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? polymorphisme d’un seul nucléotide (SNP=Single Nucleotide Polymorphisms),
petits indels

? variation structurale
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Figure 1 | Classes of structural variation. Traditionally, structural variation refers  
to genomic alterations that are larger than 1 kb in length, but advances in discovery 
techniques have led to the detection of smaller events. Currently, >50 bp is used as  
an operational demarcation between indels and copy number variants (CNVs). The 
schematic depicts deletions, novel sequence insertions, mobile-element insertions, 
tandem and interspersed segmental duplications, inversions and translocations in a 
test genome (lower line) when compared with the reference genome.

Array comparative genomic 
hybridization
(Array CGH). A technique 
based on competitively 
hybridizing fluorescently 
labelled test and reference 
samples to a known target 
DNA sequence immobilized  
on a solid glass substrate  
and then interrogating the 
hybridization ratio.

SNP microarrays
Hybridization-based assays  
in which the target DNA 
sequences are discriminated 
on the basis of a single  
base difference. Assays are 
processed with a single sample 
per array and perform both 
SNP genotyping and 
copy-number interrogation.

Single-base extension
Single-base-extension 
reactions use a primer that 
binds to a region of interest 
and follow this with an 
extension reaction that allows 
the incorporation of a single 
base after the primer.

technologies infer copy number gains or losses com-
pared to a reference sample or population, but differ in 
the details and application of the molecular assays.

Array CGH. Array CGH platforms are based on the 
principle of comparative hybridization of two labelled 
samples (test and reference) to a set of hybridization tar-
gets (typically long oligonucleotides or, historically, bac-
terial artificial chromosome (BAC) clones). The signal 
ratio is then used as a proxy for copy number (see BOX 1 
for details). An important consideration is the effect of 
the reference sample on the copy-number profile. For 
example, when only one sample is examined, a loss in the  
reference sample is indistinguishable from a gain in  
the test sample. For this reason, a well-characterized ref-
erence is key to interpretation of array CGH data19. Early 
studies of germline CNVs were based on BAC arrays or 
low-resolution oligonucleotide platforms and allowed 
detection of CNVs typically greater than 100 kb1,2,6 
(BOX 2). These initial studies highlighted the incred-
ible number of CNVs observed in healthy individuals; 
however, the breakpoints of these alterations were not 
sufficiently well-defined to allow accurate assessment of 
the proportion of the genome altered or its gene con-
tent. This led to a drastic overestimation of the extent 
of copy-number polymorphism using large-insert BAC 
clones2, which was subsequently refined by oligonucle-
otide microarrays or sequence-based studies of the same 
DNA samples4,5,20,21.

Currently,  Roche NimbleGen and Agilent 
Technologies are the major suppliers of whole-genome 
array CGH platforms and routinely produce arrays with 
up to 2.1 million (2.1M) and 1M long oligonucleotides 
(50–75-mers), respectively, per microarray. Detection of 
a CNV typically requires a signal from at least 3 to 10 

consecutive probes (BOX 1); as a result, SNP and CGH 
microarrays can routinely detect anywhere from dozens  
to several hundred events per genome depending on the 
platform applied (BOXES 1,2). Two studies have recently 
used ultra-high-resolution arrays (24M to 42M probes) 
for array CGH-based SV discovery in samples from 
HapMap individuals5,19. Although such high-density 
arrays are not practical for a large number of samples 
(30 and 40 samples were used in these studies), these 
approaches enabled the discovery of CNVs down to 
500 bp, with breakpoints precise enough to allow the 
identification of sequence motifs at a subset of vari-
ants. One key advantage of array CGH platforms is 
the availability of custom, high-probe-density arrays 
from both major manufacturers. This has led to their 
widespread adoption in clinical diagnostics, essentially 
replacing karyotype analysis as the primary means of 
detecting copy-number alterations among children with 
developmental delay22.

SNP arrays. SNP microarray platforms are also based on 
hybridization, with a few key differences from CGH tech-
nologies. First, hybridization is performed on a single  
sample per microarray, and log-transformed ratios are 
generated by clustering the intensities measured at each 
probe across many samples20,23,24. Second, SNP platforms 
take advantage of probe designs that are specific to 
single-nucleotide differences between DNA sequences, 
either by single-base-extension methods (Illumina) or 
differential hybridization (Affymetrix)20,23,24. One key 
disadvantage is that, per probe, SNP microarrays tend to 
offer lower signal-to-noise ratio than do the best array 
CGH platforms. This is apparent in comparisons of  
array CGH and SNP platforms in terms of detection  
of CNVs by a purely ratio-based approach24–27. However, 
a key advantage of SNP microarrays is the use of SNP 
allele-specific probes to increase CNV sensitivity, dis-
tinguish alleles and identify regions of uniparental  
disomy through the calculation of a metric termed B 
allele frequency (BAF) (BOX 1).

SNP arrays have proved popular in CNV-detection 
studies, historically as complements to array CGH 
platforms for fine-mapping regions2 and currently in 
the large-scale discovery of CNVs in a broad variety of 
populations16,20,23,28,29. Early SNP arrays demonstrated 
poor coverage of CNV regions, but recent arrays (such 
as the Affymetrix 6.0 SNP and Illumina 1M platforms) 
incorporate better SNP selection criteria for complex 
regions of the genome and non-polymorphic copy-
number probes (which are examined for log ratios but 
not BAF)20,23,30. Another important consideration is the 
choice of population because the average heterozygosity 
affects the proportion of SNPs that will generate a mean-
ingful BAF signal (typically, heterozygosity is 30–40% in 
Illumina platforms). This is particularly relevant when 
dealing with populations that may have experienced a 
drastic bottleneck, as opposed to more outbred popula-
tions, and thus may affect the number of probes needed 
to identify an alteration23,24. Some studies combine array 
CGH and SNP platforms to offer higher confidence in 
CNV detection2,20,30.
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? copy number variation
(=duplication de > 50pb, incluant chromosomes complets)

Alkan, Coe & Eichler Nature Reviews Genetics 12 :363 (2011)
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? CGH (comparative genomic hybridization) sur puce⇒ copy number variation
? puces SNP
? séquençage
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bases appellées dans une position : Z = {(z1, q1), (z2, q2), . . . , (zn, qn)
}

génotypes possibles (non-ordonnés) : 4 homozygotes, 6 hétérozygotes

génotype inconnu : Y

P
{
Y = y1y2

∣∣∣∣ Z} ∝ P
{
Z
∣∣∣∣ Y = y1y2

}
︸ ︷︷ ︸
vraisemblance de y1y2

× P
{
y1y2

}
︸ ︷︷ ︸

prob. de génotype y1y2

calculer P
{
Z
∣∣∣∣ Y = y1y2

}
pour homozygotes (y1 = y2) ou hétérozygotes

(y1 6= y2) . . .



Génotypes : Hardy-Weinberg
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équilibre Hardy-Weinberg :
? population infinie
? générations discrètes
? panmixie
? ∅ mutations, immigration, sélection
fréquence d’allèles : type naturel (A) avec p, mutant (a) avec q = 1− p

fréquence de génotypes diploı̈des : AA ∼ p2, Aa ∼ 2pq , aa ∼ q2

reste constante . . .



Fréquences de SNPs
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minor allele frequency (MAF) : fréquence d’allèle mutant dans la population (q)

SNPs fréquents (MAF > 10%) et rares (MAF < 5%)

HAPMAP : puces SNP (phase I 2005, phase II 2009)

1000 Genomes

populations : CEU (Amérique du Nord, ancêtres européens), YRI (Yoruba, Nige-
ria), JPT (Japon), CHB (Han) ; ASW (afro-américains), GIH (Gujarati de Houston),
MEX (mexicains de Los Angeles), LWK (Luhya, Kenya), . . .

⇒ MAF spécifique aux populations

dbSNP : base de données sur fréquence de SNPs
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? séquençage directe de haplotypes (très cher)
? à partir des lectures (distribuer les lectures à deux haplotypes)
? par héritage (séquencer les parents)
? par haplotypes de référence



Haplotypage — lectures
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Fig. 3. The SNP conflict graph. (a) A hypothetical data set consisting of five fragments

sequenced at four sites. (b) Highlight of a SNP conflict between columns 1 and 3 of (a), using rows

1, 3, and 5. (c) Highlight of a SNP conflict between columns 1 and 4 of (a) using rows 2, 3, and 5.

(d) The SNP conflict graph for (a), with edges corresponding to the conflicts shown in (b) and (c).

define a SNP conflict graph GS = (VS , ES) specifying SNP pairs that are inconsistent
with having come from at most two haplotypes. For the SNP conflict graph, |VS | = n

(one vertex per SNP) and ES is defined as follows:

ES = {(vi, vj)|vi, vj 2 VS

^
9k1, k2, k3 s.t.

((fk1i, fk1j) 6= (fk2i, fk2j)) ^ ((fk1i, fk1j) 6= (fk3i, fk3j)) ^ ((fk2i, fk2j) 6= (fk3i, fk3j)) ^
(fk1i 6= ‘°0) ^ (fk1j 6= ‘°0) ^ (fk2i 6= ‘°0) ^ (fk2j 6= ‘°0) ^ (fk3i 6= ‘°0) ^ (fk3j 6= ‘°0)}

Informally, ES is the set of SNP pairs for which at least three haplotypes are observed
across all genotypes. When two SNPs conflict then the set of fragments covering
those sites cannot be resolved into two haplotypes without disagreements among the
fragments of at least one haplotype. Fig. 3 illustrates the construction of GS .

2.2. Problem Formulations. In general, data will not be error free and thus
GF may not be bipartite. Conflicts may occur because of sequencing errors, which
introduce erroneous SNP values into individual fragments, and paralogous misrecruit-
ment, which introduces erroneous fragments into the data set. DiÆerent problem for-
mulations reflect diÆerent ways of inducing some bipartite G0

F close to GF . Our first
formulations of the haplotype assembly problem approximately captures the intuition
that sequencing errors are the main source of conflicts in haplotypes:

Minimum edge removal (MER) [19]: Find V1, V2 µ VF

such that V1 [ V2 = VF minimizing
P

vi,vj2V1
w(vi, vj) +P

vi,vj2V2
w(vi, vj).

Note that although we define MER to minimize edge weights, we could alternatively
define an unweighted version of the problem:

on veut un graphe biparti — formulations différentes

Schwartz 2010
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HAPLOTYPE ASSEMBLY PROBLEM 29
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Fig. 4. Illustration of haplotype assembly problem variants. (a) Minimum edge removal (MER).

(b) Minimum fragment removal (MFR). (c) Minimum SNP removal (MSR). (d) Minimum error

correction (MEC). (e) Longest fragment reconstruction (LFR).

Unweighted minimum edge removal (UMER) [19]:

Find V1, V2 µ VF such that V1 [ V2 = VF minimizing
|{(vi, vj) 2 EF |vi, vj 2 V1 _ vi, vj 2 V2}|.

MER is illustrated in Fig. 4(a). We assume that we need to remove some subset
of the edges of GF (marked in grey in the figure) to produce a bipartite graph on all
nodes. We may then have conflicting fragments assigned to a given chromosome and
must choose consensus SNP alleles for each chromosome to derive the two haplotypes.
Although it does not precisely correspond to any reasonable error model, MER can
nonetheless be a useful formulation algorithmically because it reduces the the problem
to a well-studied graph optimization problem, Maximum Cut [11].

An analogous formulation of the problem can also be derived from the fragment
conflict graph:

Minimum fragment removal (MFR) [14]: Find V1, V2 µ VF

minimizing |VF /(V1 [ V2)| such that V1 \ V2 = ; and @vi, vj 2 V1

s.t. (vi, vj) 2 E and @vi, vj 2 V2 s.t. (vi, vj) 2 EF .

Informally, the problem is to remove as few fragments as possible so as to leave a
bipartite fragment conflict graph. The remaining graph will then be conflict-free and
we can therefore easily derive the two haplotypes from its bipartition. This variant
is illustrated in Fig. 4(b), which shows how we can remove some subset of the nodes
of GF (marked in grey) to produce a bipartite graph on the remaining nodes. MFR

problèmes NP-difficiles . . .
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recombinaisons en meı̈ose chez père ou mère — exemple : quartet (2 parents, 2 enfants)

enfants : identiques, haploidentiques (mère ou père seulement), ou différents ;

génotypage joint avec HMM : 4 états de héritage + 2 états d’erreur (compression/CNV et erreurs) ;

émissions : erreur avec 0.5% (ou 30% dans l’état d’erreur), sinon respecter règles ; compression : hétérozygotes fréquentes
Figure S2A 
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Figure S2B 
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gametes is therefore 2n, where n is the number of
meioses in a pedigree. In a nuclear family of four,
the Mendelian inheritance patterns can be grouped
into four inheritance states for each variant po-
sition, with children receiving (i) the same allele
from both the mother and the father (identical), (ii)
the same allele from the mother but opposites
from the father (haploidentical maternal), (iii) the
same allele from the father, but opposites from the
mother (haploidentical paternal), or (iv) opposites
from both parents (nonidentical) (fig. S2). Adja-
cent variant base pairs in alignments of the family
genomes have the same inheritance state unless a
recombination has occurred between these bases
in one of the meioses. This delineates inheritance
blocks.

Many algorithms can identify the boundaries
of blocks, and theory-driven implementations
are in wide use (5–7). For our complete genome
sequence data, we developed an algorithm to
identify all states, including non-Mendelian
states. One non-Mendelian state will occur in
regions where highly similar sequences are in-
advertently compressed computationally (for ex-
ample, during sequence assembly of CNVs).
In such a “compression block,” many positions
will appear to be heterozygous in all individuals,
regardless of the inheritance patterns of the po-
sitions contributing to the compression. Other non-
Mendelian patterns are seen in regions prone to
errors in sequence calling or assembly or that
have inherited hemizygous deletions. For both of
these patterns, many positions will be observed
as Mendelian inheritance errors (MIEs). Our al-
gorithm identified six states: one for each of the
four Mendelian inheritance states, one for a com-
pression state, and one for a MIE-prone state (4).
We identified 1.5% of the genome in this pedi-
gree as 409 compression blocks and 1.7% as 126
error-prone blocks. Because these blocks are a
source of false positives for recombination pre-
dictions, SNPs, and disease candidate alleles, their
identification is important (Fig. 1). The power to
precisely determine inheritance-state boundaries
is striking in families of at least four and would
be reduced had we sequenced fewer individuals
(Fig. 2). Meiotic gene conversions could in prin-
ciple be recognized in the same way as inheritance
blocks; theywould be indistinguishable froma short
region flanked by meiotic recombinations in the
same meiosis. We found that the great majority of
candidate gene-conversion regions were caused
by reads mismapped to repetitive DNA, such as
CNVs or satellites, and did not conclusively
identify gene-conversion regions.

Recombination in maternal meioses is thought
to occur 1.7 times more frequently than in pa-
ternal meioses (8). We inferred 98 crossovers in
maternal and 57 in paternal meioses (count in-
cludes both offspring), which is consistent with
this estimate. The median resolution of the 155
crossover sites was 2.6 kb, with a few sites local-
ized within a 30-bp window (Fig. 1). Crossover
sites were significantly correlated with hotspots of
recombination as inferred from HapMap data, in

which a hotspot is defined as a region with ≥10
centimorgan (cM)/Mb; 92 of the 155 recombina-
tions took place in a hotspot.

By identifying inconsistencies across the 22%
of the genomes of the two children in “identi-
cal” blocks, for which they are effectively twins,
we computed an error rate of 1.0 × 10−5. We also
determined error rate through other methods, in-
cluding resequencing, which gave similar esti-
mates, ranging from 8.1 × 10−6 to 1.1 × 10−5 (4).
Furthermore, ~70% of the errors in a four-person
pedigree can be detected as apparent MIEs and
inconsistencies in inheritance state blocks, so
the effective base-pair error rate in the context
of a pedigree is ~3 × 10−6.

Analysis of the mutation rate, including germ-
line and early embryonic somatic mutations, re-
quires highly accurate sequence data. Even with
such data, however, most apparent aberrations
in allele inheritance will be due to errors in the
data and not to mutation. Our data had thou-
sands of such false-positive candidates for each
true de novo mutation. Our initial data encom-
passed 2.3 billion bases and contained 49,720
candidate MIEs that were consistent with the
presence of a single-nucleotide mutation. After
excluding sites in MIE-prone and compression

states as well as sites that were unsuitable for
probe design, 33,937 potential mutations among
1.83 billion bases remained. We resequenced
each of these candidates and applied a stringent
base-calling algorithm to confirm 28 candidates
as de novo mutations. In a final confirmation
step, we verified all 28 mutations with mass
spectrometry (table S3) (4), corresponding to a
mutation rate of 3.8 × 10−9 per position per
generation per haploid genome.

Because the raw estimate of 3.8 × 10−9 does
not account for the true mutations that were not
conclusively identified through resequencing,
we estimated a false-negative rate by applying
the base-calling algorithm to 5 Mb of indepen-
dent resequencing data, divided into 25 random-
ly selected regions of the genome. A comparison
of the resequencing data with the complete
genome sequence for the same regions provided
a de novo mutation false negative rate of 0.662
[95% confidence interval (CI) 0.644 to 0.680].
Adjusting for the false-negative rate produced
an unbiased mutation rate estimate of 1.1 × 10−8

per position per haploid genome, corresponding
to approximately 70 new mutations in each
diploid human genome (95% CI of 6.8 × 10−9

to 1.7 × 10−8) (4). In great apes, CpG sites are

Fig. 1. The landscape of recombination. Each chromosome in this schematic karyotype is used to
represent information abstracted from the four corresponding chromosomes of the two children in the
pedigree. It is vertically split to indicate the inheritance state from the father (left half) and mother (right
half), as shown in the key. The three compound heterozygous (DHODH, DNAH5, and KIAA0556) and one
recessive (CES1) candidate gene, depicted by red bands, lie in “identical” blocks. (Inset) Scatterplot of
HapMap recombination rates (in centimorgans per megabase) within the predicted crossover regions. The
maximum value of centimorgans per megabase found in each window is shown in red. The left his-
togram shows the size distribution of recombination windows (log10 value of –0.58 T 0.92). The top
graph shows the centimorgans per megabase distribution for the observed maximal values (red), for
similarly sized windows shifted by 6 kb (orange), and for similarly sized windows randomly chosen from
the entire genome (blue). A shift of 6 kb from the observed locations eliminates the correlation with
hotspots. Of 155 recombination windows, 92 contained a HapMap site with >10 cM/Mb. Only five
randomly picked windows are expected to contain such high recombination rates.

www.sciencemag.org SCIENCE VOL 328 30 APRIL 2010 637
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HMM à partir des haplotypes connus dans la population :

2. LIKELIHOOD MODEL

2.1. Overview

Previous methods for haplotype assembly (He et al., 2010) focused on finding the haplotype and the
assignment of reads to each haplotype such that the number of conflicts between the reads and the predicted
haplotypes is minimized. In our framework, we formulate the same intuition by computing the likelihood of
a pair of haplotypes as the probability of the reads, given the haplotypes using a simple error model
averaged over all possible partitions of the reads into chromosomal origin. Thus, we compute the likelihood
with respect to the reads

likelihoodreads = P(readsjhap1‚ hap2)

where hap1 and hap2 are the (unknown) haplotypes of an individual.
We also take into account information from the reference dataset. We compute the probability of a pair

of haplotypes in which each haplotype is represented as a mosaic of reference haplotypes, which is the
standard HMM model for imputation. Thus, we compute the likelihood with respect to the reference
dataset, or the imputation likelihood,

likelihoodimputation = P(hap1‚ hap2jreference)

Figure 1 shows the two types of data, sequencing reads and reference dataset. Since these two types of data
are independent, we represent the likelihood of a haplotype given the reads and the reference dataset by the
joint likelihood, which is the product of the two likelihoods

L(hap1‚ hap2) = likelihoodreads · likelihoodimputation / P(hap1‚ hap2jreads‚ reference)

Our goal is to reconstruct a pair of haplotypes hap1, hap2 such that this likelihood is maximized. We call
this objective function MIR (Most likely Imputation based on Reads).

2.2. Likelihood with respect to sequence reads

We will follow the notation by He et al. (2010) for the haplotype assembly problem. Given a reference
genome sequence and the set of reads containing sequence from both chromosomes, we align all the reads
to the reference genome. However, unlike the haplotype assembly problem, where the homozygous sites
(columns in the alignment with identical values) are discarded, we need to maintain the homozygous sites

FIG. 1. An illustration of re-
constructing the pair of haplotypes
as well as the imputation paths for
each haplotype given a set of ref-
erence sequences and a set of se-
quencing reads that contains errors.

82 HE ET AL.

e is the sequencing error rate. R0(i, r1, r2) is sum of the likelihoods of all the partitions weighted by the
probability of each partition, namely

R0(i‚ r1‚ r2) =
X2ai

l = 1

R0(l‚ i‚ r1‚ r2) P (partition l) =
X2ai

l = 1

R0(l‚ i‚ r1‚ r2)=2ai (2)

assuming there are totally ai reads starting at position i, 2ai is the total number of possible partitions and the
probability of each partition is equal to 1

2ai
.

Consider the two complete haplotypes h1
max 2 H(i‚ r1) and h2

max 2 H(i‚ r2) that maximize the likelihood
of the reads and by definition, their likelihood is R(i, r1, r2). For these haplotypes, R and R0 have the
following relationship:

R(i‚ r1‚ r2) =
Yi

f = 1

R0(f ‚ r01‚ r02) (3)

where r01 and r02 are length k suffixes of the partial haplotypes of h1
max and h2

max with suffix starting position f.
R0 is computed for every possible suffix at each position of the dynamic programming. The dynamic

programing uses the value of R0(i, r1, r2) and the four values of R(i - 1, x, y), where the suffix of x is a prefix of r1

and the suffix of y is a prefix of r2, to compute R(i, r1, r2) (see He et al., 2010, for details). For high sequencing
coverage, we can compute just the likelihood of the most likely partition that approximates Equation (2).

2.3. Likelihood with respect to reference dataset

We use an HMM model, which is the basis of the widely used imputation methods (Marchini et al.,
2007; Kang et al., 2010; Li et al., 2010). Given a binary string r, in the HMM, for each SNP at position i, we
consider the HMM state with value Si,j corresponding to the j-th reference haplotype hj, where 1 £ j £ m.
We define the transition probability from the state Si,j to the state Si + 1,y as t(i,j),(i + 1,y) where 1 £ y £ m. We
assume that t(i, j), (i + 1, y) is the same for all y s j. (Once the transition occurs, the transition probabilities to
all possible states are equal.) We also define the emission probability from the state Si, j to the observed i-th
SNP r[i] as li, j. The emission probability models the mutations, and we assume that the mutation rate for
all the SNPs are the same. The emission probability li, j is defined as the following:

li‚ j = 1 - l hj[i] = r[i]
l otherwise

!

where l is the mutation rate. In this work, we assume we know the mutation rate and the transition
probabilities. An example of the HMM is shown in Figure 2.

FIG. 2. Example to illustrate the
hidden Markov model (HMM).
There are in total m reference se-
quences and 3 SNP locus. The gi-
ven string r is ‘‘ATC,’’ and the
optimal imputation path is high-
lighted in red.

84 HE ET AL.

He, Han & Eskin J Comput Biol 20 :80 (2013)



Imputation 2

Variantes 2 ? IFT6299 H2014 ? UdeM ? Miklós Csűrös xiv

HMM : n individus diploı̈des, 2n haplotypes, états (x, y) = indice des haplotypes identiques
transitions : constante ou incorporer fréquence de recombinaisons (LD = linkage
disqeuilibrium)

émissions : même génotype que (x, y) ou permettre les mutations ?
aligner les lectures aux haplotypes (Hap-seq) ou génotypes indépendants (puces /
MaCH) ?

calcul : MCMC ou forward-backward ou Viterbi


