Fig. 1A). (For a phylogeny of N present-day species, k = 2N − 3, assuming a
reversible model and an unrooted tree.).

To limit the number of parameters, the states are arranged in a “hub and
spokes” configuration (Fig. 1A). As a result, predicted conserved elements are
required to be separated from one another by at least one base of nonconserved
sequence. In practice, this is not a severe limitation, because, conserved ele-
ments in vertebrates are relatively sparse. In addition, conserved elements of all
classes are assumed to have the same (geometric) length distribution, and all
lineage-specific elements are assumed to occur with the same (prior) probability.
Three parameters—µ, ν, and φ—define all transition probabilities in the HMM
(Fig. 1A). For interpretability, it is useful to reparameterize µ and ν as ω = 1

µ ,
the expected length of conserved elements, and γ = ν

µ+ν , the expected fraction
of bases in conserved elements [6]. The third free parameter, φ, is the proba-

Siepel & al. RECOMB 2006
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Accélération — HAR
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Human Accelerated Regions : plus rapide dans l’humain mais conservé ailleurs

An RNA gene expressed during cortical
development evolved rapidly in humans
Katherine S. Pollard1*†, Sofie R. Salama1,2*, Nelle Lambert4,5, Marie-Alexandra Lambot4, Sandra Coppens4,
Jakob S. Pedersen1, Sol Katzman1, Bryan King1,2, Courtney Onodera1, Adam Siepel1†, Andrew D. Kern1,
Colette Dehay6,7, Haller Igel3, Manuel Ares Jr3, Pierre Vanderhaeghen4 & David Haussler1,2

The developmental and evolutionary mechanisms behind the emergence of human-specific brain features remain largely
unknown. However, the recent ability to compare our genome to that of our closest relative, the chimpanzee, provides
new avenues to link genetic and phenotypic changes in the evolution of the human brain. We devised a ranking of
regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of
these ‘human accelerated regions’, HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal–
Retzius neurons in the developing human neocortex from 7 to 19 gestational weeks, a crucial period for cortical neuron
specification and migration. HAR1F is co-expressed with reelin, a product of Cajal–Retzius neurons that is of fundamental
importance in specifying the six-layer structure of the human cortex. HAR1 and the other human accelerated regions
provide new candidates in the search for uniquely human biology.

The hallmark of evolutionary shift of function is sudden change in a
region of the genome that previously has been highly conserved owing
to negative selection. It has been speculated that changes of this type in
FOXP21, a gene involved in speech production, and ASPM2, which
affects brain size, have had a significant role in the evolution of the
human brain (reviewed in ref. 3). The vast majority of the approxi-
mately 15 million changes in our genome since our common ancestor
with the chimpanzee are likely to represent neutral drift4,5, so systema-
tic searches for potentially important evolutionary acceleration have
focused exclusively on protein coding regions5–9, where there is a more
favourable signal-to-noise ratio. However, protein coding regions
account foronly about one-thirdof the segments in thehumangenome
thought to be under negative selection10, and thus these searches may
be missing the majority of the functional elements in the genome5,11.
With the availability of nearly complete genome sequences for several
vertebrates, comparative genomics can now be used to predict func-
tional elements in the98.5%of thegenome that is non-coding, through
patterns of ancestral negative selection10,12–16. Here we scan these
ancestrally conserved genomic regions to find those that show a
significantly accelerated rate of substitution in the human lineage
since divergence from our common ancestor with the chimpanzee.
Many of the human accelerated regions (HARs) found in this scan
are associated with genes known to be involved in transcriptional
regulation and neurodevelopment. HAR1, the most dramatically
changed element, is part of a novel RNA gene expressed during
human cortical development.

Identification of human accelerated regions
To overcome the very low signal-to-noise ratio among changes in
non-coding regions, we first searched independently for maximal-
length regions of the chimpanzee genome with at least 96% identity

over 100 base pairs (bp) with the orthologous regions in mouse and
rat, suggesting a significant level of negative selection in these regions.
For each of the approximately 35,000 such mammalian conserved
regions (median length, 140 bp), we then examined the orthologous
segments in all other available amniote genomes, looking for regions
that have a large number of non-adjacent changes in human relative
to other species. A likelihood ratio test was used to rank and evaluate
the significance of each region. Controlling the genome-wide false
discovery rate (FDR) to be less than 5%, we identified 49 regions with
a statistically significant substitution rate increase in human. We
compared the results of this analysis to those from several com-
plementary approaches (see Supplementary Notes S1) and found
that the fastest-evolving regions score uniformly high regardless of
the method (Supplementary Notes S2). Of the 49 HARs, 96% are in
non-coding segments (Supplementary Table S2). Gene Ontology
terms related to DNA binding and transcriptional regulation are
significantly enriched among the genes adjacent to the HARs (Sup-
plementary Table S8), and 24% of the HARs are adjacent to a
neurodevelopmental gene (Supplementary Table S7), making these
regions especially interesting as candidates for brain-specific regu-
latory elements that may have changed significantly during human
evolution.

HAR1 lies in a pair of novel non-coding RNA genes
The 118-bp HAR1 region showed the most dramatically accelerated
change (FDR-adjusted P , 0.0005), with an estimated 18 substi-
tutions in the human lineage since the human–chimpanzee ancestor,
compared with the expected 0.27 substitutions on the basis of the
slow rate of change in this region in other amniotes (Supplementary
Notes S3). Only two bases (out of 118) are changed between
chimpanzee and chicken, indicating that the region was present

ARTICLES
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a distribution of phyloP scores for sites under selection by decom-
posing the full score distribution into a neutral component and
a selected component, and calculating TPR(s) from this distribu-
tion (Supplemental section S2.8). We used maximum-likelihood
estimates of g in the CDS2 case and lower-bound estimates in the
mixture decomposition case. These calculations suggest that if
single-nucleotide elements are subject to selective effects similar to
those in CDS2 sites, more than half can be detected with FDR » 5%
(Fig. 2). However, much higher FDRs must be tolerated if a large
majority of 1-bp elements are to be detected (e.g., FDR » 50% to
detect two-thirds of 1-bp elements, or FDR » 80% to detect 80%). If
a broader class of elements subject to weaker selective effects is
considered (as inferred by the mixture decomposition method),
power is somewhat weaker, with an ;30% TPR at a 5% FDR and an
;40% TPR at a 50% FDR for 1-bp elements. Power for 3-bp ele-
ments shows a similar overall pattern, but is considerably higher
than for 1-bp elements in the range of interest, with between about
one-half (mixture) and three-quarters (CDS2) of elements detect-
able at 5% FDR. While these estimates are clearly subject to a great
deal of uncertainty, they suggest that current alignments are suf-
ficiently informative to allow substantial fractions—but not large
majorities—of 1- to 3-bp elements to be detected at low FDRs.
Power will improve as more sequence data become available.

Our third main finding is that the subtree tests (LRT, SCORE,
and SPH only) have substantially lower power than the all-branch
tests, yet do have reasonable power for slightly longer elements,

provided subtrees of adequate size are considered. In our experi-
ments, we considered three different clades, with different num-
bers of species and branch lengths: the primate (14 species, short
branches), glires (five species, longer branches), and laurasiatherian
(10 species, longer branches) clades (Fig. 3). In all cases, power is
poor for individual nucleotides, except in the case of extreme
clade-specific acceleration (subtree rescaling by a factor l = 10)
(Supplemental Tables S2–S4). At 3 bp, power is improved for mod-
erate to strong departures from neutrality (l # 0:3, l $ 3:33) but
generally remains poor (Fig. 3). By 10 bp, however, power has im-
proved considerably, with elements under moderate clade-specific
conservation (l = 0:3) showing power comparable to that seen for
the all-branch test for 3-bp elements with r = 0:5 (primates; AUC of
0.93–0.95) or r = 0:3 (laurasiatherians; AUC of 0.98–0.99). Pre-
dictably, power is generally highest for the laurasiatherians and
lowest for the primates, with the glires clade being intermediate
between them.

To further examine the sensitivity of our results to modeling
assumptions, we applied phyloP to two additional sets of synthetic
alignments, simulated in more realistic ways. First, we generated
data under a model that allows for rate variation across sites (Yang
1994), using parameters estimated from AR and CDS2 sites for
neutral and selected sites, respectively (Supplemental section
S2.7.1). Second, we relaxed the assumption (made by all subtree
tests in phyloP) that all branches in a subtree of interest use one
substitution rate, while all other branches use another, by in-
troducing various amounts of ‘‘noise’’ to the branch-length scaling
factors during data generation (Supplemental section S2.7.2). We
applied phyloP to these alignments and measured its performance,
exactly as above (i.e., the tests were not altered to reflect the new
assumptions). These experiments indicated that simplifications in
the parametric experiments do tend to inflate absolute estimates of
power somewhat, but in general, the effect is not dramatic, and
relative performance is mostly unaffected (Supplemental sections
S3.5.1 and S3.5.2).

Finally, we compared and evaluated several other aspects of
performance, including running time, two-sided versus one-sided
tests, the effect of considering subsets of species, and the accuracy
of reported P-values. The running times of the LRT and GERP
methods were comparable, while the SCORE method was consid-
erably faster, and the SPH method was considerably slower—by
more than an order of magnitude in some cases. Results of the
other experiments were largely consistent with expectations (Sup-
plemental sections S3.3–S3.7; Supplemental Tables S6–S14).

Figure 1. Receiver operating characteristic (ROC) curves showing false-
positive versus true-positive rates for the all-branch tests implemented in
phyloP: (red) LRT, (green) SCORE, (blue) SPH, and (purple) GERP. In-
dividual plots show results for simulated data sets with either 3-bp (top) or
1-bp (bottom) elements generated from models with a range of deviations
r from the neutral rate r = 1:0 (columns).

Table 2. Area under the ROC curve for phyloP one-sided all-branch tests

Rate (r)

1 bp 3 bp 10 bp

GERP LRT SCORE SPH GERP LRT SCORE SPH GERP LRT SCORE SPH

Conservation
0.1 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.91 0.91 0.91 0.89 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00
0.5 0.80 0.79 0.79 0.79 0.94 0.94 0.94 0.94 1.00 1.00 1.00 1.00
0.7 0.67 0.66 0.66 0.66 0.81 0.80 0.80 0.80 0.94 0.94 0.94 0.94
0.9 0.56 0.55 0.55 0.56 0.61 0.60 0.60 0.61 0.69 0.68 0.68 0.68

Acceleration
1.11 0.57 0.56 0.56 0.57 0.61 0.60 0.60 0.61 0.69 0.68 0.68 0.69
1.43 0.71 0.70 0.70 0.70 0.84 0.83 0.83 0.83 0.96 0.96 0.96 0.96
2 0.86 0.86 0.86 0.85 0.97 0.97 0.97 0.97 1.00 1.00 1.00 1.00
3.33 0.98 0.98 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 1. Publications describing estimates of asel and a0
sel

Publication
Method (asel and
a0

sel, estimation)
asel (%)
lower

asel (%)
higher

Substitutions
or indels or
topography

Neutral
model/standard

Whole or partial
genome

Multiple, or
pair of,

genomes

Local or
global neutral

rate

Lunter et al. (2006) NIM (asel) 2.56 3.25 Indels Randomly placed indels Whole Pair Local
Thomas et al. (2003) MCSs (asel) 3.7 3.7 Substitutions 4D sites Partial Multiple Local
The ENCODE Project
Consortium (2007)
(ENCODE)

Two of three
methods (asel)

4.9 4.9 Substitutions 4D sites/most
aligned sites

Partial (ENCODE) Multiple Global

Lindblad-Toh et al. (2005) Substitutions (asel) 5.3 5.3 Substitutions ARs Whole Pair Local
Pollard et al. (2010) Various (asel) 5.3 5.3 Substitutions Various Partial (ENCODE) Multiple Global
Lindblad-Toh et al. (2011) SiPhy (asel) 5.4 5.4 Patterns ARs Whole Multiple Global
Eory et al. (2010) Substitutions (asel) 5.4 5.4 Substitutions ARs Whole Pair Local
Cooper et al. (2005) GERP (asel) 5.5 5.5 Substitutions Most aligned sites Partial Multiple Local
Chiaromonte et al. (2003) Substitutions (asel) 2.29 6.15 Substitutions ARs Whole Pair Local
Siepel et al. (2005) phastCons (asel) 3 8 Substitutions none Whole Multiple Global
Davydov et al. (2010) GERP++ (asel) 6 8 Substitutions Most aligned sites Whole Multiple Global
Smith et al. (2004) Substitutions/Turnover

(asel and a0
sel)

10 10 Substitutions Simulation Partial Multiple pairs Local

Meader et al. (2010) NIM (asel and a0
sel) 6.5 10 Indels Randomly placed

indels
Whole Multiple pairs Local

Garber et al. (2009) SiPhy (asel) 5.8 10.2 Patterns ARs Partial (ENCODE) Multiple Global
Asthana et al. (2007) SCONE (asel) 5.5 11 Substitutions within

trinucleotides
Most aligned sites Partial (ENCODE) Multiple Global

Parker et al. (2009) Topography (Chai; asel) 12 12 Topography Most aligned sites Partial (ENCODE) Multiple Global

(4D) Four-fold degenerate; (ARs) ancestral repeats; (ENCODE) Encyclopedia of DNA Elements project; (GERP) Genomic Evolutionary Rate Profiling; (MCSs) multispecies conserved sequence; (NIM)
neutral indel model; (SCONE) Sequence CONservation Evaluation.
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