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ILOTS CPG ET MÉTHYLATION
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dinucléotides C-G sur le même brin : CpG

la distribution de CpG varie dans le génome humaine (et mammifères en général)

juste avant le début d’un
gène (ATG), les CpG
sont souvent dense

dans le génome, très
rares*

* dans le modèle iid, la fréquence de CpG ainsi que celle de GpC = πCπG

nucléotides composition GpC CpG
chrX 151.10M C = 29.81M, G = 29.87M (19.7%) 5.94M (3.9%) 1.25M (0.8%)
chr12 130.5M C = 26.63M, G = 26.61M (20.4%) 5.54M (4.2%) 1.28M (1.0%)
chr5 177.7M C = 35.09M, G = 35.13M (19.8%) 7.11M (4.0%) 1.51M (0.8%)
chr1 225.3M C = 47.02M, G = 47.02M (20.9%) 9.95M (4.4%) 2.28M (1.0%)

Wikipedia

http://en.wikipedia.org/wiki/File:CpG_island.png
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Typiquement, la cytosine de CpG est méthylée, et peut se transformer en thymine
facilement

Wikipedia

http://en.wikipedia.org/wiki/File:Cytosine_becomes_thymine.png
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enrichissement dans une région de longueur ` : compter les occurrences n·

CpG(o/e) = `
nCpG

nC · nG

ilot CpG (CpG island) : définitions par (G+C)% élevée, enrichissement de CpG,
longueur minimale

P.e. : (G + C)% ≥ 50%, ` ≥ 200, CpG(o/e) ≥ 0.6
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→ paramètres différents . . .
→ CpG fréquent dans éléments mobiles (p.e., Alu)

The CpG islands associated with the 5! regions of genes (Fig.
2 D–F) showed a markedly different distribution when compared
with the Alus (Fig. 2 J–L). These 5! elements had a mean %GC
of 65%, and showed a biphasic distribution for the occurrence of
ObsCpG!ExpCpG. There was also a biphasic distribution with
respect to length, with a significant proportion of CpG islands
being in the small region of 200–400 bp and an average length
of 1,300 bp for all 5! regions analyzed. As has been pointed out
earlier (2), CpG islands can also occur within the coding regions
of genes and this was again found to be the case in our analysis
(Fig. 2 G–I); however, they tended to have a lower %GC on
average than the 5! CpG islands, tended to have a slightly
decreased mean for the occurrence of ObsCpG!ExpCpG, and
tended to be shorter.

Table 2 shows the change of proportions of the four categories
depending on the three parameters used to define a CpG island
in an attempt to develop more rigid criteria that would exclude
the Alus and small unknown islands from the definition and
increase the proportion of CpG islands located in the 5! regions
of genes. This table shows that modifying the criteria to a
%GC ! 55% and a length ! 500 bp with ObsCpG!ExpCpG ! 0.65
resulted in the exclusion of the vast majority of Alus and
unknown sequences, while only slightly decreasing the number of
CpG islands that occur within the 5! regions of genes. The
increased stringency also substantially reduced the number of
exonic CpG islands. The biological functions of these islands are
not well understood, but CpG islands located in nonpromoter
regions can play significant roles in gene regulation (18); they
also seem to be frequent targets for de novo methylation in
cancer and aging (19). Therefore, although the increased strin-
gency preferentially locates CpG islands in the 5! regions of
genes, it may also result in the loss of smaller regions of DNA
from the data set that may be functionally important in gene

control. The modified criteria also helped remove Alu sequences
previously identified as part of 5! CpG islands (Fig. 3). In this
example of the NHP2L1 gene, the entire 1,233-bp fragment
originally extracted by the algorithm included two Alu sequences
with some CpG suppression. The modified stringent criteria
reduced the size of the island to 620 bp and excluded the Alu
sequences.

CpG Distribution in Other Species. The recent cloning and sequenc-
ing of the genomes of several model organisms allowed us to
analyze of those genomes and compare them with human
chromosomes 21 and 22. Consecutive 500-bp windows of human
chromosome 21 and 22 compared with these other species with
respect to ObsCpG!ExpCpG and the %GC (Fig. 4 A–F). The
strong suppression of CpG in human chromosomes 21 and 22 was
analyzed and was clearly visible (Fig. 4A), and the CpG islands
are indicated by using the criteria established in this paper.
However, it should be noted that there is no clear demarcation
between regions that are called CpG islands and those that are
not. Rather, there is a continuum of 500-bp regions of DNA that
move between this bulk DNA and the properties of a CpG island.
The human genome showed the strongest suppression of CpG.
Several sequences plotted in the lower left field of the plot of
%GC vs. ObsCpG!ExpCpG of the human genome (Fig. 4A) turned
out to be simple repetitive sequences such as (TA)n and (TT-
TAA)n (data not shown). CpG suppression in the human
genome is caused not only by CpG depletion through evolution
but also by the high content of simple repetitive sequences and
a low rate of sequence utilization for genes. A. thaliana contains
5-methylcytosine, and its genome shows a wide distribution of
the occurrence for CpG (Fig. 4B). However, because of the low
GC content in this organism, few fragments fulfilling our criteria
for a CpG island are visible in the A. thaliana genome. In this

Table 2. Effect of modifying criteria on CpG island distribution

Length 200 200 200 200 500* 500* 500* 500*
%GC 50 55* 50 55* 50 55* 50 55*
ObsCpG!ExpCpG 0.6 0.6 0.65* 0.65* 0.6 0.6 0.65* 0.65*

5! region 195 188 173 172 166 164 163 161
Exon 757 620 529 460 143 133 126 120
Alu repeats 7,651 871 1,026 138 506 168 310 122
Unknown 5,459 7,804 7,955 6,511 669 711 767 698
Total 14,062 9,483 9,683 7,281 1,484 1,176 1,366 1,101

The effect of modifying the criteria on CpG island distribution is shown. Each modified parameter is indicated by an asterisk. Categorization was as described
in Table 1. The existing criteria and modified criteria columns of the table are boldfaced.

Fig. 3. The modified criteria also helped remove Alu sequences previously identified as part of 5! region CpG islands. In this example, a 1,233-bp fragment
originally extracted by the algorithm included two Alu sequences with some CpG suppression associated with the nonhistone chromosome protein 2 like 1
(NHP2L1). The modified stringent criteria reduced the size of the island to 620 bp and excluded the Alu sequences.

Takai and Jones PNAS " March 19, 2002 " vol. 99 " no. 6 " 3743
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2. CGI identification

CGIs were first identified by digestion of mouse genomic DNA
using the methyl-CpG sensitive restriction enzyme HpaII (CCGG
recognition site). A small portion of the genome, composed of very
highly fragmented DNA, was found to be derived from sequences
containing clusters of non-methylated CpG sites [5,6,20]. Quantifi-
cation of these digestion products, combined with sequence anal-
ysis and correction for contaminating DNA indicated that these
were derived from approximately 26 300 discrete CGIs [21,22].
These sequences were characterised as at least 200 bp in length
and with a G + C content of 50% and a CpG frequency (observed/ex-
pected; [o/e]) of 0.6 (Fig. 1) [7,8].

The completion of the human genome project in 2001 facili-
tated in silico CGI prediction [4]. Values for length and base com-
position similar to those identified by Gardiner-Garden and
Frommer are routinely employed by the major genome browsers
to annotate CGIs (Table 1). Thresholds are somewhat arbitrary
however, and the effect of varying these values can profoundly al-
ter prediction accuracy [23–25]. To reduce the extraneous inclu-
sion of non-CGI sequences Takai and Jones investigated the effect

of increasing the minimum length, CpG[o/e] and G + C composition
to 500 bp, 0.65% and 55%, respectively. This increased stringency
reduced the number of identified islands by approximately 90%
and largely excluded contaminating Alu elements. This algorithm
also reduced the number of gene promoter associated islands, sug-
gesting that bona fide CGIs were also being discarded [24].

Repeat elements such as ‘‘young” Alus resemble the base com-
position of CGIs and significantly contribute to the number of false
positives identified [24]. Preliminary computational analysis of the
human genome sequence identified 50 267 CGIs, of which only
28 890 were unique [4]. Many of the multi copy sequences could
be removed by screening against known classes of repeats identi-
fied in the Repbase database [26]. This database is subject to iter-
ative improvements due to updating the repeat repertoire.
Reanalysis of the human genome sequence in 2002 resulted in
the loss of a further 1890 false positives suggesting a more conser-
vative estimate of 27 000 CGIs [27]. The beneficial consequences of
repeat masking can be illustrated by the example of a low copy
repetitive element that is related to the adenovirus sequence lo-
cated on human chromosomes 4 and 19 [28]. This element is iden-
tified as a single CGI or a tandem cluster of repeated CGIs by

Fig. 1. CpG islands located within a region of human chromosome 19. The upper panel illustrates a 65 kb portion of human chromosome 19 (17195000–17260000) which
contains five annotated genes (blue bars) and four CpG islands. The promoters of OCEL1, NR2F6 and ANKLE1 overlap with CGIs (i,iii and iv) and an additional CGI (ii) localises to
the third exon of NR2F6. The classical sequence parameters applied to CGI prediction are illustrated (dashed red lines) for CpG (observed/expected; CpG[o/e] = 0.6) and G + C
base composition (GC% = 50%). The lower panel represents an enlarged view of four 6 kb regions (i–iv) spanning each CGI and illustrates the distribution of CpG sites (vertical
black strokes) relative to the annotated genes.

Table 1
Overview of CpG island prediction algorithms.

Database/prediction Length G + C CpG[o/e] RMa Comments Reference

ENSEMBL P400 P50% P0.6 N Stringent length constraint [88]
NCBI relaxed P200 P50% P0.6 N Total CGIs = 307 193
NCBI strict P500 P50% P0.6 N Total CGIs = 24 163
USCSb >200 P50% >0.6 Y Total CGIs = 28 226 [89]
EMBOSS UDc UD UD NA Variable parameters [90]
CpGProD >500 >50% >0.6 Y Total CGIs = 76 793 [23]
CpGcluster NA NA NA N Clustering Total = 197 727 [25]

a RM, repeat masked; Y, yes; N, no; NA, non applicable.
b Parameters used for CGI identification for the ENCODE project although totals vary due to repeat masking differences between hg17 and hg18 builds [87].
c UD, user defined.

1714 R.S. Illingworth, A.P. Bird / FEBS Letters 583 (2009) 1713–1720

Takai & Jones PNAS 99 :3740 (2002) ; Illingworth & Bird FEBS Lett 583 :1713 (2009)
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→ longueur ∼ 1kpb
→ parfois se trouvent à l’intérieur d’un gène ou dans une région intergénique

2. CGI identification

CGIs were first identified by digestion of mouse genomic DNA
using the methyl-CpG sensitive restriction enzyme HpaII (CCGG
recognition site). A small portion of the genome, composed of very
highly fragmented DNA, was found to be derived from sequences
containing clusters of non-methylated CpG sites [5,6,20]. Quantifi-
cation of these digestion products, combined with sequence anal-
ysis and correction for contaminating DNA indicated that these
were derived from approximately 26 300 discrete CGIs [21,22].
These sequences were characterised as at least 200 bp in length
and with a G + C content of 50% and a CpG frequency (observed/ex-
pected; [o/e]) of 0.6 (Fig. 1) [7,8].

The completion of the human genome project in 2001 facili-
tated in silico CGI prediction [4]. Values for length and base com-
position similar to those identified by Gardiner-Garden and
Frommer are routinely employed by the major genome browsers
to annotate CGIs (Table 1). Thresholds are somewhat arbitrary
however, and the effect of varying these values can profoundly al-
ter prediction accuracy [23–25]. To reduce the extraneous inclu-
sion of non-CGI sequences Takai and Jones investigated the effect

of increasing the minimum length, CpG[o/e] and G + C composition
to 500 bp, 0.65% and 55%, respectively. This increased stringency
reduced the number of identified islands by approximately 90%
and largely excluded contaminating Alu elements. This algorithm
also reduced the number of gene promoter associated islands, sug-
gesting that bona fide CGIs were also being discarded [24].

Repeat elements such as ‘‘young” Alus resemble the base com-
position of CGIs and significantly contribute to the number of false
positives identified [24]. Preliminary computational analysis of the
human genome sequence identified 50 267 CGIs, of which only
28 890 were unique [4]. Many of the multi copy sequences could
be removed by screening against known classes of repeats identi-
fied in the Repbase database [26]. This database is subject to iter-
ative improvements due to updating the repeat repertoire.
Reanalysis of the human genome sequence in 2002 resulted in
the loss of a further 1890 false positives suggesting a more conser-
vative estimate of 27 000 CGIs [27]. The beneficial consequences of
repeat masking can be illustrated by the example of a low copy
repetitive element that is related to the adenovirus sequence lo-
cated on human chromosomes 4 and 19 [28]. This element is iden-
tified as a single CGI or a tandem cluster of repeated CGIs by

Fig. 1. CpG islands located within a region of human chromosome 19. The upper panel illustrates a 65 kb portion of human chromosome 19 (17195000–17260000) which
contains five annotated genes (blue bars) and four CpG islands. The promoters of OCEL1, NR2F6 and ANKLE1 overlap with CGIs (i,iii and iv) and an additional CGI (ii) localises to
the third exon of NR2F6. The classical sequence parameters applied to CGI prediction are illustrated (dashed red lines) for CpG (observed/expected; CpG[o/e] = 0.6) and G + C
base composition (GC% = 50%). The lower panel represents an enlarged view of four 6 kb regions (i–iv) spanning each CGI and illustrates the distribution of CpG sites (vertical
black strokes) relative to the annotated genes.

Table 1
Overview of CpG island prediction algorithms.

Database/prediction Length G + C CpG[o/e] RMa Comments Reference

ENSEMBL P400 P50% P0.6 N Stringent length constraint [88]
NCBI relaxed P200 P50% P0.6 N Total CGIs = 307 193
NCBI strict P500 P50% P0.6 N Total CGIs = 24 163
USCSb >200 P50% >0.6 Y Total CGIs = 28 226 [89]
EMBOSS UDc UD UD NA Variable parameters [90]
CpGProD >500 >50% >0.6 Y Total CGIs = 76 793 [23]
CpGcluster NA NA NA N Clustering Total = 197 727 [25]

a RM, repeat masked; Y, yes; N, no; NA, non applicable.
b Parameters used for CGI identification for the ENCODE project although totals vary due to repeat masking differences between hg17 and hg18 builds [87].
c UD, user defined.

1714 R.S. Illingworth, A.P. Bird / FEBS Letters 583 (2009) 1713–1720
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Illingworth & Bird FEBS Lett 583 :1713 (2009)
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nucleosome becomes present, and then this is followed 
by the recruitment of DNMT3A to this nucleosome and, 
subsequently, de novo methylation occurs. Whether a 
similar sequence of events occurs in cells that are not 
expressing DNMT3L is not yet known.

Furthermore, Ooi et  al.12 showed that de  novo 
methylation could not occur on a nucleosome bearing 
the H3K4me2 or H3K4me3 marks, which are associ-
ated with active genes. The nucleosomes flanking the  
nucleosome-depleted start site often contain both  
the histone mark H3K4me3 and the histone variant 

H2A.Z, both of which are strongly anti-correlated with 
DNA methylation46,47. The occurrence of the H3K4me3 
mark in mice is possibly maintained by the presence of 
CXXC finger protein 1 (CXXC1; also known as CFP1), 
which recruits the H3K4 methyltransferase to the 
region, thus ensuring that the +1 and –1 nucleosomes 
contain marks that are incompatible with de novo DNA 
methylation48. The unmethylated state of the CpG 
island is also presumably ensured by the presence of the 
TET1 protein, which is found at a high proportion of 
the TSSs of high-CpG-content promoters. Presumably, 
TET1 converts any 5mC that might be in this region 
into 5-hydroxymethylcytosine49. The molecular anat-
omy of active CGIs can therefore explain why they are 
resistant to methylation (FIG. 1).

Of course, not all CGI-promoter genes are expressed 
in ESCs, and many are suppressed by the Polycomb 
complex, so why are these not de novo methylated? The  
answer probably lies in the fact that they contain  
the antagonistic H3K4me3 (REF. 12) and H2A.Z marks46,47 
and are also bound by TET1, which would ensure that 
they remain 5mC-free. Interestingly, this protection 
seems to break down during immortalization50, and these 
CGIs become highly susceptible to de novo methylation, 
which increases after oncogenic transformation41–43.

This model predicts that the higher the level of expres-
sion is, the less likely it is that a CGI is to become de novo 
methylated. Direct evidence in support of this prediction 
has recently come from several exciting papers that have 
shown that monoallelic methylation of CGIs preferen-
tially occurs on the allele that is less highly expressed. 
For example, Hitchins et al.51 showed that an allele of the 
MLH1 gene containing a single-nucleotide variant in  
the promoter, which was less active than the more com-
mon allele in transfection experiments, was more likely to 
become methylated in the somatic cells of cancer-affected 
families. In other words, the less active allele was the one 
that was more likely to acquire de novo methylation. 
An alternative scenario was shown by Boumber et al.52, 
who found that an allele of RIL (also known as PDLIM4) 
bearing a polymorphism in the promoter that created an 
additional binding site for the transcription factor SP1 or 
SP3 was much less likely to become de novo methylated 
than the allele without this polymorphism. The extra SP1 
site therefore confers resistance of this allele to de novo 
methylation, although the authors could not demonstrate 
that the extra transcription factor binding site increased 
gene expression.

Gene body methylation
Most gene bodies are CpG-poor, are extensively meth-
ylated and contain multiple repetitive and transposable 
elements. Methylation of the CpG sites in gene exons 
is a major cause of C→T transition mutations, lead-
ing to disease-causing mutations in the germline and 
cancer-causing mutations in somatic cells53. It is impor-
tant to realize that although many CGIs are located  
at gene promoters, CGIs also exist within the bodies of 
genes54 and within gene deserts. Although their func-
tions here remain unknown, Adrian Bird has proposed 
that these regions may represent ‘orphan promoters’ 

Figure 1 | Molecular anatomy of CpG sites in chromatin and their roles in gene 
expression. About 60% of human genes have CpG islands (CGIs) at their promoters 

and frequently have nucleosome-depleted regions (NDRs) at the transcriptional start 

site (TSS). The nucleosomes flanking the TSS are marked by trimethylation of histone H3 

at lysine 4 (H3K4me3), which is associated with active transcription, and the histone 

variant H2A.Z, which is antagonistic to DNA methyltransferases (DNMTs). Downstream 

of the TSS, the DNA is mostly CpG-depleted and is predominantly methylated in 

repetitive elements and in gene bodies. CGIs, which are sometimes located in gene 

bodies, mostly remain unmethylated but occasionally acquire 5-methylcytosine (5mC) 

in a tissue-specific manner (not shown). Transcription elongation, unlike initiation, is not 

blocked by gene body methylation, and variable methylation may be involved in 

controlling splicing. Gene bodies are preferential sites of methylation in the context 

CHG (where H is A, C or T) in embryonic stem cells5, but the function is not understood 

(not shown). DNA methylation is maintained by DNMT1 and also by DNMT3A and/or 

DNMT3B, which are bound to nucleosomes containing methylated DNA99. Enhancers 

tend to be CpG-poor and show incomplete methylation, suggesting a dynamic process 

of methylation or demethylation occurs, perhaps owing to the presence of ten-eleven 

translocation (TET) proteins in these regions, although this remains to be shown. They 

also have NDRs, and the flanking nucleosomes have the signature H3K4me1 mark  

and also the histone variant H2A.Z32,100. The binding of proteins such as CTCF to 

insulators can be blocked by methylation of their non-CGI recognition sequences, thus 

leading to altered regulation of gene expression, but the generality of this needs further 

exploration. The sites flanking the CTCF sites are strongly nucleosome-depleted, and 

the flanking nucleosomes show a remarkable degree of phasing. The figure does not 

show the structure of CpG-depleted promoters or silenced CGIs, although in both cases 

the silent state is associated with nucleosomes at the TSS. LMR, low-methylated region.
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similar sequence of events occurs in cells that are not 
expressing DNMT3L is not yet known.
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the H3K4me2 or H3K4me3 marks, which are associ-
ated with active genes. The nucleosomes flanking the  
nucleosome-depleted start site often contain both  
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H2A.Z, both of which are strongly anti-correlated with 
DNA methylation46,47. The occurrence of the H3K4me3 
mark in mice is possibly maintained by the presence of 
CXXC finger protein 1 (CXXC1; also known as CFP1), 
which recruits the H3K4 methyltransferase to the 
region, thus ensuring that the +1 and –1 nucleosomes 
contain marks that are incompatible with de novo DNA 
methylation48. The unmethylated state of the CpG 
island is also presumably ensured by the presence of the 
TET1 protein, which is found at a high proportion of 
the TSSs of high-CpG-content promoters. Presumably, 
TET1 converts any 5mC that might be in this region 
into 5-hydroxymethylcytosine49. The molecular anat-
omy of active CGIs can therefore explain why they are 
resistant to methylation (FIG. 1).

Of course, not all CGI-promoter genes are expressed 
in ESCs, and many are suppressed by the Polycomb 
complex, so why are these not de novo methylated? The  
answer probably lies in the fact that they contain  
the antagonistic H3K4me3 (REF. 12) and H2A.Z marks46,47 
and are also bound by TET1, which would ensure that 
they remain 5mC-free. Interestingly, this protection 
seems to break down during immortalization50, and these 
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This model predicts that the higher the level of expres-
sion is, the less likely it is that a CGI is to become de novo 
methylated. Direct evidence in support of this prediction 
has recently come from several exciting papers that have 
shown that monoallelic methylation of CGIs preferen-
tially occurs on the allele that is less highly expressed. 
For example, Hitchins et al.51 showed that an allele of the 
MLH1 gene containing a single-nucleotide variant in  
the promoter, which was less active than the more com-
mon allele in transfection experiments, was more likely to 
become methylated in the somatic cells of cancer-affected 
families. In other words, the less active allele was the one 
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SP3 was much less likely to become de novo methylated 
than the allele without this polymorphism. The extra SP1 
site therefore confers resistance of this allele to de novo 
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is a major cause of C→T transition mutations, lead-
ing to disease-causing mutations in the germline and 
cancer-causing mutations in somatic cells53. It is impor-
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at gene promoters, CGIs also exist within the bodies of 
genes54 and within gene deserts. Although their func-
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expression. About 60% of human genes have CpG islands (CGIs) at their promoters 

and frequently have nucleosome-depleted regions (NDRs) at the transcriptional start 

site (TSS). The nucleosomes flanking the TSS are marked by trimethylation of histone H3 

at lysine 4 (H3K4me3), which is associated with active transcription, and the histone 

variant H2A.Z, which is antagonistic to DNA methyltransferases (DNMTs). Downstream 

of the TSS, the DNA is mostly CpG-depleted and is predominantly methylated in 

repetitive elements and in gene bodies. CGIs, which are sometimes located in gene 

bodies, mostly remain unmethylated but occasionally acquire 5-methylcytosine (5mC) 

in a tissue-specific manner (not shown). Transcription elongation, unlike initiation, is not 

blocked by gene body methylation, and variable methylation may be involved in 

controlling splicing. Gene bodies are preferential sites of methylation in the context 

CHG (where H is A, C or T) in embryonic stem cells5, but the function is not understood 

(not shown). DNA methylation is maintained by DNMT1 and also by DNMT3A and/or 

DNMT3B, which are bound to nucleosomes containing methylated DNA99. Enhancers 

tend to be CpG-poor and show incomplete methylation, suggesting a dynamic process 

of methylation or demethylation occurs, perhaps owing to the presence of ten-eleven 

translocation (TET) proteins in these regions, although this remains to be shown. They 

also have NDRs, and the flanking nucleosomes have the signature H3K4me1 mark  

and also the histone variant H2A.Z32,100. The binding of proteins such as CTCF to 

insulators can be blocked by methylation of their non-CGI recognition sequences, thus 

leading to altered regulation of gene expression, but the generality of this needs further 

exploration. The sites flanking the CTCF sites are strongly nucleosome-depleted, and 

the flanking nucleosomes show a remarkable degree of phasing. The figure does not 

show the structure of CpG-depleted promoters or silenced CGIs, although in both cases 
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→ méthylation de cytosine aussi à de sites CH (H = {A, C, T})
→ change lors de la différentiation de cellule

5.83% and 4.25% of the cytosines with sequence coverage. Full
browsing of the entire data set at single-base resolution can be
performed at http://neomorph.salk.edu/human_methylome using
the AnnoJ browser (http://www.annoj.org). Of the methylcytosines
detected in the IMR90 genome, 99.98% were in the CG context, and
the total number of mCG sites was very similar in both cell types. In
the H1 stem cells we detected abundant DNA methylation in non-CG
contexts (mCHG and mCHH, where H 5 A, C or T), comprising
almost 25% of all cytosines at which DNA methylation is identified,
and accounting for most of the difference in total methylcytosine
number between the cell types (Fig. 1a). The prevailing assumption
is that mammalian DNA methylation is located almost exclusively in
the CG context; however, a handful of studies have previously
detected non-CG methylation in human cells, and in particular in
embryonic stem cells19,20. Bisulphite-PCR, cloning and sequencing of
selected loci displaying H1 non-CG methylation in several human
cell lines revealed that a second embryonic stem cell line, H917,
displayed mCHG and mCHH at conserved positions, confirming
that non-CG methylation is probably a general feature of human
embryonic stem cells (Fig. 2, Supplementary Table 2). In addition,
like IMR90 cells, BMP4-induced H1 cells lost non-CG methylation at
several loci examined whereas methylation in the CG context was
maintained, indicating that the pervasive non-CG methylation is lost
upon differentiation. Furthermore, analysis of these loci in IMR90
induced pluripotent stem (iPS) cells revealed restored non-CG
methylation (Fig. 2). Overall this demonstrates that the CHG and

CHH methylation identified in H1 cells and absent in IMR90 cells is
not simply due to genetic differences between the two cell types, but
rather that the presence of non-CG methylation is characteristic of an
embryonic stem-cell state. For each cell type, two biological replicates
were performed with cells of different passage number (see Sup-
plementary Information), and comparison of the methylcytosines
identified independently in each replicate revealed a high concord-
ance of cytosine methylation status between replicates (Supplemen-
tary Fig. 2). For each cell type, the final DNA methylation map
presented in this study represents the composite of the two biological
replicates. The OCT4 gene (also called POU5F1) exemplifies both
cell-specific differential methylation and the presence of non-CG
methylation (Fig. 1b), and in addition displayed a ,50-fold reduc-
tion in OCT4 transcript in IMR90 cells (data not shown). The
absence of mCHG and mCHH methylation in IMR90 cells coincided
with significantly lower transcript abundance of the de novo DNA
methyltransferases (DNMTs) DNMT3A and DNMT3B and the
associated DNMT3L in IMR90 cells (Supplementary Fig. 3), which
is supported by a previous study of DNA methylation in embryonic
stem cells and somatic cells19 and by the determined target sequence
specificity of these DNMTs21,22.

Multiple reads covering each methylcytosine can be used as a read-
out of the fraction of the sequences within the sample that are methy-
lated at that site16, here referred to as the methylation level of a
specific cytosine. Similar to the Arabidopsis genome15, in the H1
genome we observed that 77% of mCG sites were 80–100% methy-
lated, whereas 85% of mCHG and mCHH sites were 10–40% methy-
lated (Fig. 1c), indicating that at sites of non-CG methylation only a
fraction of the surveyed genomes in the sample was methylated.
Notably, 56% of mCG sites in IMR90 cells were highly methylated
(80–100%, Fig. 1c), indicating that although the total number of
mCG sites in H1 and IMR90 cells is similar, in general the IMR90
mCG sites were typically less frequently methylated. In support of
this, considering all CG site sequencing events, 82.7% and 67.7%
were methylated in H1 and IMR90 cells, respectively. A global-scale
view of DNA methylation levels revealed that the density of DNA
methylation showed large variations throughout each chromosome
(Fig. 1d). Sub-telomeric regions of the chromosomes frequently
showed higher DNA methylation density (Fig. 1d and Supplemen-
tary Fig. 4), which was previously reported as being important for
control of telomere length and recombination23,24. The smoothed
profile of DNA methylation density in 100-kb windows indicated
that on the chromosomal level the density profile of mCG in H1
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Figure 1 | Global trends of human DNA methylomes. a, The percentage of
methylcytosines identified for H1 and IMR90 cells in each sequence context.
b, AnnoJ browser representation of OCT4. c, Distribution of the
methylation level in each sequence context. The y axis indicates the fraction
of all methylcytosines that display each methylation level (x axis), where
methylation level is the mC/C ratio at each reference cytosine (at least 10
reads required). d, Blue dots indicate methylcytosine density in H1 cells in
10-kb windows throughout chromosome 12 (black rectangle, centromere).
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and IMR90 cells. Black triangles indicate various regions of contrasting
trends in CG and non-CG methylation. mC, methylcytosine.
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Figure 2 | Bisulphite-PCR validation of non-CG DNA methylation in
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for values). Non-CG methylated positions indicated by an asterisk are
unique to that cell type and ‘14’ indicates a mCHH that is shifted 4 bases
downstream in H9 cells. iPS, induced pluripotent stem cell.
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5.83% and 4.25% of the cytosines with sequence coverage. Full
browsing of the entire data set at single-base resolution can be
performed at http://neomorph.salk.edu/human_methylome using
the AnnoJ browser (http://www.annoj.org). Of the methylcytosines
detected in the IMR90 genome, 99.98% were in the CG context, and
the total number of mCG sites was very similar in both cell types. In
the H1 stem cells we detected abundant DNA methylation in non-CG
contexts (mCHG and mCHH, where H 5 A, C or T), comprising
almost 25% of all cytosines at which DNA methylation is identified,
and accounting for most of the difference in total methylcytosine
number between the cell types (Fig. 1a). The prevailing assumption
is that mammalian DNA methylation is located almost exclusively in
the CG context; however, a handful of studies have previously
detected non-CG methylation in human cells, and in particular in
embryonic stem cells19,20. Bisulphite-PCR, cloning and sequencing of
selected loci displaying H1 non-CG methylation in several human
cell lines revealed that a second embryonic stem cell line, H917,
displayed mCHG and mCHH at conserved positions, confirming
that non-CG methylation is probably a general feature of human
embryonic stem cells (Fig. 2, Supplementary Table 2). In addition,
like IMR90 cells, BMP4-induced H1 cells lost non-CG methylation at
several loci examined whereas methylation in the CG context was
maintained, indicating that the pervasive non-CG methylation is lost
upon differentiation. Furthermore, analysis of these loci in IMR90
induced pluripotent stem (iPS) cells revealed restored non-CG
methylation (Fig. 2). Overall this demonstrates that the CHG and

CHH methylation identified in H1 cells and absent in IMR90 cells is
not simply due to genetic differences between the two cell types, but
rather that the presence of non-CG methylation is characteristic of an
embryonic stem-cell state. For each cell type, two biological replicates
were performed with cells of different passage number (see Sup-
plementary Information), and comparison of the methylcytosines
identified independently in each replicate revealed a high concord-
ance of cytosine methylation status between replicates (Supplemen-
tary Fig. 2). For each cell type, the final DNA methylation map
presented in this study represents the composite of the two biological
replicates. The OCT4 gene (also called POU5F1) exemplifies both
cell-specific differential methylation and the presence of non-CG
methylation (Fig. 1b), and in addition displayed a ,50-fold reduc-
tion in OCT4 transcript in IMR90 cells (data not shown). The
absence of mCHG and mCHH methylation in IMR90 cells coincided
with significantly lower transcript abundance of the de novo DNA
methyltransferases (DNMTs) DNMT3A and DNMT3B and the
associated DNMT3L in IMR90 cells (Supplementary Fig. 3), which
is supported by a previous study of DNA methylation in embryonic
stem cells and somatic cells19 and by the determined target sequence
specificity of these DNMTs21,22.

Multiple reads covering each methylcytosine can be used as a read-
out of the fraction of the sequences within the sample that are methy-
lated at that site16, here referred to as the methylation level of a
specific cytosine. Similar to the Arabidopsis genome15, in the H1
genome we observed that 77% of mCG sites were 80–100% methy-
lated, whereas 85% of mCHG and mCHH sites were 10–40% methy-
lated (Fig. 1c), indicating that at sites of non-CG methylation only a
fraction of the surveyed genomes in the sample was methylated.
Notably, 56% of mCG sites in IMR90 cells were highly methylated
(80–100%, Fig. 1c), indicating that although the total number of
mCG sites in H1 and IMR90 cells is similar, in general the IMR90
mCG sites were typically less frequently methylated. In support of
this, considering all CG site sequencing events, 82.7% and 67.7%
were methylated in H1 and IMR90 cells, respectively. A global-scale
view of DNA methylation levels revealed that the density of DNA
methylation showed large variations throughout each chromosome
(Fig. 1d). Sub-telomeric regions of the chromosomes frequently
showed higher DNA methylation density (Fig. 1d and Supplemen-
tary Fig. 4), which was previously reported as being important for
control of telomere length and recombination23,24. The smoothed
profile of DNA methylation density in 100-kb windows indicated
that on the chromosomal level the density profile of mCG in H1
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Figure 1 | Global trends of human DNA methylomes. a, The percentage of
methylcytosines identified for H1 and IMR90 cells in each sequence context.
b, AnnoJ browser representation of OCT4. c, Distribution of the
methylation level in each sequence context. The y axis indicates the fraction
of all methylcytosines that display each methylation level (x axis), where
methylation level is the mC/C ratio at each reference cytosine (at least 10
reads required). d, Blue dots indicate methylcytosine density in H1 cells in
10-kb windows throughout chromosome 12 (black rectangle, centromere).
Smoothed lines represent the methylcytosine density in each context in H1
and IMR90 cells. Black triangles indicate various regions of contrasting
trends in CG and non-CG methylation. mC, methylcytosine.
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Figure 2 | Bisulphite-PCR validation of non-CG DNA methylation in
differentiated and stem cells. DNA methylation sequence context is
displayed according to the key and the percentage methylation at each
position is represented by the fill of each circle (see Supplementary Table 2
for values). Non-CG methylated positions indicated by an asterisk are
unique to that cell type and ‘14’ indicates a mCHH that is shifted 4 bases
downstream in H9 cells. iPS, induced pluripotent stem cell.
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(H1 = cellules souches ; IMR90=lung fibroblast)

Lister, Pelizzola & al Nature 462 :315 (2009)



Détection de méthylation
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CpG islands
In eukaryotic genomes, regions 
of several hundred base pairs 
that are not depleted of  
CpGs by 5-methylcytosine 
deamination owing to them 
being unmethylated in the 
germ line. They often overlap 
transcription start sites. Most 
definitions of CpG islands set a 
minimum length (for example, 
200 or 500 bp), a minimum 
observed:expected CpG ratio 
(for example, greater than  
0.6 or 0.65) and a minimum 
GC content (for example,  
50% or 55%).

genome-scale DNA methylation analysis technologies. 
The relative merits of the different techniques are dis-
cussed, and bioinformatic challenges that are unique 
to DNA methylation analysis are outlined. Although 
some of the methods covered in this Review rely on 
species-specific arrays, most of the principles could 
be applied to any organism with 5meC, including bac-
teria and archaea. Some of the methods described in 
this Review may be applicable to 5-hydroxymethylcy-
tosine, which was recently confirmed to be present in  
mammalian cells27,28.

Distribution and detection of DNA methylation
As DNA samples are usually derived from a collection 
of cells, which may vary in their DNA methylation 
patterns, the distribution of 5meC in a DNA sample is 
complex. Measurements can be made either of the pat-
tern of methylated target sequences along individual 
DNA molecules or as an average methylation level at 
a single genomic locus across many DNA molecules29. 
Analysis of DNA methylation is further complicated by 
the uneven distribution of methylation target sequences, 
such as CpG, across the genome. As a consequence of 
the frequent mutation of 5meC to thymine, these targets 
are depleted throughout most of the genome but are 
maintained in specific regions, such as CpG islands. This 
non-uniform distribution is an important considera-
tion in DNA methylation analysis, as discussed below. 
As noted above, 5meC is not readily distinguished from 
unmethylated cytosine by hybridization-based methods 
and, as DNA methyltransferases are not present during 
PCR or in biological cloning systems, DNA methyla-
tion information is erased during amplification. Some 
investigators have suggested that it could be feasible to 
maintain the pattern of methylation during PCR if an 
appropriate DNA methyltransferase were present in the 

PCR reaction. This approach would require a thermosta-
ble DNA methyltransferase with very high efficiency 
and maintenance fidelity and a complete lack of de novo 
methyltransferase activity, and so has not been realized 
to date. Therefore, almost all sequence-specific DNA 
methylation analysis techniques rely on a methylation-
dependent treatment of the DNA before amplification 
or hybridization29–32. There are three main approaches: 
endonuclease digestion, affinity enrichment and bisul-
phite conversion. After genomic DNA has been treated 
with one of the methylation-dependent steps, various 
molecular biology techniques, including probe hybridi-
zation and sequencing, can be used to reveal the loca-
tion of the 5meC residues. The combination of different 
types of pretreatment followed by different analytical 
steps has resulted in a plethora of techniques for deter-
mining DNA methylation patterns and profiles29,32–42. In 
the following sections I discuss techniques based on the 
three main approaches, and a summary is provided in 
TABLE 1. Expression profiling of cells treated with DNA 
methyltransferase inhibitors and/or histone deacetylase 
inhibitors has also been used as a discovery tool for epi-
genetically silenced genes. However, it is prone to false-
positive and false-negative results and is not considered 
to be a reliable gauge of DNA methylation at a given 
locus, and is therefore not discussed in this Review.

Endonuclease digestion
Restriction endonucleases are such powerful tools in 
molecular biology that their biological role in restric-
tion–modification systems in bacteria and archaea is 
sometimes overlooked. Each sequence-specific restric-
tion enzyme has an accompanying DNA methyl-
transferase that protects the endogenous DNA from  
the restriction defence system by methylating bases in the 
recognition site. Some restriction enzymes are inhibited 

Table 1 | Main principles of DNA methylation analysis

Pretreatment Analytical step

Locus-specific analysis Gel-based analysis Array-based analysis NGS-based analysis

Enzyme  
digestion

r�HpaII-PCR r�Southern blot
r�RLGS
r�MS-AP-PCR
r�AIMS

r�DMH
r�MCAM
r�HELP
r�MethylScope
r�CHARM
r�MMASS

r�Methyl–seq
r�MCA–seq
r�HELP–seq
r�MSCC

Affinity  
enrichment

r�MeDIP-PCR r�MeDIP
r�mDIP
r�mCIP
r�MIRA

r�MeDIP–seq
r�MIRA–seq

Sodium  
bisulphite

r�MethyLight
r�EpiTYPER
r�Pyrosequencing

r�Sanger BS
r�MSP
r�MS-SNuPE
r�COBRA

r�BiMP
r�GoldenGate
r�Infinium

r�RRBS
r�BC–seq
r�BSPP
r�WGSBS

AIMS, amplification of inter-methylated sites; BC–seq, bisulphite conversion followed by capture and sequencing; BiMP, bisulphite 
methylation profiling; BS, bisulphite sequencing; BSPP, bisulphite padlock probes; CHARM, comprehensive high-throughput arrays 
for relative methylation; COBRA, combined bisulphite restriction analysis; DMH, differential methylation hybridization; HELP, HpaII 
tiny fragment enrichment by ligation-mediated PCR; MCA, methylated CpG island amplification; MCAM, MCA with microarray 
hybridization; MeDIP, mDIP and mCIP, methylated DNA immunoprecipitation; MIRA, methylated CpG island recovery assay; 
MMASS, microarray-based methylation assessment of single samples; MS-AP-PCR, methylation-sensitive arbitrarily primed PCR; 
MSCC, methylation-sensitive cut counting; MSP, methylation-specific PCR; MS-SNuPE, methylation-sensitive single nucleotide 
primer extension; NGS, next-generation sequencing; RLGS, restriction landmark genome scanning; RRBS, reduced representation 
bisulphite sequencing; –seq, followed by sequencing; WGSBS, whole-genome shotgun bisulphite sequencing.
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detect the methylation pattern of every C in the genome.
Nevertheless, the mapping of millions of bisulfite reads to
the reference genome remains a computational challenge.

Problems
First, the searching space is significantly increased relative
to the original reference sequence. Unlike normal
sequencing, the Watson and Crick strands of bisulfite-
treated sequences are not complementary to each other
because the bisulfite conversion only occurs on Cs. As a
result, there will be four distinct strands after PCR ampli-
fication: BSW (bisulfite Watson), BSWR (reverse comple-
ment of BSW), BSC (bisulfite Crick), and BSCR (reverse
complement of BSC) (Figure 1). During shotgun sequenc-
ing, a bisulfite read is almost equally likely to be derived
from any of the four strands.

Second, sequence complexity is reduced. In the mamma-
lian genome, although ~19% of the bases are Cs and

another 19% are Gs, only ~1.8% of dinucleotides are CpG
dinucleotides. Because C methylation occurs almost
exclusively at CpG dinucleotide, the vast majority of Cs in
BSW and BSC strands will be converted to Ts. Therefore,
most reads from the above two strands will be C-poor.
However, PCR amplification will transcribe all Gs as Cs in
BSWR and BSCR strands, so reads from those two strands
are typically G-poor and have a normal C content. As a
result, we expect the overall C content of bisulfite reads to
be reduced by ~50%.

Third, C to T mapping is asymmetric. The T in the bisulfite
reads could be mapped to either C or T in the reference
but not vice versa. This phenomenon not only increases
the search space for mapping but also complicates the
matching process (Figure 2). Efficient implementation of
such asymmetric C/T matching is critical for mapping
high-throughput bisulfite reads to the reference genome

Pipeline of bisulfite sequencingFigure 1
Pipeline of bisulfite sequencing. 1) Denaturation: separating Watson and Crick strands; 2) Bisulfite treatment: converting 
un-methylated cytosines (blue) to uracils; methylated cytosines (red) remain unchanged; 3) PCR amplification of bisulfite-
treated sequences resulting in four distinct strands: Bisulfite Watson (BSW), bisulfite Crick (BSC), reverse complement of 
BSW (BSWR), and reverse complement of BSC (BSCR).

>>ACmGTTCGCTTGAG>> <<TGCmAAGCGAACTC<<

Watson

Crick

Watson Crick

>>ACmGTTUGUTTGAG>> <<TGCmAAGUGAAUTU<<

<<TGCmAAGTGAATTT<<

>>ACG TTCACTTAAA>><<TG CAAACAAACTC<<

>>ACmGTTTGTTTGAG>>BSW

BSWR

BSW

BSC

BSCR

BSC

Cm   methylated
C   Un-methylated

1)  Denaturation

2)  Bisulfite Treatment

3)  PCR Amplification

>>ACmGTTCGCTTGAG>>

<<TGCmAAGCGAACTC<<

Xi & Li BMC Bioinformatics 10 :232 (2009)
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and is still lacking in current short read alignment soft-
ware.

A common approach to overcome these issues is to con-
vert all Cs to Ts and map the converted reads to the con-
verted reference; then, the alignment results are post-
processed to count false-positive bisulfite C/T alignments
as mismatches, where a C in the BS-read is aligned to a T
in the reference [2]. Although this all-inclusive C/T con-
version is effective for reads derived from the C-poor
strands, it is not appropriate for reads derived from the G-
poor strands, where all the Cs are actually transcribed
from Gs by PCR amplification and thus could not be con-
verted to Ts during bisulfite treatment. During shotgun
sequencing, however, a bisulfite read is almost equally
likely to be derived from either the C-poor or the G-poor
strands. There is no precise way to determine the original

strand a bisulfite read is derived from. Furthermore, by
ignoring the C/T mapping asymmetry, this strategy gener-
ates a large number of false-positive bisulfite mappings
and greatly increases the computational load in a quad-
ratic manner with an increase in the size of the reference
sequence. In order to accurately extract the true bisulfite
mappings in the post-processing stage, all mapping loca-
tions have to be recorded, even the non-unique map-
pings. Therefore, this approach is only practical for small
reference sequences, where only the C-poor strands are
sequenced. For example, Meissner et al. used this map-
ping strategy for reduced representation bisulfite sequenc-
ing (RRBS) [2], where the genomic DNA was digested by
the Mspl restriction enzyme and 40–220 bp segments
were selected for sequencing. The reference sequence (~27
M nt) is only about 1% of the whole mouse genome, cov-
ering 4.8% of the total CpG dinucleotides.

Mapping of bisulfite readsFigure 2
Mapping of bisulfite reads. 1) Increased search space due to the cytosine-thymine conversion in the bisulfite treatment. 2) 
Mapping asymmetry: thymines in bisulfite reads can be aligned with cytosines in the reference (illustrated in blue) but not the 
reverse.

>>ATTTCG>>

>>ATACTTCGATGATCTCGCAAGACTCCGGC>>

ATTTCG ATTTCGATTTCG

Bisulfite Read

Reference

Bisulfite Read Reference

C

T

C

T

1)  Multiple Mapping

2)  Mapping Asymmetry

Xi & Li BMC Bioinformatics 10 :232 (2009)
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BSMAP algorithmFigure 3
BSMAP algorithm. A) Bisulfite seed table, using the original seed and bisulfite variants as keys and corresponding coordi-
nates in the reference genome as values. Each read was looked up in the seed table for potential mapping positions. B) A posi-
tional specific mask of the corresponding reference sequence was generated by setting 01 to C(light blue) and 11 to A, G, 
T(black). The original read was masked by a bitwise AND operation with the positional specific mask. C) The reference 
sequence and the masked read were compared with a bitwise XOR operation. Non-zero XOR results were counted as mis-
matches (red). Bisulfite alignment is marked in green.

Table 1: Bisulfite matching table after bitwise masking

Reference A (00) C (01) G (10) T (11)

Mask 11 (inactive) 01 (active) 11 (inactive) 11 (inactive)

Bisulfite Read A(00) 00 (match) 01 10 11
C(01) 10 00 (match) 11 10
G(10) => A(00) if reference is C 10 01 00 (match) 01
T(11) => C(01) if reference is C 11 00 (match) 01 00 (match)

Xi & Li BMC Bioinformatics 10 :232 (2009)
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On peut aussi trouver une pénalisation propre (LODS) à la conversion bisulfite :

seeds (7). By building on the classic techniques, Last can
find alignments with high sensitivity as well as speed (8).
In this study, we first describe how to use Last for

aligning bisulfite-converted DNA reads to a genome. We
then set up a benchmark to test the accuracy and speed of
alignment. This benchmark models polymorphisms and
sequencing errors in a more realistic way than many
previous tests of high-throughput aligners. Finally, we
test Last alongside all other high-throughput bisulfite
alignment methods that we could find.

MATERIALS AND METHODS

Score matrix

Traditional alignment methods use a score matrix, which
assigns a positive or negative score for aligning any pair of
bases (9). An example is shown in Table 1. The scores are
actually log likelihood ratios:

Sxy ¼ T ln
Mxy

AxBy

! "

Here, Ax is the probability (abundance) of base x in the
reference sequence, and By is the probability of y in the
query sequence. Mxy is the probability of x aligned to y in
a true alignment, and T is an arbitrary scale factor.
Bisulfite converts a fraction F of cytosines to thymines.

This alters By and Mxy, as follows:

B0c ¼ ð1# FÞBc M0xc ¼ ð1# FÞMxc

B0t ¼ Bt þ FBc M0xt ¼Mxt þ FMxc

Thus, we ought to use a suitably adjusted score matrix.
In this study, we assume that Ax&By& 1/4, and that:

Mxy &
0:99=4 if x ¼ y;
0:01=12 if x 6¼ y:

#

This is suitable for alignments with 99% identity. (We also
tried settings suited to '99.9% identity: Supplementary
Figure S1.)
We assume that F& 1, because typically most cytosines

are unmethylated and thus converted. Finally, we set
T& 10/ln(10), which is the same scale as ‘phred’ scores
(10). We used the score matrix in Table 1, which approxi-
mately fits these settings.

Using sequence quality data

Current sequencing technologies have significant error
rates, and they often provide an error probability for
each base. We previously showed how to combine these
error estimates with the score matrix, to obtain
generalized likelihood ratio scores (11). Since then, we
have improved that method so as to allow for unequal
base frequencies (Supplementary Text).

Seeding

Last starts by finding seeds (crude initial matches). It uses
subset seeds, which are exact matches using reduced al-
phabets (7,12). It is possible to use a different reduced
alphabet at each position of the match. The choice of
which alphabet to use at each position is called the ‘seed
pattern’.

In this study, we used the following seed pattern:
111111110. This means that, in the first 8 positions we
used a three-letter alphabet where c and t are considered
equivalent, whereas in Position 9 we used a one-letter
alphabet where all four bases are considered equivalent.
(The seed length is not fixed: if it is shorter than 9 then a
prefix of the pattern is used, if it longer than 9 the pattern
repeats.) The purpose of the ‘0’ is to increase sensitivity
(13). We did not systematically optimize the seed pattern,
but we tried a few other patterns (Supplementary Figure
S3 and S4).

Last details

Last has three parts. First, lastdb constructs an index of
the genome. Then, lastal finds alignments, possibly
more than one alignment per DNA read. Finally,
last–map–probs resolves multi-mapping reads, by
estimating the probability that each alignment is the
correct one (11). Only alignments with low mismap prob-
ability (e.g. (0.01) are retained.

Benchmark data

The test data consist of computer-simulated DNA reads
from chromosomes 1–22 and X of the human genome
(hg19).

First, we randomly assigned a methylation rate to every
cytosine in both strands of each chromosome. Each
cytosine received one of five possible methylation rates
(Table 2). A methylation rate of (say) 0.2 means that
this cytosine is methylated in 20% of the genomes from
which the DNA sample was obtained. In our simulation,
the probability of assigning each methylation rate
depended whether or not the c was followed by a g
(Table 2).

Second, we randomly simulated polymorphisms in the
genome, by picking real alleles based on their frequencies,
obtained from snp132Common.txt from the UCSC
Genome Database (14,15). These include not only substi-
tutions, but also insertions and deletions. Some of the in-
sertions are large enough that it is possible for a DNA
read to come entirely from sequence that is absent in the
original genome.

Table 1. Score matrix for aligning bisulfite-converted DNA reads to
a reference genome sequence

a c g t

a 6 #18 #18 #18
c #18 6 #18 3
g #18 #18 6 #18
t #18 #18 #18 3

Columns refer to bases in the read, and rows refer to bases in the
genome.
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(CpG)

M values
Logistically transformed 
β-values. The transformation 
mitigates some statistical 
problems of the β-value 
(namely, limited value range 
and strongly bimodal 
distribution) at the cost of 
reduced biological 
interpretability.

Batch effects
Systematic biases in the data 
that are unrelated to the 
research question but that 
arise from undesirable (and 
often unrecognized) differences 
in sample handling.

Confounding
A nonrandom relationship 
between the phenotype of 
interest and external factors 
(for example, batch effects or 
population structure) that can 
give rise to spurious 
associations.

advisable to process samples in an order that minimizes 
confounding between potential sources of batch effects 
(for example, processing date and microarray batch) 
and the phenotype of interest (for example, cases ver-
sus controls) and to use tools for batch effect removal, 
which can substantially increase robustness and statis-
tical power50,52,53. Other common biases in bisulphite 
microarray data include nonspecific binding of DNA 
fragments to multiple probes (which has been shown to 
cause false positives for sex-specific DNA methylation 
on the autosomes54) and the presence of genetic vari-
ants affecting probe binding or read-out. The impact of 
these technical issues can be minimized by removing all 
probes that exhibit a high sequence identity with mul-
tiple genomic regions as well as those overlapping with 
common genetic variants.

Processing enrichment-based data. Enrichment-based 
assays for DNA methylation mapping use various meth-
ods for enriching DNA in a methylation-specific manner. 

Methylated DNA can be enriched using methylation- 
specific antibodies (in methylated DNA immuno-
precipitation coupled with high-throughput sequencing 
(MeDIP–seq)), methyl-CpG-binding domain (MBD) 
proteins (in MBD sequencing (MBD-seq)) or a restric-
tion enzyme that specifically cuts methylated DNA (in 
methylation-dependent restriction enzyme sequencing 
(McrBC-seq)). Alternatively, unmethylated DNA can be 
enriched using restriction enzymes that specifically cut 
unmethylated DNA (for example, in HpaII tiny fragment 
enrichment by ligation-mediated PCR coupled with 
sequencing (HELP–seq)). Next-generation sequencing 
of the resulting DNA libraries counts the frequency of 
specific DNA fragments in each library and provides 
the raw data from which DNA methylation levels can be 
inferred. In contrast to bisulphite sequencing, the DNA 
methylation information is not contained in the read 
sequence but in the enrichment or depletion of sequenc-
ing reads that map to specific regions of the genome. 
As a result, enrichment-based methods require careful 
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Figure 2 | Two alternative strategies for bisulphite 
alignment. a | An illustrative example of bisulphite 
sequencing for a DNA fragment with known DNA 
methylation levels at four CpGs and a total of eight 
bisulphite-sequencing reads. For easier visualization, 
the sequencing reads are four bases long (realistic 
numbers would be 50 to 200 bases), and the size of the 
genomic DNA sequence is just 23 bases (3 gigabases 
would be a realistic number for the human genome).  
b | Alignment of the bisulphite-sequencing reads 
(centre) to the reference sequence (top) using a 
wild-card aligner that tolerates zero mismatches and 
zero gaps. The aligner replaces each C in the reference 
sequence by the wild-card letter Y, which can match 
both C and T in the read sequences. Reads with more 
than one perfect alignment with the reference sequence 
are discarded (greyed out), and for each CpG in the 
genomic DNA sequence, the DNA methylation level 
(bottom) is calculated as the percentage of aligning Cs 
among all uniquely mapped reads. Note that the third 
CpG is incorrectly assigned a DNA methylation level of 
100%, which is due to the fact that the unmethylated 
read was discarded as ambiguous, whereas the 
methylated read could be uniquely mapped. c | The 
same alignment carried out by a three-letter aligner, 
which also tolerates zero mismatches and zero gaps. 
The aligner replaces each C in the reference sequence 
by an upper-case T and each C in the sequencing  
reads by a lower-case t, with no distinction being made 
between upper-case T and lower-case t during the 
alignment. As a result of the reduced sequencing 
complexity with only three letters remaining, a larger 
number of reads align to more than one position in the 
reference sequence and are discarded. The three-letter 
alignment avoids incorrect results in this example, but 
it fails to provide any values for the first and third CpG. 
(As an alternative to discarding ambiguous reads, it is 
also possible to assign them randomly to one of the 
best-matching positions; in the current example,  
the wild-card alignment would provide correct results 
50% of the time, whereas the three-letter alignment 
exhibits higher uncertainty and would be correct only 
6.25% of the time.)
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which can substantially increase robustness and statis-
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microarray data include nonspecific binding of DNA 
fragments to multiple probes (which has been shown to 
cause false positives for sex-specific DNA methylation 
on the autosomes54) and the presence of genetic vari-
ants affecting probe binding or read-out. The impact of 
these technical issues can be minimized by removing all 
probes that exhibit a high sequence identity with mul-
tiple genomic regions as well as those overlapping with 
common genetic variants.

Processing enrichment-based data. Enrichment-based 
assays for DNA methylation mapping use various meth-
ods for enriching DNA in a methylation-specific manner. 

Methylated DNA can be enriched using methylation- 
specific antibodies (in methylated DNA immuno-
precipitation coupled with high-throughput sequencing 
(MeDIP–seq)), methyl-CpG-binding domain (MBD) 
proteins (in MBD sequencing (MBD-seq)) or a restric-
tion enzyme that specifically cuts methylated DNA (in 
methylation-dependent restriction enzyme sequencing 
(McrBC-seq)). Alternatively, unmethylated DNA can be 
enriched using restriction enzymes that specifically cut 
unmethylated DNA (for example, in HpaII tiny fragment 
enrichment by ligation-mediated PCR coupled with 
sequencing (HELP–seq)). Next-generation sequencing 
of the resulting DNA libraries counts the frequency of 
specific DNA fragments in each library and provides 
the raw data from which DNA methylation levels can be 
inferred. In contrast to bisulphite sequencing, the DNA 
methylation information is not contained in the read 
sequence but in the enrichment or depletion of sequenc-
ing reads that map to specific regions of the genome. 
As a result, enrichment-based methods require careful 
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Figure 2 | Two alternative strategies for bisulphite 
alignment. a | An illustrative example of bisulphite 
sequencing for a DNA fragment with known DNA 
methylation levels at four CpGs and a total of eight 
bisulphite-sequencing reads. For easier visualization, 
the sequencing reads are four bases long (realistic 
numbers would be 50 to 200 bases), and the size of the 
genomic DNA sequence is just 23 bases (3 gigabases 
would be a realistic number for the human genome).  
b | Alignment of the bisulphite-sequencing reads 
(centre) to the reference sequence (top) using a 
wild-card aligner that tolerates zero mismatches and 
zero gaps. The aligner replaces each C in the reference 
sequence by the wild-card letter Y, which can match 
both C and T in the read sequences. Reads with more 
than one perfect alignment with the reference sequence 
are discarded (greyed out), and for each CpG in the 
genomic DNA sequence, the DNA methylation level 
(bottom) is calculated as the percentage of aligning Cs 
among all uniquely mapped reads. Note that the third 
CpG is incorrectly assigned a DNA methylation level of 
100%, which is due to the fact that the unmethylated 
read was discarded as ambiguous, whereas the 
methylated read could be uniquely mapped. c | The 
same alignment carried out by a three-letter aligner, 
which also tolerates zero mismatches and zero gaps. 
The aligner replaces each C in the reference sequence 
by an upper-case T and each C in the sequencing  
reads by a lower-case t, with no distinction being made 
between upper-case T and lower-case t during the 
alignment. As a result of the reduced sequencing 
complexity with only three letters remaining, a larger 
number of reads align to more than one position in the 
reference sequence and are discarded. The three-letter 
alignment avoids incorrect results in this example, but 
it fails to provide any values for the first and third CpG. 
(As an alternative to discarding ambiguous reads, it is 
also possible to assign them randomly to one of the 
best-matching positions; in the current example,  
the wild-card alignment would provide correct results 
50% of the time, whereas the three-letter alignment 
exhibits higher uncertainty and would be correct only 
6.25% of the time.)
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(for example, processing date and microarray batch) 
and the phenotype of interest (for example, cases ver-
sus controls) and to use tools for batch effect removal, 
which can substantially increase robustness and statis-
tical power50,52,53. Other common biases in bisulphite 
microarray data include nonspecific binding of DNA 
fragments to multiple probes (which has been shown to 
cause false positives for sex-specific DNA methylation 
on the autosomes54) and the presence of genetic vari-
ants affecting probe binding or read-out. The impact of 
these technical issues can be minimized by removing all 
probes that exhibit a high sequence identity with mul-
tiple genomic regions as well as those overlapping with 
common genetic variants.

Processing enrichment-based data. Enrichment-based 
assays for DNA methylation mapping use various meth-
ods for enriching DNA in a methylation-specific manner. 

Methylated DNA can be enriched using methylation- 
specific antibodies (in methylated DNA immuno-
precipitation coupled with high-throughput sequencing 
(MeDIP–seq)), methyl-CpG-binding domain (MBD) 
proteins (in MBD sequencing (MBD-seq)) or a restric-
tion enzyme that specifically cuts methylated DNA (in 
methylation-dependent restriction enzyme sequencing 
(McrBC-seq)). Alternatively, unmethylated DNA can be 
enriched using restriction enzymes that specifically cut 
unmethylated DNA (for example, in HpaII tiny fragment 
enrichment by ligation-mediated PCR coupled with 
sequencing (HELP–seq)). Next-generation sequencing 
of the resulting DNA libraries counts the frequency of 
specific DNA fragments in each library and provides 
the raw data from which DNA methylation levels can be 
inferred. In contrast to bisulphite sequencing, the DNA 
methylation information is not contained in the read 
sequence but in the enrichment or depletion of sequenc-
ing reads that map to specific regions of the genome. 
As a result, enrichment-based methods require careful 
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alignment. a | An illustrative example of bisulphite 
sequencing for a DNA fragment with known DNA 
methylation levels at four CpGs and a total of eight 
bisulphite-sequencing reads. For easier visualization, 
the sequencing reads are four bases long (realistic 
numbers would be 50 to 200 bases), and the size of the 
genomic DNA sequence is just 23 bases (3 gigabases 
would be a realistic number for the human genome).  
b | Alignment of the bisulphite-sequencing reads 
(centre) to the reference sequence (top) using a 
wild-card aligner that tolerates zero mismatches and 
zero gaps. The aligner replaces each C in the reference 
sequence by the wild-card letter Y, which can match 
both C and T in the read sequences. Reads with more 
than one perfect alignment with the reference sequence 
are discarded (greyed out), and for each CpG in the 
genomic DNA sequence, the DNA methylation level 
(bottom) is calculated as the percentage of aligning Cs 
among all uniquely mapped reads. Note that the third 
CpG is incorrectly assigned a DNA methylation level of 
100%, which is due to the fact that the unmethylated 
read was discarded as ambiguous, whereas the 
methylated read could be uniquely mapped. c | The 
same alignment carried out by a three-letter aligner, 
which also tolerates zero mismatches and zero gaps. 
The aligner replaces each C in the reference sequence 
by an upper-case T and each C in the sequencing  
reads by a lower-case t, with no distinction being made 
between upper-case T and lower-case t during the 
alignment. As a result of the reduced sequencing 
complexity with only three letters remaining, a larger 
number of reads align to more than one position in the 
reference sequence and are discarded. The three-letter 
alignment avoids incorrect results in this example, but 
it fails to provide any values for the first and third CpG. 
(As an alternative to discarding ambiguous reads, it is 
also possible to assign them randomly to one of the 
best-matching positions; in the current example,  
the wild-card alignment would provide correct results 
50% of the time, whereas the three-letter alignment 
exhibits higher uncertainty and would be correct only 
6.25% of the time.)
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Figure 3 | Effective identification of differentially methylated regions in a highly annotated genome.  
a | An illustrative example of differences in DNA methylation within the promoter region of a gene and at an upstream 
enhancer. For easier visualization, DNA methylation data are shown for only three cases and three controls (a realistic 
number would be hundreds of samples) and for ten CpGs in total (dozens to hundreds of CpGs are realistic numbers for a 
typical promoter region). b | When the DNA methylation levels between cases and controls are compared at the resolution 
of single CpGs, all multiple-testing-corrected q values exceed 0.05 and are therefore considered to be insignificant.  
c | When combining statistical evidence from neighbouring CpGs over a fixed distance (tiling regions highlighted in green), 
one region is identified as being significantly more highly methylated among the cases compared to the controls  
(q value = 0.048). d | When combining statistical evidence across all CpGs that can be assigned to the same functional 
element on the basis of external genome annotation data, two regions are identified as being differentially methylated: 
the upstream enhancer (highlighted in purple) is significantly more highly methylated in the cases (q value = 0.024), and the 
promoter region (in orange) is significantly more highly methylated in the controls (q value = 0.045). The figure is based on 
the following statistical methods. Differences in DNA methylation at single CpGs (in b) are identified by unpaired, 
one-sided t tests, which assess whether or not the DNA methylation levels at the specific CpG are significantly higher 
among the cases than among the controls, and vice versa. The reason for using two separate one-sided tests lies in the 
ability to combine their results as described below; nevertheless, one two-sided test works equally well if no combination 
of P values is intended. For the tiling region analysis (in c), the locus is segmented into equally spaced regions, and the 
statistical significance for each of these regions is assessed using a generalization of Fisher’s method151. This method 
combines the P values of all single CpGs that fall into the region while accounting for linear correlations between 
neighbouring CpGs (which are estimated to be at or below 0.8 on the basis of empirical observations for genome-wide 
bisulphite-sequencing data). The annotated genome analysis (in d) uses external genome annotation data to focus the 
statistical analysis on those combinations of CpGs that are likely to work together as an epigenetic switch: for example, by 
deactivating a known promoter or enhancer element. In all three cases, q values are calculated as estimates of the multiple-
testing-corrected false discovery rate (FDR)97, and a q value of 0.05 is used as the significance threshold for each direction 
of the comparison. Note that in this example the analysis of tiling regions increases the statistical power because 
neighbouring CpGs exhibit correlated changes in DNA methylation, and the incorporation of genome annotation data 
leads to further improvements, because the CpGs in the enhancer as well as those in the promoter exhibit a coordinated 
switch of their DNA methylation levels.
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q-value : estimation de taux de faux positives (False Discovery Rate, FDR )

Bock Nat Rev Genet 13 :705 (2012)
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Figure 3 | Effective identification of differentially methylated regions in a highly annotated genome.  
a | An illustrative example of differences in DNA methylation within the promoter region of a gene and at an upstream 
enhancer. For easier visualization, DNA methylation data are shown for only three cases and three controls (a realistic 
number would be hundreds of samples) and for ten CpGs in total (dozens to hundreds of CpGs are realistic numbers for a 
typical promoter region). b | When the DNA methylation levels between cases and controls are compared at the resolution 
of single CpGs, all multiple-testing-corrected q values exceed 0.05 and are therefore considered to be insignificant.  
c | When combining statistical evidence from neighbouring CpGs over a fixed distance (tiling regions highlighted in green), 
one region is identified as being significantly more highly methylated among the cases compared to the controls  
(q value = 0.048). d | When combining statistical evidence across all CpGs that can be assigned to the same functional 
element on the basis of external genome annotation data, two regions are identified as being differentially methylated: 
the upstream enhancer (highlighted in purple) is significantly more highly methylated in the cases (q value = 0.024), and the 
promoter region (in orange) is significantly more highly methylated in the controls (q value = 0.045). The figure is based on 
the following statistical methods. Differences in DNA methylation at single CpGs (in b) are identified by unpaired, 
one-sided t tests, which assess whether or not the DNA methylation levels at the specific CpG are significantly higher 
among the cases than among the controls, and vice versa. The reason for using two separate one-sided tests lies in the 
ability to combine their results as described below; nevertheless, one two-sided test works equally well if no combination 
of P values is intended. For the tiling region analysis (in c), the locus is segmented into equally spaced regions, and the 
statistical significance for each of these regions is assessed using a generalization of Fisher’s method151. This method 
combines the P values of all single CpGs that fall into the region while accounting for linear correlations between 
neighbouring CpGs (which are estimated to be at or below 0.8 on the basis of empirical observations for genome-wide 
bisulphite-sequencing data). The annotated genome analysis (in d) uses external genome annotation data to focus the 
statistical analysis on those combinations of CpGs that are likely to work together as an epigenetic switch: for example, by 
deactivating a known promoter or enhancer element. In all three cases, q values are calculated as estimates of the multiple-
testing-corrected false discovery rate (FDR)97, and a q value of 0.05 is used as the significance threshold for each direction 
of the comparison. Note that in this example the analysis of tiling regions increases the statistical power because 
neighbouring CpGs exhibit correlated changes in DNA methylation, and the incorporation of genome annotation data 
leads to further improvements, because the CpGs in the enhancer as well as those in the promoter exhibit a coordinated 
switch of their DNA methylation levels.
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(q value = 0.048). d | When combining statistical evidence across all CpGs that can be assigned to the same functional 
element on the basis of external genome annotation data, two regions are identified as being differentially methylated: 
the upstream enhancer (highlighted in purple) is significantly more highly methylated in the cases (q value = 0.024), and the 
promoter region (in orange) is significantly more highly methylated in the controls (q value = 0.045). The figure is based on 
the following statistical methods. Differences in DNA methylation at single CpGs (in b) are identified by unpaired, 
one-sided t tests, which assess whether or not the DNA methylation levels at the specific CpG are significantly higher 
among the cases than among the controls, and vice versa. The reason for using two separate one-sided tests lies in the 
ability to combine their results as described below; nevertheless, one two-sided test works equally well if no combination 
of P values is intended. For the tiling region analysis (in c), the locus is segmented into equally spaced regions, and the 
statistical significance for each of these regions is assessed using a generalization of Fisher’s method151. This method 
combines the P values of all single CpGs that fall into the region while accounting for linear correlations between 
neighbouring CpGs (which are estimated to be at or below 0.8 on the basis of empirical observations for genome-wide 
bisulphite-sequencing data). The annotated genome analysis (in d) uses external genome annotation data to focus the 
statistical analysis on those combinations of CpGs that are likely to work together as an epigenetic switch: for example, by 
deactivating a known promoter or enhancer element. In all three cases, q values are calculated as estimates of the multiple-
testing-corrected false discovery rate (FDR)97, and a q value of 0.05 is used as the significance threshold for each direction 
of the comparison. Note that in this example the analysis of tiling regions increases the statistical power because 
neighbouring CpGs exhibit correlated changes in DNA methylation, and the incorporation of genome annotation data 
leads to further improvements, because the CpGs in the enhancer as well as those in the promoter exhibit a coordinated 
switch of their DNA methylation levels.
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replicate information. Because current protocols for
bisulfite sequencing are costly, it is prohibitively expensive
to obtain sufficient biological replicates for both of two
conditions to be compared. Even when many biological
replicates are obtained in tissue preparation, some of them
are often combined into one sample before library gener-
ation for sequencing experiments (5–8). This makes it
impossible to establish the one-to-one correspondence
between biological replicates and database entries
[e.g. the SRX identifiers in the Sequence Read Archive
(SRA)]. Additionally, there are cases where biological rep-
licates are in principle difficult to obtain, such as retro-
spective studies using archival samples (9).
Another problem in previous studies has been the lack

of experiments to benchmark mC calling and DMR de-
tection in a systematic manner. For example, performance
of existing methods has not been extensively evaluated for
various mC contexts, read qualities, sequencing depths
and DMR lengths. Furthermore, it is common that
some methods are not included as competitors even
though their implementations are publicly available.
Here, we present Bisulfighter, a new software package

for analyzing bisulfite sequencing data. Bisulfighter uses
LAST (10) for alignment procedures in mC calling, and a
novel framework for DMR detection based on hidden
Markov models (HMMs) that enable automated adjust-
ment of DMC chaining criteria. Bisulfighter does not
require biological replicates for DMR detection, and
thus maintains applicability to data sets without biological
replicate information. We conduct extensive experiments
on simulated data as well as on real data, and demonstrate
that Bisulfighter consistently achieves better accuracy than
other published tools.

MATERIALS AND METHODS

Overview of Bisulfighter

Bisulfighter consists of the two modules that perform mC
calling and DMR detection, respectively. The mC calling
module in Bisulfighter aligns bisulfite-converted reads
using LAST. Unlike most existing aligners, LAST can
assess probability (or reliability) of each aligned read by
taking into account information of read quality and
multilocus mapping (11). We use these probabilities for
filtering out unreliable alignments, and for weighting mC
level estimates (Figure 1a). The DMR detection module in
Bisulfighter uses a novel framework named ‘ComMet’
(a shortening of ‘comparative methylomics’), which is
based on HMMs that capture probability distributions
of distances among neighbor DMCs (Figure 1b). Unlike
previous attempts that depend on empirical distance
parameters, Bisulfighter can use the expectation-
maximization algorithm for HMMs to adjust DMC
chaining criteria automatically for each data set.
Bisulfighter pools all biological replicates from one con-

dition as one sample, and detects DMRs between two
conditions by comparing a pair of two samples. Even if
biological replicates are not available (i.e. only one meas-
urement is available) from one condition, a sample can
still be prepared from that measurement. Therefore,

Bisulfighter is applicable to data sets without biological
replicate information. Bisulfighter can address either
single- or paired-end reads, produced from either whole-
genome bisulfite sequencing (WGBS) or reduced represen-
tation bisulfite sequencing (RRBS).

mC calling

For the read mapping procedure in Bisulfighter, we use a
local alignment program, LAST, as Frith et al. (10) have
recently reported that LAST maps bisulfite-converted
reads more accurately in shorter computation time
compared with other alignment programs. However,
they have focused only on binary classification of mCs,
and have not addressed estimation of mC levels (10)
(See the ‘Accuracy measure for mC calling’ section for

Figure 1. Overview of Bisulfighter. (a) mC calling. Bisulfite-converted
reads are aligned to a reference genome, and the mC level is estimated
as a ratio of C–C matches. A major feature is the utilization of align-
ment probability for filtering out unreliable alignments, and for
weighting mC level estimates. (b) DMR detection. Neighbor cytosines
differentially methylated between paired samples are grouped as a
DMR (UP or DOWN). A novel HMM-based framework enables auto-
matic learning of chaining criteria, and detection of DMRs using like-
lihood ratio scores. Colors in the state transition track correspond to
those in the state transition diagram at the top. NoCh: no change of
methylation between paired samples.
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→ 2 échantillons
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