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la transcription d’une région de l’ADN nécessite

? liaisons protéine-ADN (facteur de transcription et son site reconnu)
? accessibilité de la chromatine
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R E V I EW S

ORTHOLOGY

Two sequences are orthologous
if they share a common ancestor
and are separated by speciation.

PHYLOGENETIC FOOTPRINTING 

An approach that seeks to
identify conserved regulatory
elements by comparing genomic
sequences between related
species.

MACHINE LEARNING

The ability of a program to learn
from experience — that is, to
modify its execution on the basis
of newly acquired information.
In bioinformatics, neural
networks and Monte Carlo
Markov Chains are well-known
examples.

Identification of regions that control transcription
An initial step in the analysis of any gene is the identifi-
cation of larger regions that might harbour regulatory
control elements. Several advances have facilitated the
prediction of such regions in the absence of knowl-
edge about the specific characteristics of individual cis-
regulatory elements. These tools broadly fall into two
categories: promoter (transcription start site; TSS)
and enhancer detection. The methods are influenced
by sequence conservation between ORTHOLOGOUS genes
(PHYLOGENETIC FOOTPRINTING), nucleotide composition and
the assessment of available transcript data.

Functional regulatory regions that control transcrip-
tion rates tend to be proximal to the initiation site(s) of
transcription. Although there is some circularity in the
data-collection process (regulatory sequences are sought
near TSSs and are therefore found most often in these
regions), the current set of laboratory-annotated regula-
tory sequences indicates that sequences near a TSS are
more likely to contain functionally important regulatory
controls than those that are more distal. However, specifi-
cation of the position of a TSS can be difficult. This is fur-
ther complicated by the growing number of genes that
selectively use alternative start sites in certain contexts.
Underlying most algorithms for promoter prediction is a
reference collection known as the ‘Eukaryotic Promoter
Database’ (EPD)4. Early bioinformatics algorithms that
were used to pinpoint exact locations for TSSs were
plagued by false predictions5. These TSS-detection tools
were frequently based on the identification of TATA-box
sequences, which are often located ~30 bp upstream of a
TSS. The leading TATA-box prediction method6, reflect-
ing the promiscuous binding characteristics of the TATA-
binding protein, predicts TATA-like sequences nearly
every 250 bp in long genome sequences.

A new generation of algorithms has shifted the
emphasis to the prediction of promoters — that is,
regions that contain one or more TSS(s). Given that
many genes have multiple start sites, this change in
focus is biochemically justified.

The dominant characteristic of promoter sequences
in the human genome is the abundance of CpG dinu-
cleotides. Methylation plays a key role in the regulation
of gene activity. Within regulatory sequences, CpGs
remain unmethylated, whereas up to 80% of CpGs in
other regions are methylated on a cytosine. Methylated
cytosines are mutated to adenosines at a high rate,
resulting in a 20% reduction of CpG frequency in
sequences without a regulatory function as compared
with the statistically predicted CpG concentration7.
Computationally, the CG dinucleotide imbalance can be
a powerful tool for finding regions in genes that are
likely to contain promoters8.

Numerous methods have been developed that
directly or indirectly detect promoters on the basis of
the CG dinucleotide imbalance. Although complex
computational MACHINE-LEARNING algorithms have been
directed towards the identification of promoters, simple
methods that are strictly based on the frequency of CpG
dinucleotides perform remarkably well at correctly pre-
dicting regions that are proximal to or that contain the

does not reveal the entire picture. There is only partial
correlation between transcript and protein concentra-
tions3. Nevertheless, the selective transcription of genes
by RNA polymerase-II under specific conditions is cru-
cially important in the regulation of many, if not most,
genes, and the bioinformatics methods that address the
initiation of transcription are sufficiently mature to
influence the design of laboratory investigations.

Below, we introduce the mature algorithms and
online resources that are used to identify regions that
regulate transcription. To this end, underlying meth-
ods are introduced to provide the foundation for
understanding the correct use and limitations of each
approach. We focus on the analysis of cis-regulatory
sequences in metazoan genes, with an emphasis on
methods that use models that describe transcription-
factor binding specificity. Methods for the analysis of
regulatory sequences in sets of co-regulated genes will
be addressed elsewhere.We use a case study of the human
skeletal muscle troponin gene TNNC1 to demonstrate
the specific execution of the described methods. A set of
accompanying online exercises provides the means for
researchers to independently explore some of the meth-
ods highlighted in this review (see online links box).
Because the field is rapidly changing, emerging classes of
software will be described in anticipation of the creation
of accessible online analysis tools.

Distal TFBS

Proximal TFBS

Transcription
initiation complex Transcription

initiation
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Co-activator complex
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Figure 1 | Components of transcriptional regulation. Transcription factors (TFs) bind 
to specific sites (transcription-factor binding sites; TFBS) that are either proximal or 
distal to a transcription start site. Sets of TFs can operate in functional cis-regulatory 
modules (CRMs) to achieve specific regulatory properties. Interactions between bound TFs
and cofactors stabilize the transcription-initiation machinery to enable gene expression. 
The regulation that is conferred by sequence-specific binding TFs is highly dependent on the
three-dimensional structure of chromatin.

Wasserman & Sandelin Nat Rev Genet 5 :276 (2004)
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on veut annoter :
? sites de liaison de facteurs de transcription
? chromatine «ouverte»
? méthylation de l’ADN
? modification de histones
? interaction ADN-ADN

Hawkins, Hon & Ren Nat Rev Genet 11 :476 (2010)
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1. filtrage / enrichissement de régions d’interêt
2. séquençage
3. alignement pour déterminer d’où viennent les morceaux

Wold & Myers Nature Methods 5 :19 (2008)
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In vivo nucleosome mapping 
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Supplementary Figure 1

Supplementary Figure 1. Schematic depiction of in vivo nucleosome mapping experiment. Blood cells were isolated 
from a human donor blood and sorted into populations representing CD4+ T-cells, CD8+ T-cells and granulocytes. 
Nuclear chromatin was released by crushing the cells, followed by Micrococcal nuclease treatment.  Mononucleosome 
fraction was isolated by gel electrophoresis and sequenced to high depth using SOLiD platform. Valouev & al Nature 474 :516 (2011)
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placement déterminé par séquence génomique (dinucléotides)

in vitro yeast-based model and that of in vivo nucleosome occupancy
in C. elegans19 (Fig. 3f). Moreover, our model classifies nucleosome-
enriched regions from nucleosome-depleted regions in C. elegans with
high accuracy (Supplementary Fig. 4), and the 5-base-pair sequence
preferences of the C. elegans in vivo map agree well with those of the
yeast in vitro map (Fig. 3g). The poorer classification performance in
comparison with yeast may indicate that factors other than the DNA
sequence preferences make a greater contribution to nucleosome
organization in more complex eukaryotes. Alternatively, the poorer
performance may indicate that distinct sequence types are present in
C. elegans for which our yeast in vitro data do not provide statistics.
Nonetheless, our model is significantly correlated with the in vivo
nucleosome organization across C. elegans.

We next compared the DNA-encoded nucleosome organization of
the in vitro map with nucleosome organization under growth con-
ditions that cause substantial transcriptional changes relative to log-
phase growth in rich medium (that is glucose). In addition to our
map obtained from yeast cells grown in rich medium, we also mea-
sured the nucleosome organization of yeast cells grown separately in
galactose, and in ethanol, and found that the overall nucleosome
occupancy is very similar between all three in vivo maps, although
localized differences are apparent (Fig. 1 and Supplementary Fig. 5).
All three in vivo maps are highly correlated with the in vitro map
and show the sequence characteristics seen in vitro (Supplementary
Fig. 6). These results imply that intrinsic sequence preferences of
nucleosomes have a dominant role in determining nucleosome

organization in several growth conditions, with local, condition-spe-
cific changes superimposed.

To address concerns regarding biases that may be caused by the
sequence specificity of micrococcal nuclease20 and possible biases in
parallel sequencing, we performed a different kind of in vitro experi-
ment that measures the relative nucleosome affinity of ,40,000 dou-
ble-stranded 150-bp oligonucleotides without the use of micrococcal
nuclease or parallel sequencing. The resulting 5-base-pair nucleo-
some sequence preferences are in excellent agreement with those
discovered in the genome-wide in vitro reconstitution (correlation
of 0.83), and there is a good correlation (0.51) between the measured
oligonucleotide affinities and those predicted by the model con-
structed from the genome-wide in vitro map (Supplementary Fig.
7). These results are wholly independent of either micrococcal nucle-
ase or parallel sequencing, and thus confirm that the sequence spe-
cificities derived from our previous experiments were caused by
intrinsic nucleosome preferences, rather than being an artefact of
our experimental approach.

Previous studies identified nucleosome depletion around tran-
scription start and stop sites5–7,9–11. However, because these studies
were based on in vivo data, it was not possible to determine which
mechanism accounted for the observed patterns. The in vitro and in
vivo maps show highly similar stereotypic nucleosome depletion at
translation end sites, indicating that this depletion is largely encoded
by nucleosome sequence preferences (Fig. 4b and Supplementary
Fig. 8). The two maps also show stereotypic nucleosome depletion
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Figure 3 | The in vitro sequence preferences of nucleosomes are highly
similar to those of nucleosome-bound sequences in vivo and are predictive
of nucleosome occupancy in C. elegans. a, Comparison of genome-wide
relative nucleosome occupancy of nucleosomes over sequences of length 5.
For the in vitro and in vivo maps of nucleosome occupancy, we separately
computed the average normalized nucleosome occupancy of each of the
1,024 sequences of length 5, across all of its instances in the genome. Shown
is a comparison between the distributions of these 5-base-pair sequences in
both maps. Also shown is the Pearson correlation between these
distributions. b, Position-dependent sequence preferences of nucleosomes
in the in vitro map. We aligned the individual nucleosome reads in the in
vitro nucleosome collection. Shown is the fraction (3-bp moving average) of
AA/AT/TT/TA and CC/CG/GC/GG dinucleotides at each position of the
alignment. c, Same as b, for the in vivo map. d, Shown is a density dot plot
comparison between the normalized nucleosome occupancy per base pair in
the in vitro map (x axis) and the normalized nucleosome occupancy per base

pair predicted by our cross-validated computational model of nucleosome
sequence preferences (y axis). Values above zero indicate nucleosome
enrichment relative to the genome-wide average. The colour of each point
represents the number of base pairs that map to that point in the graph. The
Pearson correlation between the maps is indicated. e, Same as d, comparing
our model predictions to the in vivo map. f, In vitro nucleosome sequence
preferences on yeast genomic DNA are predictive of the in vivo nucleosome
organization in C. elegans. Same as d, comparing our model predictions and
the in vivo nucleosome occupancy map of C. elegans on chromosome 2
(ref. 19). g, Comparison of yeast nucleosome sequence preferences in vitro
and those of C. elegans in vivo. For each of the maps we separately computed
the average normalized nucleosome occupancy of every possible sequence of
length 5. For C. elegans, we performed these computations on
chromosome 2. Shown is a comparison of these 5-base-pair sequence
distributions between the yeast in vitro map and the in vivo map of C.
elegans, along with the Pearson correlation between these distributions.
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. . . mais pas toujours exactement

the translational positioning of most human nucleosomes is weak,
but we also find that most nucleosomes are significantly more
positioned than expected by chance. Additionally, a substantial
fraction of nucleosomes have moderate or strong positioning.

At a fine scale, nucleosomes are often found at alternate
‘‘minor’’ translational positions that are multiples of 10 bp away
from their most frequent ‘‘major’’ position. These alternate
positions preserve the rotational positioning of the nucleosome
on the DNA and are likely to be energetically favored because they

retain phase with the periodic nucleosome sequence preferences.
Similar offsets in nucleosome positions have been observed in 5S
rDNA in vitro [43,44] and are consistent with a weak 10 bp
periodicity in MNase-seq reads from C. elegans [45]. Recently, this
finding has been confirmed by chemical mapping of nucleosomes
in yeast, which demonstrates that it is not an artifact of digestion
by MNase [46].

At a broad scale, nucleosomes are often found in consistently
positioned, regularly spaced arrays, which are enriched in insulators,

Figure 3. Examples of nucleosome arrays. A. MNase midpoint density (smoothed using a 30 bp sliding window) across a 76 kb region near the
chromosome 12 centromere. This region contains an array of ,400 nucleosomes with regular, consistent positioning. B. A small 10 kb subsection of
the larger nucleosome array. Predicted nucleosome occupancy from the in vitro sequence model of Kaplan et al. [33] corresponds very well with
MNase midpoint density. Kaplan scores predict the affinity of nucleosomes for the sequence but, unlike predicted occupancies, do not incorporate
steric exclusion. DNase I nick density (smoothed with a 10 bp sliding window) indicates the location of DNase I sensitive regions (there are none in
this region). The density of simulated MNase midpoints and Yoruba DNA sequencing read depth (aggregated across individuals from the 1000
genomes project) are not strongly correlated with MNase midpoint density, which shows that the array is not an artifact of sequencing or mapping
bias. C. MNase midpoint density around the gene NPM3. In this region there is consistent, regular spacing of nucleosomes, but their positions are not
well predicted by the Kaplan model, particularly in the DNase I hypersensitive sites, which are depleted of nucleosomes.
doi:10.1371/journal.pgen.1003036.g003

Nucleosome Positioning in the Human Genome

PLOS Genetics | www.plosgenetics.org 6 November 2012 | Volume 8 | Issue 11 | e1003036

Kaplan & al Nature 458 :362 (2009) ; Gaffney & al. PLoS Genetics 8 :e1003036 (2012)
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plus proches dans des régions actives

séquence + autres facteurs déterminent le placement
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Supplementary Figure 3

Supplementary Figure 3. Distograms and phasograms. (A) Schematic depiction of the distogram calculation. 
Blue arcs represent recorded distances between nucleosome reads that map on opposite strands. Distance frequen-
cies are represented as a histogram (distogram, see Fig. 1A-B of the main text). Distograms are used to reveal the 
existence of consistently positioned nucleosomes in the main data. (B) Schematic depiction of the phasogram 
calculation. Blue arcs represent recorded phases between the nucleosome reads mapping on the same strand of the 
reference genome. Phase frequencies are represented as a histogram (phasogram, see Fig 1C-D).  Phasograms are 
used to reveal the existance of consistently spaced nucleosomes forming regular arrays.

chromatin modifications might be associated with specific spacing
patterns. Using previously published ChIP-seq data, we identified
regions of enrichment15 for histone modifications that are found within
heterochromatin (H3K27me3, H3K9me3)16, gene-body euchromatin

(H4K20me1, H3K27me1)16, or euchromatin associated with promoters
and enhancers (H3K4me1, H3K27ac, H3K36ac)17, and estimated spa-
cing of nucleosomes for each of these epigenetic domains. We found that
active promoter-associated domains contained the shortest spacing of
178–187 bp, followed by a larger spacing of 190–195 bp within the body
of active genes, whereas heterochromatin spacing was largest at 205 bp
(Fig. 2b). These results reveal striking heterogeneity in nucleosome
organization across the genome that depends on global cellular identity,
metabolic state, regional regulatory state, and local gene activity.

To characterize DNA signals responsible for consistent positioning of
nucleosomes, we identified 0.3 million sites occupied in vitro by nucleo-
somes at high stringency (.0.5; Methods). The region occupied by the
centre of the nucleosome (dyad) exhibits a significant increase in G/C
usage (Poisson P-value , 102100; Fig. 3a). Flanking regions increase in
A/T usage as the positioning strength increases (Fig. 3b). A subset of in
vitro positioned nucleosomes (stringency . 0.5) which are also strongly
positioned in vivo (stringency . 0.4) revealed increased A/T usage
within the flanks (Fig. 3c) compared to in vitro-only positioning sites
(Fig. 3a), which underscores the importance of flanking repelling ele-
ments for positioning in vivo. We term such elements with strong G/C
cores and A/T flanks ‘container sites’ to emphasize the proposed posi-
tioning mechanism (Fig. 3d). This positioning signal is different from a
10-bp dinucleotide periodicity observed in populations of nucleosome
core segments isolated from a variety of species18,19 and proposed to
contribute to precise positioning and/or rotational setting of DNA on
nucleosomes19 on a fine scale (Supplementary Fig. 7). G/C-rich signals
are known to promote nucleosome occupancy20,21, whereas AA-rich
sequences repel nucleosomes4, and our data demonstrate that precise
arrangement of a core-length attractive segment flanked by repelling
sequences can produce a strongly positioned nucleosome (Fig. 3d).
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Figure 1 | Global parameters of cell-specific nucleosome phasing and
positioning in human. a, In vivo granulocyte distogram (calculation explained
in Supplementary Fig. 3a). x-axis represents the range of recorded distances.
y-axis represents frequencies of observed distances within 1-pile (blue) and
3-pile (red) subsets. 1-pile subset represents the entire data set, 3-pile subset
represents a subset of sites containing three or more coincident read starts.
b, Distogram of the in vitro reconstituted nucleosomes showing 1-pile and
3-pile subsets as in (a). c, In vivo granulocyte phasogram (calculation explained
in Supplementary Fig. 3b). x-axis shows the range of recorded phases. y-axis
shows frequencies of corresponding phases. Phasograms of 1-pile, 3-pile and
5-pile subsets are plotted. Inset, linear fit to the positions of the phase peaks
within 3-pile subsets (slope 5 193 bp). d, Phasograms of blood cell types. Inset,
linear fits in CD41 T cells (203 bp) and granulocytes (193 bp). e, Phasograms of
1-pile, 3-pile and 5-pile subsets in the in vitro data.
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chromatin modifications might be associated with specific spacing
patterns. Using previously published ChIP-seq data, we identified
regions of enrichment15 for histone modifications that are found within
heterochromatin (H3K27me3, H3K9me3)16, gene-body euchromatin

(H4K20me1, H3K27me1)16, or euchromatin associated with promoters
and enhancers (H3K4me1, H3K27ac, H3K36ac)17, and estimated spa-
cing of nucleosomes for each of these epigenetic domains. We found that
active promoter-associated domains contained the shortest spacing of
178–187 bp, followed by a larger spacing of 190–195 bp within the body
of active genes, whereas heterochromatin spacing was largest at 205 bp
(Fig. 2b). These results reveal striking heterogeneity in nucleosome
organization across the genome that depends on global cellular identity,
metabolic state, regional regulatory state, and local gene activity.

To characterize DNA signals responsible for consistent positioning of
nucleosomes, we identified 0.3 million sites occupied in vitro by nucleo-
somes at high stringency (.0.5; Methods). The region occupied by the
centre of the nucleosome (dyad) exhibits a significant increase in G/C
usage (Poisson P-value , 102100; Fig. 3a). Flanking regions increase in
A/T usage as the positioning strength increases (Fig. 3b). A subset of in
vitro positioned nucleosomes (stringency . 0.5) which are also strongly
positioned in vivo (stringency . 0.4) revealed increased A/T usage
within the flanks (Fig. 3c) compared to in vitro-only positioning sites
(Fig. 3a), which underscores the importance of flanking repelling ele-
ments for positioning in vivo. We term such elements with strong G/C
cores and A/T flanks ‘container sites’ to emphasize the proposed posi-
tioning mechanism (Fig. 3d). This positioning signal is different from a
10-bp dinucleotide periodicity observed in populations of nucleosome
core segments isolated from a variety of species18,19 and proposed to
contribute to precise positioning and/or rotational setting of DNA on
nucleosomes19 on a fine scale (Supplementary Fig. 7). G/C-rich signals
are known to promote nucleosome occupancy20,21, whereas AA-rich
sequences repel nucleosomes4, and our data demonstrate that precise
arrangement of a core-length attractive segment flanked by repelling
sequences can produce a strongly positioned nucleosome (Fig. 3d).
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Figure 1 | Global parameters of cell-specific nucleosome phasing and
positioning in human. a, In vivo granulocyte distogram (calculation explained
in Supplementary Fig. 3a). x-axis represents the range of recorded distances.
y-axis represents frequencies of observed distances within 1-pile (blue) and
3-pile (red) subsets. 1-pile subset represents the entire data set, 3-pile subset
represents a subset of sites containing three or more coincident read starts.
b, Distogram of the in vitro reconstituted nucleosomes showing 1-pile and
3-pile subsets as in (a). c, In vivo granulocyte phasogram (calculation explained
in Supplementary Fig. 3b). x-axis shows the range of recorded phases. y-axis
shows frequencies of corresponding phases. Phasograms of 1-pile, 3-pile and
5-pile subsets are plotted. Inset, linear fit to the positions of the phase peaks
within 3-pile subsets (slope 5 193 bp). d, Phasograms of blood cell types. Inset,
linear fits in CD41 T cells (203 bp) and granulocytes (193 bp). e, Phasograms of
1-pile, 3-pile and 5-pile subsets in the in vitro data.
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on veut détecter la chromosome «ouverte» — site possible de liaison
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NEWS AND VIEWS

The genome shows its sensitive side
Anil Raj & Graham McVicker

New methods for measuring the sensitivity of chromatin to DNase 
digestion and Tn5 transposition help us map and interpret the 
genome’s regulatory sequences.

Many of the traits that make individuals 
unique are encoded by genetic differences in 
their genomes. Recent evidence suggests that 
many of these genetic differences do not affect 
genes directly but instead alter  regulatory 

sequences that control when they are switched 
on and off. Two papers published in this 
issue of Nature Methods1,2 and one paper 
published in the December issue3 describe 
technical advances, and highlight previously 

unknown challenges, for the mapping of  
regulatory sequences in the genome.

Regulatory sequences, when active, are 
bound by transcription factors (TFs), which 
are proteins that recognize specific DNA 
sequences. Once bound, TFs recruit other pro-
teins that transcribe, or ‘turn on’, nearby genes. 
A complete description of all of the regulatory 
sequences that are active in a given cell type is 
therefore fundamentally important for under-
standing how our genome functions.

Direct measurement of TF-bound 
sequences, such as by chromatin immuno-
precipitation, provides information about 
only one TF at a time, even though hundreds 
of TFs may be active in a single cell. Another 
approach is to look for the indirect effects 
of TFs on chromatin. At its most basic level, 
chromatin is made up of a repeating series of 
nucleosomes (complexes of histone proteins) 
encircled by DNA. When TFs bind to the 
genome, they displace nucleosomes, thereby 
exposing the DNA and making it more sen-
sitive to cleavage by enzymes. The methods 
described in this issue exploit the increased 
sensitivity of nucleosome-depleted chromatin 
to identify active regulatory sequences.

He et al.1 and Vierstra et al.2 base their 
work on DNase-seq, a method that has 
already proven very successful at identifying 
active regulatory regions in the genome4–7. 
First, an enzyme known as DNase I is used 
to preferentially cleave nucleosome-depleted 
DNA sequences. Pairs of DNase cuts gener-
ate short fragments that are then sequenced 
and mapped back to the genome to identify 
sensitive ‘open chromatin’ regions. The num-
ber of fragments that map to a sequence is 
a measure of regulatory activity; moreover, 
sites bound by some TFs show highly spe-
cific patterns of DNase I cleavage. These cut 
patterns, called ‘DNase footprints’, have been 
used to identify the binding of specific TFs in  
several studies5,6,8,9.

Vierstra et al.2 extend the DNase-seq 
protocol in an approach they term DNase-
FLASH (DNase I–released fragment-length 
analysis of hypersensitivity). They sequence 
both ends of the DNA fragments that are 
released by DNase cleavage1,2, which allows 
the fragment lengths to be determined 
after the fragment ends are mapped to  

Anil Raj and Graham McVicker are in the Department of Genetics, Stanford University, Stanford, California, 
USA; and Graham McVicker is in the Department of Biostatistics and Computational Biology, Dana-Farber 
Cancer Institute, Boston, Massachusetts, USA.  
e-mail: mcvicker@jimmy.harvard.edu   

Figure 1 | Mapping regulatory regions with paired-end DNase-seq or ATAC-seq. Short fragments come from 
nucleosome-depleted sequences, whereas long fragments originate from flanking nucleosomes.
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greater distances from the initiation of transcription, there are
more repetitive and heterochromatic regions, and the baseline
state of chromatin is more compact and repressive (Alberts et al.
2002). Therefore, it is reasonable to expect that a much smaller
fraction of the genome will be in the “open” conformation rep-
resenting regions of active chromatin. Moreover, it is not clear a
priori whether the same physical properties of yeast chromatin
that allow isolation of open regions by FAIRE can be successfully
exploited for isolation of regulatory regions in human chroma-
tin.

Here, we performed FAIRE in a human foreskin fibroblast
cell line and assayed its performance within the genomic regions
selected by the ENCODE Project Consortium (2004). Regions en-
riched by FAIRE were compared with functional genomic ele-
ments such as DNaseI hypersensitive sites, transcriptional start
sites (TSSs), and active promoters. The results indicate that FAIRE
is a simple genomic method for the isolation and identification
of human functional regulatory elements, with broad utility for
mammalian genomes.

Results

DNA isolated by FAIRE in human cells corresponds to regions
of active chromatin

Fibroblasts were grown in culture, and formaldehyde was added
directly to actively dividing cells to a final concentration of 1%
(see Methods). The cells were then disrupted with glass beads.
The resulting extract was sonicated to yield 0.5- to 1-kb chroma-
tin fragments, and subjected to phenol-chloroform extraction

(Fig. 1). The DNA fragments recovered in the aqueous phase were
fluorescently labeled and hybridized to high-density oligo-
nucleotide microarrays tiling the ENCODE regions at 38-bp reso-
lution. The ENCODE regions represent 1% of the human genome
(30 Mb), consisting of manually selected regions of particular
interest and randomly selected regions of varying gene density
and evolutionary conservation (The ENCODE Project Consor-
tium 2004). As a reference, DNA prepared in parallel from un-
crosslinked cells was labeled with a different fluor and simulta-
neously hybridized to the arrays.

We compared the genomic regions enriched by FAIRE to
hallmarks of active chromatin, including localization of the gen-
eral transcriptional machinery (Kim et al. 2005a,b), histone H3
and H4 acetylation and methylation (Koch et al. 2007), DNaseI
hypersensitivity (Crawford et al. 2006; Sabo et al. 2006), and
direct assays of promoter activity (Trinklein et al. 2003; Cooper et
al. 2006). Genomic regions enriched by FAIRE correspond well
with each of these indicators of active regulatory elements (Fig. 2,
Table 1).

Active promoters are enriched by FAIRE

Earlier experiments performed in yeast had revealed that the
regulatory regions of highly transcribed genes are preferentially
isolated by FAIRE (Nagy et al. 2003). To determine whether this
relationship holds in human cells, we compared FAIRE signal to
measurements of promoter strength. Predicted promoters in the
ENCODE regions have been analyzed for regulatory activity by
cloning them upstream of reporters and measuring the resulting
activity of the reporter gene in different cell types (Trinklein et al.
2003; Cooper et al. 2006). We assigned each probe on the micro-
array that mapped to a predicted promoter to one of four classes,
based on the average activity of the corresponding promoter.
Analysis revealed that probes mapping to the most active pro-
moters have a higher FAIRE signal than those that do not map to
a promoter or that map to a promoter of lower activity (Fig. 3A,
P < 10!100). Therefore, more active promoters are more strongly
enriched by FAIRE in human cells.

FAIRE isolates DNA encompassing TSSs

Yeast experiments had also revealed that FAIRE isolated the
nucleosome-free region located at yeast TSSs (Nagy et al. 2003;
Yuan et al. 2005; Hogan et al. 2006). Alignment of DNase-chip
signal (Crawford et al. 2006), FAIRE signal, and gene annotations
suggested that a similar feature was enriched by FAIRE in human
cells (Fig. 2). To assess the extent to which this was generally true,
we aligned all TSSs for all annotated genes within the ENCODE
regions and calculated the average FAIRE signal over a region
spanning 1.5 kb upstream to 1.5 kb downstream of the TSS (Fig.
3B, solid line). This analysis revealed that, on average, the peak of
enrichment by FAIRE occurs at the TSS. DNase hypersensitive
sites are an indicator of DNA accessibility and a well-established
characteristic of TSSs and regulatory DNA. We performed the
same analysis using DNase-chip data (Crawford et al. 2006) and
found that the pattern of DNA enrichment at TSSs was very simi-
lar to that generated by FAIRE (Fig. 3B, broken line).

Global comparison of FAIRE peaks to other annotated
features

We also analyzed the overall concordance between the genomic
regions enriched by FAIRE and other selected hallmarks of active
chromatin (Fig. 3C; TSS [Ashurst et al. 2005; Harrow et al. 2006],

Figure 1. FAIRE in human cells is illustrated on the left, while prepara-
tion of the reference is illustrated on the right. For FAIRE, formaldehyde is
added directly to cultured cells. The crosslinked chromatin is then
sheared by sonication and phenol-chloroform extracted. Crosslinking be-
tween histones and DNA (or between one histone and another) is likely
to dominate the chromatin crosslinking profile (Brutlag et al. 1969; So-
lomon and Varshavsky 1985; Polach and Widom 1995). Covalently linked
protein–DNA complexes are sequestered to the organic phase, leaving
only protein-free DNA fragments in the aqueous phase. For the hybrid-
ization reference, the same procedure is performed on a portion of the
cells that had not been fixed with formaldehyde, a procedure identical to
a traditional phenol-chloroform extraction. DNA resulting from each pro-
cedure is then labeled with a fluorescent dye, mixed, and comparatively
hybridized to DNA microarrays. In this case, we used high-density oligo-
nucleotide arrays that tile across the ENCODE regions of the human
genome (30 Mb).

Giresi et al.
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tous les deux trouvent la chromatine ouverte (⇐ attachement de facteurs de trans-
cription)

Together, DNase-seq and FAIRE-seq identify most of the sites
bound by regulatory factors
DNase-seq and FAIRE-seq data were compared to ChIP-seq data
generated from the same cell lines using antibodies to CTCF, MYC,
and Pol II (see Methods) (Supplemental Fig. S4). Over 96% of the
strongest CTCF and MYC ChIP sites were identified by one or both
assays (Fig. 2C,D). About 30% of CTCF and 15% of MYC sites were
captured by DNase-only or FAIRE-only sites. At any given ChIP-seq
peak cut-off, ChIP-seq signal intensity was the strongest for peaks
detected by both DNaseI and FAIRE, was weaker in sites detected by
only one assay, and the weakest for sites that overlapped neither
assay (Supplemental Fig. S5).

We examined the correspondence of published ChIP-seq data
in matching cell types (Fujiwara et al. 2009; Motallebipour et al.
2009; Frietze et al. 2010; Kouwenhoven et al. 2010; Raha et al.
2010) with our open chromatin data. DNase-seq and FAIRE-seq
captured >80% of sites (>90% of the strongest sites) for TP63 in
NHEK, FOXA1, and FOXA3 in HepG2, and GATA1 in K562 (Sup-
plemental Fig. S6), and ;70% of the ZNF263 sites in K562. We note
that FOXA1, FOXA3, and GATA1 were better identified by FAIRE-
seq, while ZNF263 was found more often by DNase-seq.

We next evaluated our Pol II ChIP-seq data in conjunction
with RNA expression data generated from the same cells. For each
gene with RNA data in each cell line, we determined whether there
was a significant signal for Pol II binding and/or open chromatin in
the region 1000 bases upstream of and 500 bases downstream from
an annotated transcription start site. We found that 81% of all TSSs
harbored accessible chromatin, consistent with previous estimates

that 70%–80% of all genes are either ac-
tive or poised (Guenther et al. 2007).
We divided genes into highly expressed
(46% of genes, log2 RNA > 7; Methods),
moderately expressed (29%, log2 RNA
between 5 and 7), and lowly or not
expressed (25%, log2 RNA < 5). We found
that nearly all highly expressed genes had
Pol II binding and open chromatin at
their TSS (Fig. 2E). About 60% of the
moderately expressed genes showed Pol II
and open chromatin signals, while an
additional 30% showed just open chro-
matin signal. About half of the lowly or
nonexpressed genes showed evidence of
Pol II or open chromatin, while the re-
maining half had no evidence of either
signal. In all, open chromatin identifies
the TSS of nearly all of expressed genes
and indicates that a large fraction of
the remaining genes may be poised for
transcription.

A combined open chromatin atlas
reveals chromatin similarities between
functionally related cell types
To take advantage of the strengths of each
assay, we created a combined annotation
for each of the seven cell lines by in-
tegrating data from DNaseI and FAIRE
(see Methods). Our open chromatin atlas
contains sites strongly identified by both
assays, high confidence peaks present in

only one assay, and lower confidence peaks supported by both
assays (Table 1). The number of combined significant open chro-
matin sites ranged from 100,000 to 125,000 (P < 0.05; Methods) for
each cell line. Between any two cell types, ;30%–40% of open
chromatin sites are shared (Supplemental Table S3).

Using open chromatin sites, we performed hierarchical clus-
tering of the cell lines (see Methods) (Supplemental Fig. S7A). The
clustering appears to reflect functional and lineage similarities in
cell types and almost perfectly matches cell-line clustering based
on gene expression data (Supplemental Fig. S7B). For example, we
find that the two cell types of hematopoietic lineage, GM12878
(lymphoblastoid cell line) and K562 (chronic myeloid leukemia),
clustered together using either expression or chromatin data.
Embryonic stem cells do not have a considerably different number
of open chromatin sites and do not contain a superset of open
chromatin sites found in other more differentiated cell types.
However, embryonic stem cell open chromatin sites tended to be
larger and covered a greater fraction of the genome than other cell
types (Table 1).

The discovery of human regulatory elements by open
chromatin mapping is far from saturation
We created union sets for every possible combination of 2, 3, 4, 5,
6, and 7 cell types and plotted the rate at which new sites appeared
(Fig. 3A). Regardless of the threshold used to call the sites, the
number of new sites identified does not abate as the number of cell
lines analyzed increases. In contrast, performing the same analysis

Figure 1. Identification of open chromatin in seven human cell lines. (A) A schematic representation
of the experiment and analysis design. (B) DNaseI (y-axis fixed at Parzen signal value 0.15) and FAIRE
(y-axis fixed at 0.04) data from seven cell lines surrounding the HNF4A locus (145 kb; UCSC Genome
Browser) shows both ubiquitous and cell-type selective open sites that are especially prevalent in HepG2
cells. Pol II, CTCF, and MYC ChIP-seq peaks that overlap open chromatin are highlighted.

Human open chromatin defined by DNaseI and FAIRE

Genome Research 1759
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on transfère l’ADN (Yeast Artificial Chromosome) d’un espèce à un autre : qu’est-
ce qui se passe aux nucleosomes ?

at promoters (Tirosh et al., 2010). However, S. cerevisiae and
S. paradoxus differ very little in bulk aspects of chromatin archi-
tecture. In contrast, chromatin structure exhibits far greater
differences between more divergent species: for example,
average nucleosome spacing differs by !15–20 bp between
S. cerevisiae and K. lactis (last common ancestor !150 million
years ago) (Heus et al., 1993; Tsankov et al., 2010).

Here, we describe a functional evolutionary approach to
systematically dissect the contributions of DNA sequence and

Figure 1. Functional Evolutionary Dissec-
tion of Chromatin-Establishment Mecha-
nisms
(A) Schematic of experimental design. Yeast

artificial chromosomes are constructed carrying

sequence from species such as K. lactis, and

introduced into S. cerevisiae. Comparison of

nucleosome-mapping data between the same

sequence in two different environments (its en-

dogenous genome, and in S. cerevisiae) can be

used to disentangle DNA-driven from trans-

mediated aspects of chromatin organization.

(B) Chromosomal complement of parental

S. cerevisiae (AB1380) and three different YAC-

bearing strains. Pulsed-field gel electrophoresis of

YAC-bearing strains, as indicated.

(C and D) Examples of nucleosome-mapping data

from two genes. Blue line indicates nucleosome-

mapping data from wild-type K. lactis (Tsankov

et al., 2010), red line shows data from the same

sequence carried on a YAC in S. cerevisiae.

(E and F) Data for all K. lactis genes on all three

YACs. (E) shows data for all genes from wild-type

K. lactis, with genes sorted by NDRwidth, while (F)

shows data from these genes on YACs, sorted

identically. Black indicates no sequencing reads,

yellow intensity indicates number of sequencing

reads. C and D indicate the example genes shown

above.

the nuclear environment to nucleosome
positioning in vivo. This approach relies
on the finding that there are species-
specific differences in parameters of
nucleosome positioning in a variety of
yeast species, even though the general
pattern is highly conserved (Tsankov
et al., 2010). Specifically, we compare
nucleosome maps of artificial chromo-
somes (YACs) containing large, heterolo-
gous genomic regions from different
yeast species in S. cerevisiae with maps
of the same regions in their native
organism (Figure 1A). In principle, fea-
tures that change in the context of
S. cerevisiae are determined by protein
factors that are functionally distinct in
the two species, whereas features that
are retained when the foreign yeast
DNA is present in S. cerevisiae are due
either to intrinsic DNA sequence or to

conserved trans-acting regulators. For example, when the
S. cerevisiae HIS3-PET56 region is introduced into S. pombe,
it retains the nucleosome-depleted promoter region, but not
the positions of nucleosomes in the coding region (Sekinger
et al., 2005). In addition, the generation of fortuitous functional
elements arising from heterologous genomic sequences makes
it possible to address mechanistic issues that are presumably
free of evolutionary constraints. Here, we show that nucleosome
spacing is established in trans, and that promoter nucleosome
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ce n’est pas simplement la séquence qui détermine le placement

these shifts were biased toward upstream shifts (Figure 3A).
Thus, our observations demonstrate that pronucleosomal se-
quences do not ‘‘program’’ the position of the +1 nucleosome
in vivo.

The strong correspondence between +1 nucleosome posi-
tioning and transcriptional start sites in many species (Jiang
and Pugh, 2009) led us to consider the hypothesis that changes
in transcriptional activity might underlie the repositioning of
the +1 nucleosomes (Zhang et al., 2009). We therefore carried
out deep sequencing of RNA isolated from D. hansenii,
K. lactis, and the S. cerevisiae YAC strains in this study, and
carried out ChIP-Seq for TFIIB localization in the YAC-containing
strains (a full analysis of these data will be published separately).
Alignment of RNA-Seq data from wild-type strains with nucleo-
some-mapping data confirmed prior predictions that the posi-
tioning of +1 nucleosomes with respect to a gene’s transcription
start site (TSS) varies between these species (Tirosh et al., 2007;
Tsankov et al., 2010)—transcription begins further inside the +1
nucleosome in K. lactis than in D. hansenii (Figure S4A).

Comparing endogenous to YAC-based gene expression, we
found on average that genes on YACs were expressed at lower

levels than host genes—average sequencing reads per kilobase
of coding sequence for YACs were !40% of the average value
for endogenous RNAs—consistent with extensive promoter
sequence divergence between species resulting in widespread
misinterpretation of exogenous regulatory information by the
S. cerevisiae transcriptional machinery (Figures S4B, S4C, and
S4E). In general, we found a good correlation between expres-
sion levels for genes in their endogenous genome versus expres-
sion from the YACs (Figure S4D)—genes expressed at high
levels in K. lactis remained the most highly expressed genes
when carried on YACs, but were expressed at lower levels rela-
tive to S. cerevisiae genes. In D. hansenii, we also observed
increased expression of intergenic regions in the YACs (Fig-
ure S4C and see below), again indicating evolutionary diver-
gence in transcriptional control sequences (e.g., loss of tran-
scriptional termination signals and/or gain of cryptic promoters).
Consistent with a relationship between +1 nucleosome posi-

tioning and TSSs, we found that the 50 ends of RNAs in YACs
shifted on average toward a S. cerevisiae-like location relative
to the +1 nucleosome (Figures 4A and 4B)—K. lactis RNAs
started farther upstream in the YAC, whereas D. hansenii RNAs

Figure 4. +1 Nucleosome Shifts Associated with Transcriptional Changes
(A and B) Nucleosome data and RNA-Seq data are shown for K. lactis and D. hansenii genes in wild-type and YACs, as indicated. RNA-Seq data for YAC-derived

transcripts are normalized independently from S. cerevisiae transcripts here—see Figures S4B and S4C for data normalized genome-wide.

(C–E) Examples of +1 nucleosome shifts associated with changes in transcription. (C) shows amoderate upstream shift in a +1 nucleosome with a similar change

in transcript length, while (D) and (E) show large-scale NDR gain/loss with associated changes in transcription. Schematic interpretation of the nucleosome

positioning for the endogenous gene is shown in blue above the rectangle, nucleosome positioning in the YAC is shown in red below the rectangle. Arrows

indicate inferred TSSs (note that RNA-sequencing data are not strand specific, but TFIIB-mapping data support our inferred TSSs)—the furthest 50 RNA in (E), for

example, derives from the upstream gene as opposed to a divergent promoter.
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Épigénomique ? IFT6299 H2014 ? UdeM ? Miklós Csűrös xiii

Zhang et al. compared nucleosome positioning generated
by ATP-dependent extracts with the nucleosome positions
measured from yeast lysed without crosslinking and allowed to
redistribute prior to crosslinking. Indeed, we find mediocre
correspondence between the ‘‘native’’ nucleosome positions
from Zhang et al. and true in vivo nucleosome positions gener-
ated from crosslinked yeast (Figure S7), so the ability of whole-
cell extracts to recover these ‘‘native’’ positions in the absence
of transcription does not have any bearing on the question of
whether in vivo positioning is influenced by transcription prior
to lysis of cells. Although nucleosome remodelers can generate
somewhat positioned nucleosomes flanking the NDR and
unquestionably perform far better than salt dialysis, they appar-
ently are insufficient to generate the precise in vivo nucleosome
positions, particularly for the +1 nucleosome (Figure S7).
Here, the strong, and species-specific, spacing relationship

between the +1 nucleosome and mRNA start site that is
observed both in the native and YAC strains indicates that there
is a mechanistic connection between transcriptional initiation
and the location of the +1 nucleosome. Given the strong in vivo
positioning of both the preinitiation complex and the +1 nucleo-
some, a spacing relationship between these two entities requires
that at least one of these is anchored to a specific location,

thereby permitting a defined location for the second entity. As
discussed above, nucleosome remodeling complexes alone
are insufficient to generate proper positioning of the +1 nucleo-
some, and hence sequence and nucleosome remodelers are
insufficient to provide an anchor. In contrast, preinitiation
complexes bound at core promoters are clearly sufficient to
provide an anchor, with the location of the TBP bound to the
TATA element or TATA-related sequence being the major deter-
minant of the anchor point. From these considerations, and our
finding that the TSS to +1 distance in YACs shifts to the
S. cerevisiae spacing (Figure 5 and Figure S5), we suggest that
the preinitiation complex plays a role in fine-tuning the position
of the +1 nucleosome.
In the third step, positioning of downstreamnucleosomes,with

progressively less positioned nucleosomes downstream within
the gene, depends on transcriptional elongation, and hence
recruitment of nucleosome-remodeling activities and histone
chaperones by the elongating RNA polymerase II machinery.
This elongation-dependent step explains why nucleosome-re-
modeling complexes, though capable of weakly positioning
nucleosomes flanking the NDR, are unable to position more
downstream nucleosomes (Zhang et al., 2011). Conversely,
yeastmutant strains lacking nucleosome-remodeling complexes
(Chd1 and Isw1) that are recruited to coding regions by elon-
gating RNA polymerase show drastically reduced positioning of
downstream nucleosomes but relatively normal positioning of
the +1 and +2 nucleosomes (Gkikopoulos et al., 2011). Finally,
a transcription-based step nicely helps to explain why nucleo-
some arrays occur largely in the transcribed direction even
though highly positioned nucleosomes can occur both at
the +1 and !1 position, as well as the curious observation that
the decay of nucleosome positioning toward the center of genes
displays a 50/30 asymmetry (Vaillant et al., 2010); both of these
observations are inconsistent with a pure packing-based model.
The abovemodel can explain why the general pattern of nucle-

osome positioning is highly conserved among eukaryotes yet
shows species-specific differences in various aspects of chro-
matin structure. These species-specific differences reflect the
relative utilization of poly(dA:dT) sequences and hence intrinsic
histone-DNA interactions, as well as differences in the enzymatic
and recruitment properties of the nucleosome remodelers.

EXPERIMENTAL PROCEDURES

Growth Conditions
All cultures were grown in medium containing the following: SC –tryptophan

–uracil (Sunrise Sciences) (0.2%), yeast extract (1.5%), peptone (1%),

dextrose (2%), and adenine (0.01%), as previously described (Tsankov

et al., 2010).

Preparation of YACs
Yeast chromosomal DNA was prepared in InCert agarose blocks (LONZA),

with a final cell concentration of 2 3 109 cells/ml. Agarose blocks with

intact chromosomal DNA were subjected to EcoRI partial digestion with a

titrated Mg2+ concentration, followed by size fractionation using pulsed field

gel electrophoresis (PFGE). Partially digested DNA fragments ("100–200 kb)

were excised from the gel. YAC vector pYAC4 was purified by successive

CsCl gradient ultracentrifugation and digested with BamHI and EcoRI,

followed by calf intestine alkaline phosphatase treatment. Digested pYAC4

and partially digested yeast chromosomal fragments were ligated by T4

Figure 6. Three-Step Model for Establishment of Nucleosome
Positioning In Vivo
A unifying three-step model for how nucleosome positioning pattern is

generated in eukaryotic organisms. The first step is the generation of an NDR,

either by poly(dA:dT) elements and/or by transcription factors and their re-

cruited nucleosome remodeling complexes. In the second step, nucleosome-

remodeling complexes recognize the NDRs and generate highly positioned

nucleosomes flanking the NDR; and the RNA polymerase II preinitiation

complex fine-tunes the position of the +1 nucleosome. In the final step,

positioning of the more downstream nucleosomes depends on transcriptional

elongation and the recruitment of nucleosome-remodeling activities and

histone chaperones by the elongating RNA polymerase II machinery.
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CHiP-seq
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1. CHiP = immunoprécipitation de chromatine : fixer les liaisons ADN-protéine
(facteur de transcription ou histone)
2. fragmentation et filtrage (pour morceaux avec ADN+protéine)
3. séquençage de morceaux
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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RESULTS

ChIP-exo Design
We considered the possibility that a protein covalently cross-
linked to DNA would block strand-specific 50-30 degradation by
lambda (l) exonuclease (Figure 1A), thereby creating a homoge-
neous 50 border at a fixed distance from the bound protein. DNA
sequences 30 to the exonuclease block remain intact and are
sufficiently long to uniquely map to a reference genome, after
identification by deep sequencing (Figure S1A available online).
Uncrosslinked nonspecific DNA is largely eliminated by exonu-
clease treatment, as evidenced by the repeated failure to
generate a ChIP-exo library from a negative control BY4741
strain.

ChIP-exo Improves Genome-wide Mapping Accuracy
and Sensitivity
We initially focused on the yeast Reb1 protein, which has a clear
DNA recognition site (TTACCCG) that can be used for indepen-
dent validation (Badis et al., 2008; Harbison et al., 2004). Reb1 is
involved in many aspects of transcriptional regulation by all three
yeast RNA polymerases and promotes formation of nucleo-
some-free regions (NFRs) (Hartley and Madhani, 2009; Raisner
et al., 2005). It is also found at telomeres. We compared ChIP-
exo to ChIP-chip and standard sonication-based ChIP-seq.
The unfiltered ChIP-exo signal was highly focused across the

genome at TTACCCG sequences (Figures 1B and 1C). ChIP-
chip and ChIP-seq displayed broader signals. When converted
to peak-pair calls (described below), ChIP-exo displayed a stan-
dard deviation (SD) of 0.3 bp (Figure S1B), which indicates that

ChIP-exo of Reb1 has single-base accuracy. In comparison,
ChIP-seq displayed more than 90-fold greater mapping vari-
ability (SD = 24 bp). ChIP-exo also displayed lower raw back-
ground. The raw signal-to-noise ranged from 300- to 2800-
fold (Table S1). Subsequent employment of noise filters
produced a comprehensive set of bound locations. In contrast,
ChIP-chip and ChIP-seq had 7- and 80-fold raw signal-to-
noise, respectively. ChIP-exo retained its quantitative proper-
ties, in that occupancy levels correlated with those from
ChIP-seq (Figure S1C), and peak-pair intensities correlated
(Figure 2A).

Reb1 Has Multiple Highly Organized Secondary
Interactions at Promoters
The 50 ends of ChIP-exo tags (as well as peaks) located on one
strand were largely at a fixed distance (!27 bp) from another
tag or peak on the other strand, corresponding to the two exonu-
clease barriers formed by Reb1 (Figures 2A, and S2A, and S2B).
A total of 1,776 Reb1 peak pairs were identified (Data S1). Impor-
tantly, these peak pairs were not preselected based upon the
presence of any DNA sequence motif, although a motif was
present in nearly all cases.
Of the peak pairs, 60% (1,058/1,776) were classified as

primary locations, and 40% (718/1,776) as secondary.
Secondary locations were defined as less-occupied locations
within 100 bp of a more-occupied location. Thus, most Reb1
locations were found in clusters. Nearly all (92%) primary loca-
tions contained the TTACCCG Reb1 recognition site or
a single-nucleotide variant centered between its borders
(Figures 2A, 2B, and S2C). Increased deviations from TTACCCG

A B

C

Figure 1. Single Base-Pair Resolution of ChIP-exo
(A) Illustration of the ChIP-exomethod. ChIP DNA is treatedwith a 50 to 30 exonucleasewhile still present within the immunoprecipitate. The 50 ends of the digested

DNA are concentrated at a fixed distance from the sites of crosslinking and are detected by deep sequencing (see also Figure S1).

(B) Comparison of ChIP-exo to ChIP-chip and ChIP-seq for Reb1 at specific loci. The gray, green, and magenta filled plots, respectively, show the distribution of

raw signals, measured by ChIP-chip using Affymetrix microarrays having 5 bp probe spacing (Venters and Pugh, 2009), ChIP-seq, and ChIP-exo. Sequencing

tags on each strand were shifted toward the 30 direction by 14 bp so as maximize opposite-strand overlap.

(C) Aggregated raw Reb1 signal distribution around all 791 instances of TTACCCG in the yeast genome. The ChIP-seq and ChIP-exo datasets included

2,938,677, and 2,920,571 uniquely aligned tags, respectively.

See also Figure S1 and Table S1.

Cell 147, 1408–1419, December 9, 2011 ª2011 Elsevier Inc. 1409

(exonucléase λ enlève le bout 5’ précisement)

Rhee & Pugh Cell 147 :1408 (2012)
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nonoverlapping windows, then aggregates windows into ‘islands’ 
of subthreshold windows separated by gaps in order to capture 
broad enrichment regions. An alternate approach is to extend the 
ChIP-seq tags along their strand direction (called an ‘XSET’) and 
to count overlaps above a threshold as peak regions16. Tag exten-
sion before signal calculation serves the dual purpose of correct-
ing for the assumed fragment length and also smoothing over gaps 
that were not tagged because of low sampling or read mappability 

threshold number of tags covering them to define an enriched 
sequence region. Although this can be effective for highly defined 
point source factors with strong ChIP enrichment, it is not satis-
factory overall because of inherent complexities of the signals as 
well as experimental noise and/or artifacts. Additional informa-
tion present in the data is now used to help discriminate true posi-
tive signals from various artifacts. For example, the strand-specific 
structure of the tag distribution is useful to discriminate the punc-
tate class of binding events from a variety 
of artifacts9. Because immunoprecipitated 
DNA fragments are typically sequenced as 
single-ended reads, that is, from one of the 
two strands in the 5  to 3  direction, the tags 
are expected to come on average equally 
frequently from each strand, thus giving 
rise to two related distributions of stranded 
reads. The corresponding individual strand 
distributions will occur upstream and 
downstream, shifted from the source point 
(‘summit’) by half-the average sequenced 
fragment length, which is typically referred 
to as the ‘shift’ (Fig. 4a). Note that the aver-
age observed fragment length can differ 
considerably from the ‘expected’ fragment 
length derived from agarose gel cuts made 
during Illumina library preparation; short 
fragments are further favored by Illumina’s 
solid-state PCR. For this reason, the shift is 
now mainly determined computationally 
from the data rather than imposed from the 
molecular biology protocol. The shift will 
be smaller and the two strand distributions 
will come closer together in experiments in 
which the fragment length, read-length and 
recognition site length converge.

Building a signal profile. The signal pro-
file is a smoothing of the tag counts to 
allow reliable region identification and 
better summit resolution. The simplest 
way to define a signal profile is to slide a 
window of fixed width across the genome, 
replacing the tag count at each site with 
the summed value within the window 
centered at the site. Consecutive windows 
exceeding a threshold value are merged. 
This is what cisGenome10 does. SiSSRs11 
and spp12 count tags within a window in 
a strand-specific fashion. Other programs 
also use sliding window scans but com-
pute various modified signal values. The 
program MACS13 performs a window 
scan but only after shifting the tag data in 
a strand-specific fashion to account for the 
fragment length. F-Seq14 performs kernel 
density estimation with a Gaussian kernel. 
QuEST9 creates separate kernel density 
estimation profiles for the two strands. 
SICER15 computes probability scores in 
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Figure 3 | ChIP-seq peak calling subtasks. A signal profile of aligned reads that takes on a value at each 
base pair is formed via a census algorithm, for example, counting the number of reads overlapping each 
base pair along the genome (upper left plot ‘+’ strand reads in blue, ‘–’ strand reads in red, combined 
distribution after shifting the ‘+’ and ‘–‘ reads toward the center by the read shift value in purple). 
If experimental control data are available (brown), the same processing steps are applied to form a 
background profile (top right); otherwise, a random genomic background may be assumed. The signal 
and background profiles are compared in order to define regions of enrichment. Finally, peaks are 
filtered to reduce false positives and ranked according to relative strength or statistical significance. 
Bottom left, P(s), probability of observing a location with s reads covering it. The bars represent the 
control data distribution. A hypothetical Poisson distribution fit is shown with sthresh indicating a cutoff 
above which a ChIP-seq peak might be considered significant. Bottom right, schematic representation 
of two types of artifactual peaks: single strand peaks and peaks formed by multiple occurrences of only 
one or a few reads.

NATURE METHODS SUPPLEMENT | VOL.6 NO.11s | NOVEMBER 2009 | S25

REVIEW

Nature Reviews | Genetics

Protein or
nucleosome
of interest

Short reads
are aligned

Distribution of tags
is computed

Reference genome

Peak identification
can be performed
on either profile

Profile is generated from 
combined tags
For example, each mapped 
location is extended 
with a fragment of
estimated size

Fragments are added

3Positive strand5

3 Negative strand 5

5  ends of
fragments are
sequenced

Figure 5 | Strand-specific profiles at enriched sites. DNA fragments from a 
chromatin immunoprecipitation experiment are sequenced from the 5  end. 
Therefore, the alignment of these tags to the genome results in two peaks (one on 
each strand) that flank the binding location of the protein or nucleosome of interest. 
This strand-specific pattern can be used for the optimal detection of enriched 
regions. To create an approximate distribution of all fragments, each tag location can 
be extended by an estimated fragment size in the appropriate orientation and the 
number of fragments can be counted at each position.

Poisson model
A probability distribution that 
is often used to model the 
number of random events in a 
fixed interval. Given an average 
number of events in the 
interval, the probability of a 
given number of occurrences 
can be calculated.

alignment, as all subsequent results are based on the 
aligned reads. Owing to the large number of reads, the 
use of conventional alignment algorithms can take hun-
dreds or thousands of processor hours; therefore, a new 
generation of aligners has been developed57, and more 
are expected soon. Every aligner is a balance between 
accuracy, speed, memory and flexibility, and no aligner 
can be best suited for all applications. Alignment for 

ChIP–seq should allow for a small number of mis-
matches due to sequencing errors, SNPs and indels or 
the difference between the genome of interest and the 
reference genome. This is simpler than in RNA–seq, 
for example, in which large gaps corresponding to 
introns must be considered. Popular aligners include: 
Eland, an efficient and fast aligner for short reads that 
was developed by Illumina and is the default aligner on 
that platform; Mapping and Assembly with Qualities 
(MAQ)58, a widely used aligner with a more exhaustive 
algorithm and excellent capabilities for detecting SNPs; 
and Bowtie59, an extremely fast mapper that is based 
on an algorithm that was originally developed for file 
compression. These methods use the quality score that 
accompanies each base call to indicate its reliability. For 
the SOLiD di-base sequencing technology, in which two 
consecutive bases are read at a time, modified aligners 
have been developed60,61. Many current analysis pipe-
lines discard non-unique tags, but studies involving the 
repetitive regions of the genome27,62–64 require careful 
handling of these non-unique tags.

Identification of enriched regions. After sequenced 
reads are aligned to the genome, the next step is to iden-
tify regions that are enriched in the ChIP sample relative 
to the control with statistical significance.

Several ‘peak callers’ that scan along the genome 
to identify the enriched regions are currently  
available24,26,38,48,65–70. In early algorithms, regions were 
scored by the number of tags in a window of a given 
size and then assessed by a set of criteria based on fac-
tors such as enrichment over the control and minimum 
tag density. Subsequent algorithms take advantage of 
the directionality of the reads71. As shown in FIG. 5, the 
fragments are sequenced at the 5  end, and the loca-
tions of mapped reads should form two distributions, 
one on the positive strand and the other on the negative 
strand, with a consistent distance between the peaks of 
the distributions. In these methods, a smoothed pro-
file of each strand is constructed65,72 and the combined 
profile is calculated either by shifting each distribution  
towards the centre or by extending each mapped position  
into an appropriately oriented ‘fragment’ and then 
adding the fragments together. The latter approach 
should result in a more accurate profile with respect to  
the width of the binding, but it requires an estimate  
of the fragment size as well as the assumption that  
fragment size is uniform.

Given a combined profile, peaks can be scored in sev-
eral ways. A simple fold ratio of the signal for the ChIP 
sample relative to that of the control sample around the 
peak (FIG. 3B) provides important information, but it is 
not adequate. A fold ratio of 5 estimated from 50 and 10 
tags (from the ChIP and control experiments, respec-
tively) has a different statistical significance to the same 
ratio estimated from, for example, 500 and 100 tags. 
A Poisson model for the tag distribution is an effective 
approach that accounts for the ratio as well as the abso-
lute tag numbers27, and it can also be modified to account  
for regional bias in tag density due to the chromatin 
structure, copy number variation or amplification bias67. 
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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sites de liaison au début de la transcription ;
modification de histone indique activité spécifique
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but broader regions of up to a few kilobases; 
and broad regions up to several hundred 
kilobases. Punctate enrichment is a signa-
ture of a classic sequence-specific transcrip-
tion factor such as NRSF or CTCF binding 
to its cognate DNA sequence motif (Fig. 2a). 
A mixture of punctate and broader signals 
is associated with proteins such as RNA 
polymerase II that bind strongly to specific 
transcription start sites in active and stalled 
promoters (in a punctate fashion), but RNA 
polymerase II signals can also be detected 
more diffusely over the body of actively 
transcribed genes5,6 (Fig. 2b). ChIP-seq sig-
nals that come from most histone marks and 
other chromatin domain signatures are not 
point sources as described above but range 
from nucleosome-sized domains to very 
broad enriched regions that lack a single 
source entirely such as  histone H3 Lys27 
trimethylation (H3K27me3) in repressed 
areas7,8 (Fig. 2c).

These different categories of ChIP enrich-
ment have distinct characteristics that 
algorithms can use to predict true signals 
optimally. Punctate events offer the greatest 
amount of discriminatory detail to model the 
source point down to the nucleotide level. To 
date, most algorithms have been developed 
and tuned for this class of binding, though 
specific packages can work reasonably well 
for mixed binding, typically requiring the use 
of nondefault parameters.

Peak-finders, regions, summits and sourc-
es. The first step in analyzing ChIP-seq data 
is to identify regions of increased sequence 
read tag density along the chromosome rela-
tive to measured or estimated background. 
After these ‘regions’ are identified, process-
ing ensues to identify the most likely source 
point(s) of cross-linking and inferred bind-
ing (called ‘sources’). The source is related, 
but not identical, to the ‘summit’, which 
is the local maximum read density in each 
region. When there is no single point source 
of cross-linking, as for some dispersed chro-
matin marks, the region-aggregation step is 

appropriate but the ‘summit-finding’ step is not. Software packages for 
ChIP-seq are generically and somewhat vaguely called ‘peak finders’. 
They can be conceptually subdivided into the following basic com-
ponents: (i) a signal profile definition along each chromosome, (ii) 
a background model, (iii) peak call criteria, (iv) post-call filtering of 
artifactual peaks and (v) significance ranking of called peaks (Fig. 3). 
Components of 12 published software packages are summarized in 
Table 1.  

The simplest approach for calling enriched regions in ChIP-seq 
data is to take a direct census of mapped tag sites along the genome 
and allow every contiguous set of base pairs with more than a 

the workup). The current algorithms have each been designed 
to ignore a variety of false positive read-tag aggregations that are 
judged unlikely to be due to immuno-enriched factor binding, but 
they are not identical, and users should expect different packages 
and different parameters to eliminate some overlapping and some 
novel tag patterns as background.

Classes of ChIP-seq signals.  Consistent with previous ChIP-chip 
results, ChIP-seq tag enrichments or ‘peaks’ generated by typical 
experimental protocols can be classified into three major categories: 
punctate regions covering a few hundred base pairs or less; localized 
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Figure 2 | ChIP-seq peak types from various experiments. (a–c) Data shown are from remapping of a 
previously published human ChIP-seq dataset7. Proteins that bind DNA in a site-specific fashion, such 
as CTCF, form narrow peaks hundreds of base pairs wide (a). The difference of plus and minus read 
counts is generally expected to cross zero near the signal source, the source in this example being the 
CTCF motif indicated in red. Signal from enzymes such as RNA polymerase II may show enrichment over 
regions up to a few kilobases in length (b). Experiments that probe larger-scale chromatin structure 
such as the repressive mark for H3K27me3 may yield very broad ‘above’-background regions spanning 
several hundred kilobases (c). Signals are plotted on a normalized read per million (RPM) basis.
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but broader regions of up to a few kilobases; 
and broad regions up to several hundred 
kilobases. Punctate enrichment is a signa-
ture of a classic sequence-specific transcrip-
tion factor such as NRSF or CTCF binding 
to its cognate DNA sequence motif (Fig. 2a). 
A mixture of punctate and broader signals 
is associated with proteins such as RNA 
polymerase II that bind strongly to specific 
transcription start sites in active and stalled 
promoters (in a punctate fashion), but RNA 
polymerase II signals can also be detected 
more diffusely over the body of actively 
transcribed genes5,6 (Fig. 2b). ChIP-seq sig-
nals that come from most histone marks and 
other chromatin domain signatures are not 
point sources as described above but range 
from nucleosome-sized domains to very 
broad enriched regions that lack a single 
source entirely such as  histone H3 Lys27 
trimethylation (H3K27me3) in repressed 
areas7,8 (Fig. 2c).
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source point down to the nucleotide level. To 
date, most algorithms have been developed 
and tuned for this class of binding, though 
specific packages can work reasonably well 
for mixed binding, typically requiring the use 
of nondefault parameters.

Peak-finders, regions, summits and sourc-
es. The first step in analyzing ChIP-seq data 
is to identify regions of increased sequence 
read tag density along the chromosome rela-
tive to measured or estimated background. 
After these ‘regions’ are identified, process-
ing ensues to identify the most likely source 
point(s) of cross-linking and inferred bind-
ing (called ‘sources’). The source is related, 
but not identical, to the ‘summit’, which 
is the local maximum read density in each 
region. When there is no single point source 
of cross-linking, as for some dispersed chro-
matin marks, the region-aggregation step is 

appropriate but the ‘summit-finding’ step is not. Software packages for 
ChIP-seq are generically and somewhat vaguely called ‘peak finders’. 
They can be conceptually subdivided into the following basic com-
ponents: (i) a signal profile definition along each chromosome, (ii) 
a background model, (iii) peak call criteria, (iv) post-call filtering of 
artifactual peaks and (v) significance ranking of called peaks (Fig. 3). 
Components of 12 published software packages are summarized in 
Table 1.  

The simplest approach for calling enriched regions in ChIP-seq 
data is to take a direct census of mapped tag sites along the genome 
and allow every contiguous set of base pairs with more than a 

the workup). The current algorithms have each been designed 
to ignore a variety of false positive read-tag aggregations that are 
judged unlikely to be due to immuno-enriched factor binding, but 
they are not identical, and users should expect different packages 
and different parameters to eliminate some overlapping and some 
novel tag patterns as background.
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results, ChIP-seq tag enrichments or ‘peaks’ generated by typical 
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but broader regions of up to a few kilobases; 
and broad regions up to several hundred 
kilobases. Punctate enrichment is a signa-
ture of a classic sequence-specific transcrip-
tion factor such as NRSF or CTCF binding 
to its cognate DNA sequence motif (Fig. 2a). 
A mixture of punctate and broader signals 
is associated with proteins such as RNA 
polymerase II that bind strongly to specific 
transcription start sites in active and stalled 
promoters (in a punctate fashion), but RNA 
polymerase II signals can also be detected 
more diffusely over the body of actively 
transcribed genes5,6 (Fig. 2b). ChIP-seq sig-
nals that come from most histone marks and 
other chromatin domain signatures are not 
point sources as described above but range 
from nucleosome-sized domains to very 
broad enriched regions that lack a single 
source entirely such as  histone H3 Lys27 
trimethylation (H3K27me3) in repressed 
areas7,8 (Fig. 2c).

These different categories of ChIP enrich-
ment have distinct characteristics that 
algorithms can use to predict true signals 
optimally. Punctate events offer the greatest 
amount of discriminatory detail to model the 
source point down to the nucleotide level. To 
date, most algorithms have been developed 
and tuned for this class of binding, though 
specific packages can work reasonably well 
for mixed binding, typically requiring the use 
of nondefault parameters.

Peak-finders, regions, summits and sourc-
es. The first step in analyzing ChIP-seq data 
is to identify regions of increased sequence 
read tag density along the chromosome rela-
tive to measured or estimated background. 
After these ‘regions’ are identified, process-
ing ensues to identify the most likely source 
point(s) of cross-linking and inferred bind-
ing (called ‘sources’). The source is related, 
but not identical, to the ‘summit’, which 
is the local maximum read density in each 
region. When there is no single point source 
of cross-linking, as for some dispersed chro-
matin marks, the region-aggregation step is 

appropriate but the ‘summit-finding’ step is not. Software packages for 
ChIP-seq are generically and somewhat vaguely called ‘peak finders’. 
They can be conceptually subdivided into the following basic com-
ponents: (i) a signal profile definition along each chromosome, (ii) 
a background model, (iii) peak call criteria, (iv) post-call filtering of 
artifactual peaks and (v) significance ranking of called peaks (Fig. 3). 
Components of 12 published software packages are summarized in 
Table 1.  

The simplest approach for calling enriched regions in ChIP-seq 
data is to take a direct census of mapped tag sites along the genome 
and allow every contiguous set of base pairs with more than a 

the workup). The current algorithms have each been designed 
to ignore a variety of false positive read-tag aggregations that are 
judged unlikely to be due to immuno-enriched factor binding, but 
they are not identical, and users should expect different packages 
and different parameters to eliminate some overlapping and some 
novel tag patterns as background.

Classes of ChIP-seq signals.  Consistent with previous ChIP-chip 
results, ChIP-seq tag enrichments or ‘peaks’ generated by typical 
experimental protocols can be classified into three major categories: 
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MAFB, which are heavily occupied by H3K4me3 despite their
lower expression levels (Supplemental Figs. 6, 7A,B). Our initial
hypothesis was that this lack of activating histone marks on the
hormone-encoding gene promoters might be due to a complete
absence of histones, perhaps due to the high transcription rate of
these genes. To test this notion, we performed ChIP for total H3
histone at the promoters of JUN and GAPDH, which are occupied
by H3K4me3, and insulin and glucagon, which are not (Supple-
mental Fig. 8). We found similar levels of histone H3 at all of these
promoters; thus, the lack of H3K4me3 at the insulin and glucagon
promoters is not due to a lack of histones. Therefore, alternative
histone modifications or regulatory mechanisms must be respon-
sible for the activation of these hormone-encoding genes in hu-
man islets.

Recent studies have demonstrated that the insulin and nearby
genes in an extended 80-kb region are a part of a large, human islet-
specific, open chromatin domain, and share a common con-
trol mechanism (Mutskov and Felsenfeld 2009). The presence of
intergenic transcription in this region has been proposed to play
a role in the maintenance of open chromatin structure, suggesting
that a locus-specific control mechanism might be responsible for
constitutive insulin gene expression in humans (Mutskov and
Felsenfeld 2009). Our data also indicate a region (chr1:2,100,000–
2,200,000 mm8) of high levels of H3K4me1, a mark associated
with regulatory regions covering the insulin gene locus.

We also considered the possibility
that the low levels of H3K4me3 mod-
ification at the insulin gene promoter
might be due to a paucity of beta-cells in
our samples. However, our ChIP-seq data
suggest that this is not the case, as both
PDX1 and MAFA (genes with expression
restricted to beta-cells) are highly occu-
pied by modified histones (Supplemental
Fig. 7A; data not shown). Similarly, the
promoter of MAFB (a gene expressed only
in alpha-cells in the adult islet) is also
occupied by H3K4me3 (Supplemental
Fig. 7B). Furthermore, by qRT-PCR analy-
sis, the expression of insulin and other
pancreatic cell-specific genes is much
higher than that of amylase, a marker for
exocrine contamination (Supplemental
Fig. 9). While we observed some vari-
ability in the levels of insulin mRNA ex-
pression between the individual donors,
there was no significant difference in the
H3K4me3 pattern at the insulin promoter
between samples (Supplemental Fig. 10).

Tissue specificity of histone marks
at promoters in human pancreatic islets
Previous efforts (Heintzman et al. 2009)
have reported that chromatin structure at
promoters is largely consistent between
cells types and that the variation occurs at
enhancers. To test the promoter part of
this observation, we compared levels of
H3K4me3 in islets with CD4+ T-cells
(Barski et al. 2007). We found that while
the levels of H3K4me3 on a majority of

promoters were well correlated between islets and T-cells, there
was a set of promoters that were differentially modified in the
two tissues (Fig. 4). These genes include the small number of
CpG! genes that showed higher H3K4me3 modification levels
with higher expression levels in Figure 1. Thus, there are tissue-
specific variations at the promoters of genes in terms of H3K4me3

Figure 3. Marks of active and repressed genes in islets. (A) Human islet chromatin enriched for
H3K4me1, H3K4me2, H3K4me3, H3K27me3, and control input DNA from four samples was processed
and sequenced. Reads were pooled and aligned to the NCBI Genome Build 36.1-hg18, to determine
regions that were enriched for binding by modified histones. Note the strong double peak surrounding
the transcriptional start site (left end) of ATF4, and the weaker peaks for H3K4me1 and H3K4me2. In B,
the HOXB cluster contains significantly enriched regions for H3K27me3 as well as H3K4me3 at several
transcription start sites.

Figure 4. Comparison of H3K4me3 at gene promoters in human islets
and CD4+ T-cells. The square root of the summary input-normalized
levels of H3K4me3 for CpG island-containing (yellow) and CpG island-less
(green) genes are plotted. The CpG island-less genes in the magenta (395
genes) and blue (93 genes) boxes are modified only in one tissue or the
other, indicating that this class of genes exhibits tissue-specific promoter
modification.

The epigenome of the pancreatic islet
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émissions : modifications (vecteur binaire - Bernoulli indépendent) ;
états : à créer comme nécessaire (évaluer complexité de modèle)
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RESULTS
Chromatin states model and comparison to previous work
Previous analyses have largely focused on characterizing the marks 
 predictive of specific classes of genomic elements defined a priori such 
as transcribed regions, promoters or putative enhancers, and using 
the characterization to identify new instances of these classes5–12. 

 additional ones. Regardless of whether these chromatin states are 
causal in directing regulatory processes, or simply reinforcing inde-
pendent regulatory decisions, these annotations should provide a 
resource for interpreting biological and medical data sets, such as 
genome-wide association studies for diverse phenotypes and could 
potentially help to identify new classes of functional elements.

Figure 1 Example of chromatin state annotation. Input chromatin mark information and resulting chromatin state annotation for a 120-kb region of 
human chromosome 7 surrounding the CAPZA2 gene. For each 200-bp interval, the input ChIP-Seq sequence tag count (black bars) is processed into a 
binary presence and/or absence call for each of 18 acetylation marks (light blue), 20 methylation marks (pink) and CTCF/Pol2/H2AZ (brown). The precise 
combination of these marks in each interval in their spatial context is used to infer the most probable chromatin state assignment (colored boxes). Although 
chromatin states were learned independently of any prior genome annotation, they correlate strongly with upstream and downstream promoters (red), 
5 -proximal and distal transcribed regions (purple), active intergenic regions (yellow), repressed (gray) and repetitive (blue) regions (state descriptions 
shown in Supplementary Table 1). This example illustrates that even when the signal coming from chromatin marks is noisy, the resulting chromatin state 
annotation is very robust, directly interpretable and shows a strong correspondence with the gene annotation. Several spatially coherent transitions are seen 
from large-scale repressed to active intergenic regions near active genes, from upstream to downstream promoter states surrounding the TSS and from  
5 -proximal to distal transcribed regions along the body of the gene. The frequent transitions to state 16 correlate with annotated Alu elements (57% 
overlap versus 4% and 25% for states 13 and 15, respectively). Transitions to state 13 are likely due to enhancer elements in the first intron of CAPZA2,  
a region where regulatory elements are commonly found and correlate with several enhancer marks. The maximum-probability state assignments are shown 
here, and the full posterior probability for each state in this region is shown in Supplementary Figure 1.

CAPZA2

C
hr

om
at

in
 s

ta
te

s
C

hr
om

at
in

 m
ar

ks

State 3
State 5
State 7
State 8
State 10
State 11
State 13
State 15
State 16
State 17
State 18
State 19
State 24
State 25
State 26
State 36
State 37
State 38
State 39
State 43
State 44
State 51

116,300 kb116,290 kb116,280 kb116,270 kb116,260 kbChr 7: 116,310 kb

H3K14ac
H3K23ac
H4K12ac
H2AK9ac
H4K16ac
H2AK5ac
H4K91ac
H3K4ac
H2BK20ac
H3K18ac
H2BK120ac
H3K27ac
H2BK5ac
H2BK12ac
H3K36ac
H4K5ac
H4K8ac
H3K9ac
PolII
CTCF
H2AZ
H3K4me3
H3K4me2
H3K4me1
H3K9me1
H3K79me3
H3K79me2
H3K79me1
H3K27me1
H2BK5me1
H4K20me1
H3K36me3
H3K36me1
H3R2me1
H3R2me2
H3K27me2
H3K27me3
H4R3me2
H3K9me2
H3K9me3
H4K20me3

50 kb

Promoter states

Transcribed states

Active intergenic

Repressed

Repetitive

116,320 kb 116,330 kb 116,340 kb 116,350 kb 116,360 kb

©
 2

01
0 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
  A

ll 
ri

gh
ts

 r
es

er
ve

d.

Ernst & Kellis Nat Biotechnol 28 :817 (2010)
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methods. ChIP-exo provides a method to precisely map 
the genomic binding of proteins in systems where ChIP 
reagents are readily available. MNase-seq allows for 
mapping of nucleosomes and non-histone proteins 
within a single sample and like DNase-seq is easily 
adapted to any system with a sequenced genome. In 
combination with ChIP-seq, MNase-seq and DNase-seq 
provide powerful methods for base-pair resolution 
identification of protein binding sites. !ese techniques 
are summarized schematically in Figure 2.

While epigenomic profiling is relatively straightforward 
in single-cell systems, it is more challenging in 
multicellular organisms, where different cell types are 
tightly interwoven in complex tissues. Indeed, ChIP-exo, 
MNase-seq, and DNase-seq have generally been 
performed either in yeast, which are unicellular, or 
cultured cells from other organisms, which are not 
necessarily reflective of the in vivo situation in the 
organism from which they were derived. To profile cell 
type-specific epigenomes at base-pair resolution, it will 
be necessary to combine the above technologies with 
methods for the isolation of specific cell types from a 

complex milieu. One such method is fluorescence-
activated cell sorting (FACS), involving purification of 
fluorescently labeled cells or nuclei. FACS has been used 
to isolate specific cell populations from mouse and 
human brain and mouse embryonic mesoderm for 
chromatin analysis [40,41]. Another technique, isolation 
of nuclei tagged in specific cell types (INTACT) has been 
used to isolate nuclei from individual cell types in 
Arabidopsis, Caenorhabditis elegans, and Drosophila for 
expression and preliminary chromatin profiling [42,43]. 
Combining these techniques with the various methods of 
base-pair resolution epigenome analysis detailed above 
should provide striking insights into the regulatory 
networks underlying specific cell identities.

As base-pair resolution epigenomic techniques are 
further developed and the cost of sequencing continues 
to decrease, genome-wide profiling of cell type-specific 
chromatin landscapes will become increasingly routine. 
!e precise mapping of TFs, of nucleosomal features 
(positioning, occupancy, composition, and modification), 
and of ATP-dependent chromatin remodelers may 
provide the epigenomic equivalent of genome sequencing 

Figure 2. Summary of techniques for base-pair resolution epigenome mapping. Schematic representations of ChIP-exo, MNase-seq, and 
DNase-seq. In ChIP-exo, chromatin is sonicated and specific fragments are isolated with an antibody to a protein of interest. ChIP DNA is trimmed 
using λ exonuclease, purified, and sequenced. In MNase-seq, nuclei are isolated and treated with MNase to fragment chromatin. Chromatin is 
then subjected to DNA purification with or without prior affinity purification and MNase-protected DNA is sequenced. In DNase-seq, nuclei are 
isolated and treated with DNase I to digest chromatin. DNase-hypersensitive DNA is then ligated to linkers, affinity purified, and sequenced. HS, 
hypersensitive.
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