CONSERVATION DE SÉQUENCE

Conservation * IFT6299 H2014 * UdeM * Miklós Csűrös

Génomique comparative

Principe de génomique comparative : éléments fonctionnels sont plus conservés (séléction négative) que les éléments non-fonctionnels (évolution neutre)

Miller & al. Annu Rev Genomics Hum Genet 5:15 (2004)

L'ombre de sélection dans une fenêtre

hypothèse 0 = substitutions par $e^{-\mu \mathbf{Q}t}$ hypothèse 1 = substitutions par $e^{-\rho\mu\mathbf{Q}t}$. Vraisemblances L_0, L_1 et

$$LR = \log \frac{L_1}{L_0}$$

En haut : LLR dans un fenêtre de 50 pb glissant dans l'alignement multiple de 5 primates, avec des exons indiqués. En bas : % identité humain-souris.

Boffelli & al. Science 299 :1391 (2003)

Puissance statistique

Détection dans une fenêtre de 50 pb selon % identité

Stone, Cooper & Sidow. Annu. Rev. Genomics Hum Genet. 6 :143, (2005).

Puissance statistique II

Détection dans une fenêtre de 100 pb selon % identité

Stone, Cooper & Sidow. Annu Rev Genomics Hum Genet 6 :143, 2005).

Figure 1. Number of Genomes Required for Single Nucleotide Resolution

Eddy. PLoS Biology 3 :e10 (2005)

Conservation * IFT6299 H2014 * UdeM * Miklós Csűrös

Inférer la conservation

Phylogenetic Tree

Multiple Sequence Alignment

Questions : (1) classes de taux fixées ou non; (2) estimation du taux neutre; (3) groupage de positions consécutives; (4) statistique pour détecter la conservation;
(5) alignement / trous / séquences manquantes

Davydov & al. PLoS Comput Biol 6 :e1001025 (2010)

Contraintes fonctionnelles dans le génome humaine

Selon la méthode d'inférence et les données, on arrive à des conclusions différentes sur la fraction α de régions conservées...

Estimates of α_{sel} from 16 studies ranked by increasing values. Lower and upper bound values are indicated in blue and red, respectively.

Ponting & Hardison Genome Res 21 :1769 (2011)

La méthode phylogénétique

On a un alignement multiple...

colonne = nucléotides homologues

 \Rightarrow inférer la variation de contraintes évolutives dans le génome

- colonnes de résidues **homologues** _____

Substitutions sur la phylogénie

on veut capturer la variation du taux de substitution \Rightarrow employer un modèle phylogénétique d'évolution

procéssus de Markov à temps continu avec matrice de taux \mathbf{Q} :

$$\mathbf{M}(t) = \begin{bmatrix} p_{A \to A}(t) & p_{A \to C}(t) & p_{A \to C}(t) & p_{A \to G}(t) \\ p_{C \to A}(t) & p_{C \to C}(t) & p_{C \to C}(t) & p_{C \to G}(t) \\ p_{G \to A}(t) & p_{G \to C}(t) & p_{G \to C}(t) & p_{G \to G}(t) \\ p_{T \to A}(t) & p_{T \to C}(t) & p_{T \to C}(t) & p_{T \to G}(t) \end{bmatrix} = \exp(\mathbf{Q}t)$$

 $\mathbf{M}(t)$ décrit les probabilités de substitution sur une arête de longueur t

Taux variable — GERP++

(1) arbre neutre : longueur vient de sites «dégénerés» (p.e., codon GT N =valine) (2) définir la vraisemblance L(r) pour facteur d'échelle r > 0 — appliquer M(rt) sur arête de longueur t

(3) maximiser la fonction L(r) pour choisir r; score $RS = (1-r) \sum_{uv \in ar \in tes} t_{uv}$

Davydov & al. PLoS Comput Biol 6 :e1001025 (2010)

Distribution d'éléments conservés

Beaucoup d'éléments dans les régions introniques et intergéniques : régulation, gènes ARN

B. Composition of Constrained Elements

Davydov & al. PLoS Comput Biol 6 :e1001025 (2010)

Composition variable — SiPhy

Utiliser une matrice de taux, varier échelle ω (comme r avant) et distribution stationnaire π score dans une fenêtre de longueur k

$$\mathsf{LO} = \log \frac{\max_{\pi,\omega} \mathbb{P}\left\{ x_1[j..j+k-1], x_2[j..j+k-1], \dots, x_n[j..j+k-1] \mid \pi, \omega \right\}}{\mathbb{P}\left\{ x_1[j..j+k-1], x_2[j..j+k-1], \dots, x_n[j..j+k-1] \mid \pi_0, \omega_0 \right\}}$$

meilleure séparation par composition que par vitesse (4D = 3e position du codon dégéneré avec 4 choix; 2D = 3e position du codon dégéneré avec 2 choix)

Garber & al. Bioinformatics 25 :i64 (ISMB 2009)

Effet de voisinage — SCONE

On veut capturer les dépendences entre nucléotides consécutifs :

(1) considérer des triples de nucléotides consécutifs, calculer les taux neutres pour $AAA \rightarrow AAA$, $AAA \rightarrow AAT$, ...

(2) dans colonne j: reconstruire les caractères ancestraux par parcimonie dans colonnes j - 1 et j + 1, utiliser probabilité de substitutions

$$p_{x[j] \to y[j]} = \frac{\mathbb{P}\left\{x[j-1..j+1] \to y[j-1..j+1]\right\}}{\sum_{a,b} \mathbb{P}\left\{x[j-1..j+1] \to ay[j]b\right\}}$$

score = espérance postérieure avec m catégories d'échelle ω_k (pondération par vraisemblance $L(\omega_k)$)

$$\mathbb{E}\omega = \frac{\sum_{k=1}^{m} \omega_k \cdot L(\omega_k)}{\sum_{k=1}^{m} L(\omega_k)}$$

P-value : vérifier distribution de $\mathbb{E}\omega$ dans évolution simulée (10000 fois) sur l'arbre neutre

SCONE

(intron et une région intergénique)

Asthana & al. PLoS Computational Biology 3 :e254 (2007)

Effet de voisinage — PhyloHMM

phastCons

émissions : colonnes de l'alignement multiple, avec probabilités de transition $e^{\mathbf{Q}t}$ (neutre) ou $e^{\rho \mathbf{Q}t}$ (sélection négative avec $\rho < 0$)

Siepel & al Genome Res 15 :1034 (2005)

Turnover

Modélisation par phylo-HMM

Siepel & al. RECOMB 2006

Siepel & al. RECOMB 2006

Accélération — HAR

Human Accelerated Regions : plus rapide dans l'humain mais conservé ailleurs

Vol 443|14 September 2006|doi:10.1038/nature05113

ARTICLES

nature

An RNA gene expressed during cortical development evolved rapidly in humans

Katherine S. Pollard¹*†, Sofie R. Salama^{1,2}*, Nelle Lambert^{4,5}, Marie-Alexandra Lambot⁴, Sandra Coppens⁴, Jakob S. Pedersen¹, Sol Katzman¹, Bryan King^{1,2}, Courtney Onodera¹, Adam Siepel¹†, Andrew D. Kern¹, Colette Dehay^{6,7}, Haller Igel³, Manuel Ares Jr³, Pierre Vanderhaeghen⁴ & David Haussler^{1,2}

Amadio & Walsh Cell 126 :1033 (2006)

Pas trop grande différence avec assez de génomes ...

Figure 1. Receiver operating characteristic (ROC) curves showing falsepositive versus true-positive rates for the all-branch tests implemented in phyloP: (red) LRT, (green) SCORE, (blue) SPH, and (purple) GERP. Individual plots show results for simulated data sets with either 3-bp (*top*) or 1-bp (*bottom*) elements generated from models with a range of deviations ρ from the neutral rate $\rho = 1.0$ (columns).

Pollard & al. Genome Res 20 :110 (2010)

Accord qualitatif sur sélection

Table 1. Publications describing estimates of α_{sel} and α_{sel}^0

Publication	Method (α_{sel} and α_{sel}^{0} , estimation)	α _{sel} (%) Iower	α _{sel} (%) higher	Substitutions or indels or topography	Neutral model/standard	Whole or partial genome	Multiple, or pair of, genomes	Local or global neutral rate
Lunter et al. (2006)	NIM (α_{sel})	2.56	3.25	Indels	Randomly placed indels	Whole	Pair	Local
Thomas et al. (2003)	MCSs (α_{sel})	3.7	3.7	Substitutions	4D sites	Partial	Multiple	Local
The ENCODE Project Consortium (2007) (ENCODE)	Two of three methods (α_{sel})	4.9	4.9	Substitutions	4D sites/most aligned sites	Partial (ENCODE)	Multiple	Global
Lindblad-Toh et al. (2005)	Substitutions (α_{sel})	5.3	5.3	Substitutions	ARs	Whole	Pair	Local
Pollard et al. (2010)	Various (α_{sel})	5.3	5.3	Substitutions	Various	Partial (ENCODE)	Multiple	Global
Lindblad-Toh et al. (2011)	SiPhy (α_{sel})	5.4	5.4	Patterns	ARs	Whole	Multiple	Global
Eory et al. (2010)	Substitutions (α_{sel})	5.4	5.4	Substitutions	ARs	Whole	Pair	Local
Cooper et al. (2005)	GERP (α_{sel})	5.5	5.5	Substitutions	Most aligned sites	Partial	Multiple	Local
Chiaromonte et al. (2003)	Substitutions (α_{sel})	2.29	6.15	Substitutions	ARs	Whole	Pair	Local
Siepel et al. (2005)	phastCons (α_{sel})	3	8	Substitutions	none	Whole	Multiple	Global
Davydov et al. (2010)	GERP++ (α_{sel})	6	8	Substitutions	Most aligned sites	Whole	Multiple	Global
Smith et al. (2004)	Substitutions/Turnover $(\alpha_{sel} \text{ and } \alpha_{sel}^{0})$	10	10	Substitutions	Simulation	Partial	Multiple pairs	Local
Meader et al. (2010)	NIM (α_{sel} and α^{0}_{sel})	6.5	10	Indels	Randomly placed indels	Whole	Multiple pairs	Local
Garber et al. (2009)	SiPhy (α_{sel})	5.8	10.2	Patterns	ARs	Partial (ENCODE)	Multiple	Global
Asthana et al. (2007)	SCONE (α_{sel})	5.5	11	Substitutions within trinucleotides	Most aligned sites	Partial (ENCODE)	Multiple	Global
Parker et al. (2009)	Topography (Chai; α_{sel})	12	12	Topography	Most aligned sites	Partial (ENCODE)	Multiple	Global

(4D) Four-fold degenerate; (ARs) ancestral repeats; (ENCODE) Encyclopedia of DNA Elements project; (GERP) Genomic Evolutionary Rate Profiling; (MCSs) multispecies conserved sequence; (NIM) neutral indel model; (SCONE) Sequence CONservation Evaluation.

Ponting & Hardison Genome Res 21 :1769 (2011)