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IBD ? IFT6299 H2014 ? UdeM ? Miklós Csűrös ii

entre deux individus reliés, on copte sur l’identité de haplotypes par descente

GE46CH28-Browning ARI 3 October 2012 16:38
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Figure 1
Identity by descent (IBD) on chromosome 1 for half-siblings and fifth cousins. Chromosome 1 is approximately 250 Mb long and has a
genetic length of approximately 280 cM. The common ancestors’ copies of chromosome 1 are shown in various colors, and tan
represents all other haplotypes. Regions of IBD are shown with black bars.

shared ancestry are approximately exponen-
tially distributed with a mean of 100 m−1 cM.
Thus, for example, fifth cousins (see Figure 1)
are separated by 12 meioses. On average, 0.05%
of their genome, or approximately 1.5 cM
(∼1.5 Mb), is identical by descent through
their great-great-great-great grandmother. If
they are full fifth cousins, they may also have
IBD sharing through their great-great-great-
great grandfather, which doubles the expected
IBD proportion to 0.1% of their genome, or
approximately 3 cM (∼3 Mb). However, fifth
cousins usually have no detectable IBD sharing,
and when they do have IBD sharing it is usually
composed of a single IBD segment with a
mean length of 8.3 cM (∼8 Mb). Extrapolating
further, individuals who have shared ancestry
through a certain common ancestor 25 genera-
tions ago (with 50 meioses of separation) almost
always share none of their genome identical by

descent through that ancestor, but if they do
have an IBD segment through that ancestor it
will have a mean length of 2 cM (∼2 Mb).

Any given pair of individuals is related
through many common ancestors. For a pair
of individuals on different continents, the
relationships may be too distant to result in
detectable IBD sharing. However, pairs of
individuals from the same geographic region
may have many recent common ancestors.
Such individuals may, however, have only one
or two detectable IBD segments, as many of
the relationships have not resulted in any IBD
sharing.

In a data set with N unrelated individu-
als, there are N(N-1)/2 pairs of individuals.
Although any given pair has very little IBD
sharing, the total amount of IBD sharing in the
sample, and the total amount per individual,
can be large.
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Segments IBD
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centiMorgan : distance sur laquelle 0.01 recombinaisons occurrent en une génération

génome humain : 106 pb ≈ 1 cM

distance de m générations : proportion de génome partagée 1/2m−1

longueur de segment : 100/m cM

⇒ cousins de 5e degré : partagé 3000 Mb
211 ≈ 1.5 cM en moyenne venant de

chaque grand5parent, de longueur 8.3 cM en moyenne ; aucun segment en com-
mun avec ≥ 65% probabilité :

2 · 1.5
3.5

= 0.35
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Mode d’identité (Jacquard)
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x/x x/x

x/x x/y

x/y x/x

A
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x y
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The system of equations (4) can be written in matrix form as

F ·

0BBBBBBBBBBBB@

�1

�2

�3

�4

�5

�6

�7

�8

�9

1CCCCCCCCCCCCA
=

0BBBBBBBBBB@

f̄1111

f̄1101

f̄0111

f̄0101

f̄1100

f̄0011

f̄0100

f̄0001

1CCCCCCCCCCA
. (5)

The matrix in Eq. (5) is

F

=

0BBBBBBBBBB@

a a� b a� b a� b� c a� b a� b� c a� b a� b� c a� b� c� d
0 0 b 2c 0 0 0 c 2d
0 0 0 0 b 2c 0 c 2d
0 0 0 0 0 0 2b b 4c� 4d
0 b 0 b� c 0 c 0 0 c� d
0 b 0 c 0 b� c 0 0 c� d
0 0 0 0 b 2b� 2c 0 b� c 2b� 4c + 2d
0 0 b 2b� 2c 0 0 0 b� c 2b� 4c + 2d

1CCCCCCCCCCA
(6)

with
a = µ, b = µ� µ2, c = µ2 � µ3, d = µ3 � µ4.

1.3 Coancestry is not identifiable

The matrix Equation (5) links nine parameters (�j) tp eight estimable quantities
(f̄xyzu), and the Jacquard coefficients are thus undetermined. The constraint

P
j �j =

1 does not restrict the solution space because it is already encoded in the joint geno-
type distribution: let

u =
�
1 3

4
3
4

1
2

1
2

1
2

1
4

1
4

�
.

By Equation (6),

uF =
�
a a a a a a a a a

�
Using the Exome Variant Server’s data, we can get an idea of the magnitude for

µ, µ2, µ3, µ4. Table 1 shows that second- and even higher-order moments cannot
be ignored in the formulas, as the contribution from frequent SNPs keep them high.
Table 1 estimates that µ2 ⇡ 0.26µ, µ3 ⇡ 0.09µ and µ4 ⇡ 0.4µ.
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Unordered genotypes 
The probability of unordered 
genotypes does not require 
specifying which genotype 
belongs to which individual (for 
example, which is for the 
parent and which is for 
the child). By contrast, the 
probability of ordered 
genotypes requires this 
information.

For a single individual, the two alleles at a locus are 
either IBD or not IBD with probabilities F and (1 – F), 
respectively. In the first situation, the IBD alleles must 
be the same type, so the chance that they are both of 
type Ai is the same as the chance that either of them 
is of that type; this is the population frequency Pi of 
that allele. If two alleles at a locus are not IBD then 
they are independent and each has its own chance Pi 
of being of type Ai. The probability (Pr) of a homozy-
gote AiAi is therefore Pr(AiAi) = FPi + (1 – F)Pi

2, and 
the corresponding result for a heterozygote AiAj, i ≠ j is 
Pr(AiAj) = 2(1 – F)PiPj. The factor of 2 allows for each 
allele to be either maternal or paternal. The same logic 
leads to the joint probabilities of all seven possible pairs 
of unordered genotypes, which are shown in TABLE 2. 

Distinguishing between relationships. In paternity testing, 
it is necessary to decide whether an individual is the 

father of a child or unrelated to the child. For remains 
identification, it is necessary to decide whether the 
remains are from a person with a specified relationship 
to a family member of a missing person. Although an 
absolute determination of relationship cannot be made, 
it is possible to find which of the competing putative rela-
tionships makes the observed genotypes most probable 
by using likelihood ratios, which compare the probabilities 
of the observed genotypes under alternative hypotheses 
about relationships. For non-inbred relatives, when 
only the three relationship coefficients are needed, and 
in the case in which the alternative is that the individu-
als are unrelated, the likelihood ratio has a simple form4 

(Supplementary information S1 (box)).
Approaches based on likelihood ratios have been 

used since the earliest days of paternity testing. Here, 
the putative relationships are that the alleged father is 
indeed the father of a child or that he is unrelated to 
the child, and the likelihood ratio is called the paternity 
index. In a forensic setting, the relationship alternatives 
might be ‘self ’ or ‘unrelated’: the suspect in a crime is 
either the source of a biological stain or is unrelated to 
the source of that stain.

More recently, a likelihood ratio expression was used4 

to identify remains from the World Trade Center; geno-
types from tissue found at the site and from a family 
member of a missing person were examined for pos-
sible full-sibling or parent–offspring relationships. This 
approach considerably reduced the number of calcula-
tions that would have been necessary if all the possible 
relationships between a tissue sample and everyone who 
had lost a relative were considered. In practice it can be 
difficult to distinguish between full- and half-siblings, 
because loci with the same genotype are more common 
in full-siblings whereas loci with different genotypes 
are more common in half-siblings5. Nevertheless, 
provided the two degrees of relationship that are being 

Table 1 | Identity-by-descent probabilities for common, non-inbred relatives

Relationship k2 k1 k0 θθ = k1/4 + k2/2   

Identical twins 1 0 0 1/2

Full-siblings 1/4 1/2 1/4 1/4 

Parent–child 0 1 0 1/4 

Double first cousins 1/16 3/8  9/16 1/8 

Half-siblings* 0 1/2 1/2 1/8

First cousins 0 1/4 3/4 1/16

Unrelated 0 0 1 0
*Also grandparent–grandchild and avuncular (for example, uncle–niece). The table shows the 
three identity-by-descent probabilities (k0–2) and the coancestry coefficients (θ ) for common 
relationships. Note that the coancestry coefficient for full-siblings and parent–child is the same 
(1/4), but that the pattern of allele sharing is different in each case (that is, there is a different set 
of k values). ki, the probability of sharing i number of identical-by-descent alleles (where i = 0–2; 
see also BOX 1; FIG. 1; θ, the coancestry coefficient of two individuals (equivalent to the 
inbreeding coefficient of their offspring).

Table 2 | Joint genotypic probabilities

Genotypes Genotypic 
state 

Number of 
shared alleles

General Non-inbred

1 AiAi, AiAi Hom/hom 2 ∆1Pi + (∆2 + ∆3 + ∆5 + ∆7)Pi
2 + (∆4 + ∆6 + ∆8)Pi

3 + ∆9Pi
4 k2Pi

2 + k1Pi
3 + k0Pi

4

2 AiAi, AjAj Hom/hom 0 ∆2PiPj + ∆4PiPj
2 + ∆6Pi

2Pj + ∆9Pi
2Pj

2 k0Pi
2Pj

2

3 AiAi, AiAj Hom/het 1 ∆3PiPj + (2∆4 + ∆8)Pi
2Pj + 2∆9Pi

3Pj k1Pi
2Pj + 2k0Pi

3Pj

4 AiAi, AjAm Hom/het 0 2∆4PiPjPm + 2∆9Pi
2PjPm 2k0Pi

2PjPm

5 AiAj, AiAj Het/het 2 2∆7PiPj + ∆8PiPj(Pi + Pj) + 4∆9Pi
2Pj

2 2k2PiPj + k1PiPj(Pi + Pj) + 4k0Pi
2Pj

2

6 AiAj, AiAm Het/het 1 ∆8PiPjPm + 4∆9Pi
2PjPm k1PiPjPm + 4k0Pi

2PjPm

7 AiAj, AmAl Het/het 0 4∆9PiPjPmPl 4k0PiPjPmPl

The table shows seven distinct patterns of genotypes that are possible for two unordered individuals, and the probabilities of these pairs of genotypes in general, or 
assuming no inbreeding. Two genotypes could be homozygous (hom) for the same or different alleles (rows 1 and 2), one could be homozygous and the other 
heterozygous (het) with one or zero shared alleles with the homozygote (rows 3 and 4), or both individuals could be heterozygous with two, one or zero shared 
alleles (rows 5–7). There are nine pairs of genotypes if the ordering of individuals is important (not shown), as the genotypes in rows 3 and 4 (one homozygote and 
one heterozygote) each have two orders. ki, the probability of sharing i number of alleles that are identical-by-descent (where i = 0–2; see also FIG. 1); P, allele 
frequency; ∆1–9, Jacquard coefficients, which are measures of identity-by-descent status (BOX 1; FIG. 1).
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→ probabilité d’émission pour HMM avec états ∆i

Weir & al. (2012)
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Problèmes

I. On a 2 individus — on veut identifier le niveau exact de parenté :
kcoeffs, CARROT

II. Identifier des liens de parenté dans une population : on a n génomes (diploides)
— on veut identifier les paires d’individus avec segments IBD :
fastIBD, GERMLINE, . . .



Quantification
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coefficient de consanguinité γ (inbreeding coefficient) :
probabilité d’IBD entre les 2 allèles du même individu

modèle iid (allèle A avec p, a avec q = 1−p) + consanguinité : proba de génotypes
non-ordonnés

φ
(
Aa
)

= 2(1− γ)pq

φ
(
AA
)

= p2
(

1 + γ
q

p

)
φ
(
aa
)

= q2
(

1 + γ
p

q

)

avec γ = 0 : coefficients de Cotterman pour fréquences de IBD0, IBD1, IBD2



Méthode de Lee
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homozygotes discordantes (D) : (AA, aa) ou (aa,AA)
hétérozygotes concordantes (C) : (Aa,Aa)

probabilités sans IBD : d = PD = 2p2q2, c = PC = 4p2q2

compter seulement les sites C ou D : X1, X2, . . . , Xn ∈ {0,1} où Xi = 1
dénote des hétérozygotes concordantes

définir le compte NC =
∑n
i=1Xi ; on a

ENC =
2n

3
; VarNC =

2n

9

⇒ test d’hypothèse : NCn ∼ N
(

2/3,
√

2
3n

)
si indépendents

si IBD, alors ENC > 2n/3 ;
si populations différentes (aucun IBD, p différentes), ENC < 2n/3

Lee Annals of Human Genetics, 67 :618 (2003)



kcoeff
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distribution jointe de IBS2∗ ratio = NC
NC+ND et NC+ND

NC+ND+Nautres

no IBS2*_ratio values .2/3 (e.g. 0.70). Surprisingly, we observed
25 data points with values .0.70 that potentially corresponded to
familial relationships (Table 1 includes a subset of 16 of these
pairwise comparisons for which we obtained evidence of familial
relationships, as discussed below; 6 other relationships in the table
with IBS2*_ratio values ,0.70 are described below). The CAU
group included a pair of identical samples (Figure 1A arrow,
corresponding to NA17255/NA17263). The IBS2*_ratio value
was near 1.0 for this pairwise comparison, as expected for identical
samples that lack essentially all IBS0 calls. This relationship is

supported by plotting IBS for each chromosomal position across
all autosomes using SNPduo software [15], a program that
performs pairwise comparisons of SNP genotype data and plots
IBS (as well as genotypes) for one chromosome or the entire
genome. This revealed a predominant pattern of IBS2 as shown
for chromosome 2 (Figure 2A). Typical of other genetically
identical samples analyzed with low genotyping error rates, these
two individuals shared only 11 IBS0 calls and 6,410 IBS1 calls in
contrast to 838,898 IBS2 calls from autosomal loci. The samples
were annotated by the Human Genetic Cell Repository as a 6

Figure 1. Genetic relatedness plots of the Human Variation Panel genotype data. Abbreviations: AA, African American; CAU, Caucasian;
CHI, Chinese; MEX, Mexican. (A) IBS2* plot of the within-group comparisons (n = 19,800). The IBS2*_ratio values are centered on 2/3 for unrelated
individuals within a population. The relationship of NA17251 to 99 other AA individuals is indicated (arrow). A group of 9 MEX individuals have
atypically low heterozygosity rates and form a cluster separated from other within-MEX comparisons (arrow 1). (B) IBS2* plot in which pairwise
comparisons with IBS2*_ratio values .0.8 are removed (n = 13) and data points are colored by the sum of autosomal heterozygosity of each pair of
individuals. (C) IBS2* plot for between-group comparisons (n = 60,000) for which none are expected to be genetically related. For groups having
individuals with large differences in heterozygosity rates, such as AA-CHI comparisons, the IBS2*_ratio values are significantly lower than 2/3. The
MEX individuals with atypical heterozygosity rates tend to form outlier clusters in between-group comparisons such as AA-MEX (arrow 1) and CHI-
MEX (arrow 2). A group of five pairwise comparisons having relatively high IBS2*_ratio values (0.685 to 0.692; arrow 3) involve MEX individual
NA17709 in comparison to CAU individuals.
doi:10.1371/journal.pgen.1002287.g001

Identity-by-Descent and Identity-by-State

PLoS Genetics | www.plosgenetics.org 3 September 2011 | Volume 7 | Issue 9 | e1002287

Homozygosity and Distant IBD
Our kcoeff IBD method was robust for inferring relationships

with an estimated K1$0.025. We previously established a method
for comparing regions of homozygosity in offspring to possible
regions of IBD1 between the parents indicating when the
homozygosity is due to autozygosity [25]. We modified this
approach to include the minimum regions of homozygosity
$2 Mb and $400 SNPs. Copy number information was not
used to discriminate those ROH that result from a hemizygous
deletion. A ROH in a child overlapping a region of IBD1 between
the parents is evidence of inbreeding (as given in Table 2). Since
parents were available for a small percentage of individuals, the
majority of the ROH reported in Tables S2–3 could be due to a
hemizygous deletion or autozygosity.

Reconstruction of Pedigrees
Inferring the degree of relationship allows for a potential

classification of the type of relationship. For example, a pair of
individuals inferred to be second-degree relatives could be inferred
to be half-siblings, as opposed to grandparent-grandchild or

avuncular. We present a method for reconstructing second-degree
and third-degree relationships based on multiple pairwise com-
parisons. This approach requires specific information based on
how alleles are shared. We provide five scenarios (as seen in
Table 3) for classifying second-degree relationships: Scenario 1,
inferring an avuncular (AV) relationship to two half-siblings (HS);
Scenario 2, inferring an AV relationship to two full-siblings (FS);
Scenario 3, inferring HS; Scenario 4, inferring a third or fourth-
degree relationship; and Scenario 5, ruling out specific types of
relationships. These methods are described in detail in the
supporting information as well as Figures S5–11 and Table
S4. The majority of this method was applied to the MKK
population and a section of the reconstructed pedigree is presented
in Figure 3. The full pedigree is contained in Figure S3 and links
all relationships with a K1 value greater than 0.20. Note that some
of the relationships are indicated by the estimated degree of
relationship as full reconstruction of relationship type is not
possible without more information.

Table 3. Cont.

IID1 IID2 Group k0 k1 k2 Inferred Annotated Reason Comments

NA21678 NA21519 MKK 0.7294 0.2706 0.0000 3u 2u Pemberton et al.
were conservative

Previously designated relationships for annotated pairs are reassigned based on pedigree reconstruction methods or IBD analysis. Note that certain relationships
annotated correctly by previous studies (and Pemberton et al. 2010 [19]) are included because of the addition of further information. For example, NA12874 and
NA12865 were correctly assigned a parent-child relationship but we amend that to parent-child_IBD0 based on the presence of apparent IBD0 between them. Scenarios
used to prove or rule out a relationship type are provided in the Supplemental Method File. Abbreviations used: Inferred, our annotation for a given pairwise
comparison; PO, parent-child; AV, avuncular; GG, grandparent-grandchild; HS, half-sibling.
doi:10.1371/journal.pone.0049575.t003

Figure 3. Reconstruction of a partial pedigree from the MKK group. We analyzed MKK genotype data using IBD analysis and inferred the
familial relationships of 61 individuals with 46 being related to at least 1 other person. This graph contains relationships constructed from second-
degree, full-sibling, parent-child, and identical relationships (with the exception of NA21352 and NA21351 who are inferred to be first-cousins based
on their second-degree relationship to NA21414; see top left of figure). All indicated relationships are based on previous analysis (siblings: thick green
lines), previous annotation (family trios; family ID), and inferred analyses (sibling relationships, thick blue lines; corrected parent-child orientation,
thick red lines; corrections made to annotated relationships, thick yellow lines; other familial relationships; thin black lines). Dashed rectangles
indicate family units annotated by the HapMap project at the Coriell website. F indicates family identifier (e.g. F2654). Individual identifiers are shown
as the last three digits of NA21xxx (e.g. 353 at the upper left of the figure corresponds to individual NA21353). All IBD information is given in Table S1.
Note that several individuals who are part of MKK (e.g. NA12310 in family 2566) and for whom cell lines were created did not have SNP data as part of
the HapMap Phase III release.
doi:10.1371/journal.pone.0049575.g003

Relatedness and Inbreeding in HapMap

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e49575

Stevens & al PLoS Genetics, 7 :e1002287 (2011)
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fraction of the reference population that has the same haplotype as A in that
region.

The use of phased data enables CARROT to assign different likelihoods to
relationships that are indistinguishable by previous methods: in the case of an
aunt–niece pair, for instance, segments inherited from the common ancestors
can lie on either haplotype of the aunt, but must lie on the same haplotype
of the niece. This haplotype model, combined with linkage information
captured in the haplo-frequencies, gives CARROT a significant advantage
in differentiating between rotated relationships compared with the existing
methods.

2.2 HMMs and factorial HMMs
AHMM is a probabilistic model for capturing the dependencies of a sequence
of observations G1,G2,...,GM on a chain of unknown (or hidden) variables
S1,S2,...,SM taken from a set S. An HMM makes the following conditional
independence assumptions: first, given Sk , Gk is conditionally independent
of all observations and hidden states, that is P(Gk |S1,...,Sk,G1,Gk−1)=
P(Gk |Sk). Second, given Sk−1, Sk is conditionally independent of all previous
hidden states, that is, P(Sk |S1,...,Sk−1)=P(Sk |Sk−1). An HMM is, therefore,
defined by a set of transition probabilities P(Sk |Sk−1), a set of emission
probabilities P(Gk |Sk) a probability distribution over the initial states.

Often, we want to infer the value of the hidden variables from the observed
variables. The posterior probability P(Si|G) can be computed using the
forward–backward algorithm in time O(M|S|2) (Rabiner and Juang, 1986),
where |S| is the number of values in S.

In a factorial HMM (Ghahramani and Jordan, 1997), the observation at
position k depends on multiple hidden variables, S1

k ,S2
k ,...,ST

k , which are
assumed to evolve independently, that is:

P(Sk = (s1
k ,s

2
k ,...,s

T
k )|Sk−1 = (s1

k−1,s
2
k−1,...,s

T
k−1))

=
T∏

t=1

P(St
k =st

k |St
k−1 =st

k−1)

A factorial HMM where each hidden variable St
k takes values from

the set S is equivalent to an HMM with hidden variables taking values
from the Cartesian product ST . Using the latter representation, running
the forward–backward algorithm on a factorial HMM requires O(M|S|2T )
time. However, by taking advantage of the independence assumptions for the
hidden variables, the forward–backward algorithm can be modified to run in
O(MT |S|T+1) time, which is a significant improvement when the number of
hidden variables T is large.

2.3 Likelihood computation assuming linkage
equilibrium

We want to infer the relationship between two individuals A and B, genotyped
at a set of M unlinked SNPs. Let HA0,HA1,HB0,HB1 ∈ {A,C,G,T}M be the
two haplotypes of A and B, respectively, GA = (HA0,HA1), GB = (HB0,HB1)
be their ordered, or phased, genotypes, and θk be the probability of
recombination between SNPs k and k+1. Throughout this work, we assume
that θk is the same for both sexes.

Let R be a set of putative relationships for individuals A and B. For any
relationship R∈R, we want to compute the likelihood of R, or the probability
of the observed genotypes under the assumption that the true relationship
between A and B is R, LR =P(GA,GB|R). As noted in Skare et al. (2009),
assuming that A and B are not inbred, their relationship must fall into exactly
one of the following categories:

(1) A and B share exactly 2 MRCAs (e.g. full siblings, first cousins);

(2) A and B share exactly 1 MRCA (e.g. half siblings, half cousins); and

(3) A is the ancestor of B or vice versa.

We call relationships R1 and R2 rotated, if R1 and R2 are in the same
relationship category and the total number of meioses between the two

Fig. 1. Pedigree for a pair of individuals with two common ancestors:
individuals A and B share two MRCAs, C and D. There are genA generations
between the MRCAs and A (i.e. genA +1 meioses separating them) and
genB generations between the MRCAs and B. The sex of the individuals is
arbitrary.

individuals is the same in R1 and R2. Alternatively, we say that R1 is a
rotation of R2.

We defined a set of HMMs for each of three relationship categories
similarly to Stankovich et al. (2005) and Bercovici et al. (2010), who defined
HMMs for cousins parameterized by the number of generations between
them. Unlike these methods, the state space of our models does not increase
with the number of generations of the pedigree. Below, we describe our
HMMs for the first type of relationships. The models for the other two cases
are derived along similar lines. Given that A and B have two MRCAs, C
and D (Fig. 1), the hidden state at SNP k depends on the following binary
variables:

(1) mC (k) and mD(k) indicate whether C and D, respectively, passed the
same allele to their immediate descendants E1 and F1. For example,
if both E1 and F1 inherited the maternal allele of C at position k, then
mC (k)=1. If E1 received the maternal allele of C, and F1 received
the paternal allele of C, then mC (k)=0.

(2) mE1 (k) and mF1 (k) indicate whether E1 and F1 passed to E2 and F2,
respectively, the allele of C and not the allele of D.

(3) dA(k) takes the value 0 if A inherited the allele that E2 got from E1
(which came from either C or D) and the value 1 otherwise. That is,
dA(k)=0, if for all i>2, Ei got from Ei−1 the allele of Ei−2 and not
the allele of Gi−2. If dA(k)=1, we will say that there were off-chain
donations in the lineage of A at position k. dB(k) is defined in an
analogous way for the lineage of B.

(4) pA(k) indicates which of the alleles of A, HA0(k) or HA1(k), comes
from EgenA and is used to capture phasing errors. pB(k) is defined in
an analogous way.

Each of these variables refers to a different set of meioses in
the pedigree, therefore they all evolve independently from each other.
We thus model the process of generating the genotypes GA and GB

as a factorial HMM with hidden state s(k)= (mC (k),mD(k),mE1 (k),
mF1 (k),dA(k),dB(k),pA(k),pB(k)).
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HMM avec état [∅ consanguinité]
comme vecteurs de 8 indicateurs :
mC ∈ {0,1} : E1 et F1 héritent le même haplotype du
parent C ; mD

mE ∈ {0,1} : E2 reçoit l’allèle de C ; mF (reçoit de D)
dE = 0 si E1 → E2 · · · → Ek
pA : phase de A/EgenA

Transitions : par coordonnées, indépendamment !

Kyriazopoulou-Panagiotopoulou & al ISMB 2011



CARROT

IBD ? IFT6299 H2014 ? UdeM ? Miklós Csűrös xii
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Table 1. Transition probabilities for the HMMs with two MRCAs.

Variable Pr(0→0) Pr(1→0)

mC θ2
k +(1−θk)2 2θk(1−θk)

mE1 1−θk θk

dA (1−θk)genA−1
(∑genA−1

n=1

(
genA −1

n

)
θn

k (1−θk)genA−1−n
)

/
(
2genA−1 −1

)

pA 1−ω ω

P(i→ j) is the probability that a variable transitions from state i at SNP k to state j at SNP k+1, genA and genB are the generations between the MRCAs and each of A and B
(Fig. 1), θk is the recombination probability between SNPs k and k+1; and ω is the probability of a phasing error. The transition probabilities for the variables mD , mF1 , pB and
dB are derived similarly.

The transition probabilities for all the variables are shown in Table 1. We
now derive the transition probabilities for dA. Let genA be the number of
generations between the MRCAs and A (Fig. 1). The number of meioses
between E2 and A is genA −1. Assume that dA(k)=0, that is, the allele
that E2 inherited from the MRCAs at locus k was passed down to A.
Any recombination between loci k and k+1 would result in dA(k+1)=1,
therefore P(dA(k+1)=0|dA(k)=0)= (1−θk)genA−1. If dA(k)=1, then there
exists at least one off-chain donation in the genA −1 meioses between E2
and A. The probability that there are exactly n off-chain donations between

E2 and A is
(

genA −1
n

)
(1/2)genA−1. Given that there are exactly n off-chain

donations at SNP k, the probability that there are no off-chain donations at
SNP k+1 is θn

k (1−θk)genA−1−n. Therefore:

P(dA(k+1)=0|dA(k)=1)= P(dA(k+1)=0 and dA(k)=1)
P(dA(k)=1)

=

∑genA−1
n=1 θn

k (1−θk)genA−1−n
(

genA −1
n

)
(1/2)genA−1

1−(1/2)genA−1

= 1
2genA−1 −1

genA−1∑

n=1

(
genA −1

n

)
θn

k (1−θk)genA−1−n

Given s(k), we can determine the IBD status at SNP k and use population
allele frequencies to compute the emission probabilities (Epstein et al., 2000).
To account for genotyping errors, let ε be the probability of a genotyping
error, and fε(x,y) be the probability that allele x is genotyped as y:

fε(x,y)=
{

1−ε if x=y
ε if x #=y

Then:

P(HA0(k)=a,HB0(k)=b|HA0 and HB0 are IBD)=
∑

c∈{A,C,G,T}
qcfε(c,a)fε(c,b)

where qc is the frequency of allele c in the reference population. The rest of
the emission probabilities are adjusted in a similar way.

2.4 Relationship notation
We refer to relationship types using the notation (mrcas,genA,genB). The
variable mrcas is 2 when individuals A and B share two MRCAs and 1
otherwise. Unless A is the ancestor of B or vice versa, genA and genB are
the number of generations between the MRCA(s) and A and B, respectively.
If A is the ancestor of B, then genA is set to −1, and genB is the number of
generations between A and B. For close relationships, we prefer to use the
usual verbal description, unless space is limited. Table 2 shows the numerical
notation for some common relationships.

Table 2. Numerical notation for some common relationships

Degree Relationship (mrcas,genA,genB)

Full siblings (2, 0, 0)
1

Parent–child (1, −1, 0)

Half siblings (1, 0, 0)
Aunt-niece (2, 0, 1)
Avuncular (2, 0, 1) or (2, 1, 0)

2

Grandparent–grandchild (1, −1, 1)

First cousins (2, 1, 1)
Great grandparent–grandchild (1, −1, 2)
Great aunt–niece (2, 0, 2)

3

Half aunt–niece (1, 0, 1)

4 Half first cousins (1, 1, 1)

For all relationships with genA #=genB , there is a corresponding symmetric relationship,
for example (1, 0, −1) denotes a child–parent pair. Note that the term ‘avuncular’ does
not specify a direction. The terms ‘aunt’ and ‘niece’ should be read as ‘aunt/uncle’ and
‘niece/nephew’, respectively.

2.5 Incorporating linkage information
HMMs that use unlinked markers have limited power to distinguish between
relationships of the same degree (Sun et al., 2002). Linkage information can
help disambiguate such relationships. Assume, for instance, that we want
to determine whether the relationship between individuals A and B is first
cousins or great aunt–niece. An IBD block between A and B implies that
they inherited overlapping genomic segments from their MRCAs (Fig. 2).
If A and B are first cousins, the two scenarios of Figure 2 are equally likely.
However, if A is closer to the MRCAs than B, then it is more likely that A
inherited a larger segment from the common ancestor than B [scenario (a)],
because we expect fewer recombinations between the MRCAs and A than
between the MRCAs and B. Therefore, if we compare the haplotypes of A
and B in a small window around the IBD transitions to the haplotypes of a
reference population, we are more likely to find a match for the haplotype
of A, than for the haplotype of B.

To quantify this intuition, assume that there is a transition in IBD status
between SNPs k and k+1, and let Hi(k−w+1..k+w) be the haplotype of
individual i at positions k−w+1,k−w+2,...,k+w, that is in a window of
size 2w around k. The haplo-frequency of A is defined as:

CA =
∑

i fε(Hi(k−w+1..k+w),HA(k−w+1..k+w))
N

(1)

where the sum is over all haplotypes in the reference population, N
is the number of such haplotypes, and fε(Hi(k−w+1..k+w),HA(k−
w+1..k+w)) is the probability that Hi(k−w+1..k+w) is genotyped as
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Table 1. Transition probabilities for the HMMs with two MRCAs.

Variable Pr(0→0) Pr(1→0)

mC θ2
k +(1−θk)2 2θk(1−θk)

mE1 1−θk θk

dA (1−θk)genA−1
(∑genA−1

n=1

(
genA −1

n

)
θn

k (1−θk)genA−1−n
)

/
(
2genA−1 −1

)

pA 1−ω ω

P(i→ j) is the probability that a variable transitions from state i at SNP k to state j at SNP k+1, genA and genB are the generations between the MRCAs and each of A and B
(Fig. 1), θk is the recombination probability between SNPs k and k+1; and ω is the probability of a phasing error. The transition probabilities for the variables mD , mF1 , pB and
dB are derived similarly.

The transition probabilities for all the variables are shown in Table 1. We
now derive the transition probabilities for dA. Let genA be the number of
generations between the MRCAs and A (Fig. 1). The number of meioses
between E2 and A is genA −1. Assume that dA(k)=0, that is, the allele
that E2 inherited from the MRCAs at locus k was passed down to A.
Any recombination between loci k and k+1 would result in dA(k+1)=1,
therefore P(dA(k+1)=0|dA(k)=0)= (1−θk)genA−1. If dA(k)=1, then there
exists at least one off-chain donation in the genA −1 meioses between E2
and A. The probability that there are exactly n off-chain donations between

E2 and A is
(

genA −1
n

)
(1/2)genA−1. Given that there are exactly n off-chain

donations at SNP k, the probability that there are no off-chain donations at
SNP k+1 is θn

k (1−θk)genA−1−n. Therefore:

P(dA(k+1)=0|dA(k)=1)= P(dA(k+1)=0 and dA(k)=1)
P(dA(k)=1)

=

∑genA−1
n=1 θn

k (1−θk)genA−1−n
(

genA −1
n

)
(1/2)genA−1

1−(1/2)genA−1

= 1
2genA−1 −1

genA−1∑

n=1

(
genA −1

n

)
θn

k (1−θk)genA−1−n

Given s(k), we can determine the IBD status at SNP k and use population
allele frequencies to compute the emission probabilities (Epstein et al., 2000).
To account for genotyping errors, let ε be the probability of a genotyping
error, and fε(x,y) be the probability that allele x is genotyped as y:

fε(x,y)=
{

1−ε if x=y
ε if x #=y

Then:

P(HA0(k)=a,HB0(k)=b|HA0 and HB0 are IBD)=
∑

c∈{A,C,G,T}
qcfε(c,a)fε(c,b)

where qc is the frequency of allele c in the reference population. The rest of
the emission probabilities are adjusted in a similar way.

2.4 Relationship notation
We refer to relationship types using the notation (mrcas,genA,genB). The
variable mrcas is 2 when individuals A and B share two MRCAs and 1
otherwise. Unless A is the ancestor of B or vice versa, genA and genB are
the number of generations between the MRCA(s) and A and B, respectively.
If A is the ancestor of B, then genA is set to −1, and genB is the number of
generations between A and B. For close relationships, we prefer to use the
usual verbal description, unless space is limited. Table 2 shows the numerical
notation for some common relationships.

Table 2. Numerical notation for some common relationships

Degree Relationship (mrcas,genA,genB)

Full siblings (2, 0, 0)
1

Parent–child (1, −1, 0)

Half siblings (1, 0, 0)
Aunt-niece (2, 0, 1)
Avuncular (2, 0, 1) or (2, 1, 0)

2

Grandparent–grandchild (1, −1, 1)

First cousins (2, 1, 1)
Great grandparent–grandchild (1, −1, 2)
Great aunt–niece (2, 0, 2)

3

Half aunt–niece (1, 0, 1)

4 Half first cousins (1, 1, 1)

For all relationships with genA #=genB , there is a corresponding symmetric relationship,
for example (1, 0, −1) denotes a child–parent pair. Note that the term ‘avuncular’ does
not specify a direction. The terms ‘aunt’ and ‘niece’ should be read as ‘aunt/uncle’ and
‘niece/nephew’, respectively.

2.5 Incorporating linkage information
HMMs that use unlinked markers have limited power to distinguish between
relationships of the same degree (Sun et al., 2002). Linkage information can
help disambiguate such relationships. Assume, for instance, that we want
to determine whether the relationship between individuals A and B is first
cousins or great aunt–niece. An IBD block between A and B implies that
they inherited overlapping genomic segments from their MRCAs (Fig. 2).
If A and B are first cousins, the two scenarios of Figure 2 are equally likely.
However, if A is closer to the MRCAs than B, then it is more likely that A
inherited a larger segment from the common ancestor than B [scenario (a)],
because we expect fewer recombinations between the MRCAs and A than
between the MRCAs and B. Therefore, if we compare the haplotypes of A
and B in a small window around the IBD transitions to the haplotypes of a
reference population, we are more likely to find a match for the haplotype
of A, than for the haplotype of B.

To quantify this intuition, assume that there is a transition in IBD status
between SNPs k and k+1, and let Hi(k−w+1..k+w) be the haplotype of
individual i at positions k−w+1,k−w+2,...,k+w, that is in a window of
size 2w around k. The haplo-frequency of A is defined as:

CA =
∑

i fε(Hi(k−w+1..k+w),HA(k−w+1..k+w))
N

(1)

where the sum is over all haplotypes in the reference population, N
is the number of such haplotypes, and fε(Hi(k−w+1..k+w),HA(k−
w+1..k+w)) is the probability that Hi(k−w+1..k+w) is genotyped as
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Table 3. Comparison between CARROT and two other approaches for
relationship inference

Method/Degree 1 2 3 4 5

Max likelihood 100 98.6 62.29 39.33 26.73
CARROT likelihoods 100 100 74 43.78 29
CARROT 100 100 84 57.56 34.45

max likelihood selects the relationship with the maximum likelihood; CARROT
likelihoods uses only the likelihoods as features for the classification. We simulated
100 pairs of individuals from each relationship and performed predictions only within
each degree. The number reported is the percentage of pairs classified in the correct
relationship.

direct comparison between these methods and CARROT can only
be done for a small set of relationships. To extend this comparison
to additional relationships, we implemented a classifier that uses
the HMMs of Section 2.3 for the likelihood computation and
then selects the relationship with the maximum likelihood. This
classifier can serve as a proxy for any method that maximizes
the likelihood of unlinked markers. We compared the maximum-
likelihood classifier with CARROT using a set of 100 simulated
pairs of phased individuals for each relationship of degree up to five,
including all rotated relationships. We assumed that the degree of the
relationship was known, so predictions were made only within each
degree. To assess whether a classification-based approach is better
that a maximum-likelihood approach, we also ran CARROT using
only the likelihoods as features. We observed that for relationships
of degree up to two, the likelihoods are sufficient to differentiate
between relationships (Table 3). For higher degrees, the likelihoods
become less informative and the additional features of CARROT
result in a significant increase in accuracy. Additionally, we notice
that CARROT performs consistently better than the maximum-
likelihood approach, even when we only use the likelihoods as
features. Intuitively, the classifier can capture correlations between
the likelihoods of different relationships. We observed, for instance,
that when the true relationship is great grandparent–grandchild, the
likelihood of the relationship great aunt/niece tends to be increased,
but this effect is overlooked when we use the maximum likelihood
criterion.

Differentiating between rotated relationships: to evaluate the
ability of CARROT to distinguish between rotations of
relationships, we simulated 100 pairs of individuals for each of the
possible relationships of degree up to five, including all possible
rotated relationships. We first assumed that the degree of each
relationship was known, and ran CARROT separately for each
degree. We started by examining the ideal case of perfect phasing,
so we set the probability of phasing errors, ω, to zero.

We assessed CARROT’s accuracy using 10-fold cross-validation,
as described in the previous section: the simulated pairs were divided
into 10 subsets each containing 10 pairs from each relationship.
CARROT was trained on nine of the subsets and tested on the
remaining subset. This process was repeated 10 times and the
accuracy was averaged over all 10 runs. We defined the prediction
accuracy as the number of pairs that were classified in the correct
relationship.

Table 4. Classification accuracy of CARROT on third-degree relatives

Rel. 2,0,2 2,1,1 2,2,0 1,−1,2 1,0,1 1,1,0 1,2,−1

2,0,2 88 – – 5 5 2 –
2,1,1 – 84 1 – 7 8 –
2,2,0 – 1 88 – 2 4 5
1,−1,2 2 – – 96 1 1 –
1,0,1 – 11 – – 68 21 –
1,1,0 – 8 – – 24 68 –
1,2,−1 – – 3 – 1 1 95

The value at row i and column j is the percentage of pairs of relationship i that were
predicted to be of relationship j. (2, 0, 2): great aunt–niece; (2, 1, 1): first cousins; (2, 2,
0): great niece–aunt; (1, −1, 2): great grandparent–grandchild, (1, 0, 1): half aunt–niece;
(1, 1, 0): great niece–aunt; (1, 2, −1): great grandchild–grandparent.

When run on first- and second-degree relatives, CARROT
achieved perfect performance. The results for the third- and fourth-
degree relationships are summarized in Tables 4 and 5, respectively.
The average accuracy over all the pairs of the corresponding
degree, was 83.86 and 56.89%, respectively. For the fifth-degree
relationships, the average accuracy was 34.45% (full results not
shown). As expected, the accuracy of our classifiers drops as the
degree of the relationship increases. However, even within the same
degree, some relationships are much harder to predict correctly
than others. For example, the two half-avuncular relationships,
(1, 0, 1) and (1, 1, 0), are hard to differentiate from each other
and from first cousins, since the difference in the distance of each
of the individuals from their MRCA is not enough for the haplo-
frequencies to distinguish them from a balanced relationship where
both individuals are equally distant from the MRCAs. Similarly,
although the average accuracy for the fifth-degree relationships was
34.45%, the (2, 4, 0) and (2, 0, 4) pairs were predicted correctly in
48.5% of the cases.

Predictions across degrees: since in practice the degree of the
relationship is not necessarily known, we also performed cross
validation on a set of 200 pairs of individuals from each of the
relationships of degree up to 5, including rotated relationships, as
well as 200 pairs of unrelated individuals. The average classification
accuracy was 57.5%, varying widely for different degrees: all the
first-degree pairs were classified correctly; the average accuracy
for the second-degree pairs was 99.5%, for the third-degree pairs
76.57%, for the fourth-degree pairs 46% and for the fifth-degree
pairs 23.36%. Finally, 90% of the unrelated individuals were
classified correctly. We note that there was a small decrease in
accuracy compared with the results of the previous section, because
some of the pairs were classified in relationships of the incorrect
degree, while this was never the case when only within-degree
predictions were made. Table 6 shows the percentage of pairs that
were classified in a relationship of the correct degree for each of the
degrees examined. On average, the correct degree was predicted for
89.83% of the pairs.

The effect of phasing errors: the phasing error rate is defined as
the proportion of successive pairs of heterozygote SNPs that are
phased incorrectly with respect to each other. To examine the effect
of phasing errors on the classification accuracy of CARROT, we
simulated 100 pairs of individuals for each of the third-degree
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Segments IBD dans une population

IBD ? IFT6299 H2014 ? UdeM ? Miklós Csűrös xiii

(méthode de GERMLINE : segments longues)

On a des haplotypes [phases !] : matrice binaire H[1..2n][1..s] avec haplotypes
sur s sites dans n génomes

segment IBD : H[i][j..j′] = H[i′][j..j′]

But : identifier les segments IBD les plus longs

1. groupage de haplotypes identiques (tableau de hachage) dans bloc

2. fusion de paires dans blocs consécutifs ; maintenir debut de segment pour la paire

paires de haplotypes (i, i′) avec bloc (k − 1) IBD : soit extension à bloc k (avec
erreurs permises), soit tester longueur (dépasse Lmin ?)

Gusev & al Genome Research 19 :318 (2009)



Segments IBD dans une population 2

IBD ? IFT6299 H2014 ? UdeM ? Miklós Csűrös xiv

Beagle et fastIBD : modèle LD (linkage disequilibrium) pour haplotypes

HMM : états = allèle 0/1 dans le haplotype ; transitions par fréquence dans les
haplotypes ; émissions incluent erreur de séquençage

haplotype modified by the penalties assessed at each
switch between alternate phasings. Thus, a small score
(close to zero) for a pair indicates that the two individuals
share a low-frequency haplotype and are thus likely to be
identical by descent. We use sampled haplotypes with
a sliding marker window, as is done in GERMLINE,5

which permits rapid computation. A critical difference
between our method and GERMLINE is that our method
is based on shared haplotype frequency rather than shared
haplotype length.

Material and Methods

The fastIBD algorithm starts by sampling a fixed number of haplo-

type pairs (four pairs by default) for each individual from the poste-

rior haplotype distribution. Each sampled haplotype corresponds

to a sequence of hidden Markov model (HMM) states. The fastIBD

algorithm searches for pairs of sampled haplotypes sharing the

same sequence of HMM states for a set of consecutive markers. If

the pair of sampled haplotypes belongs to two distinct individuals,

the shared haplotype tract is recorded. For each pair of individuals,

overlapping shared haplotype tracts are merged, and the merged

shared haplotype tract is a mosaic of pairs of sampled haplotypes

(see Figure 1). A fastIBD score is calculated for each merged tract,

and if the score is below a user-specified threshold, the tract is

printed to an output file. We now describe in detail the algorithm

for finding shared haplotype tracts, the calculation of fastIBD

scores for those tracts, and the algorithmicdetails that allow for effi-

cient computation. Pseudocode is available as supplemental data.

Shared Haplotype Tracts
A shared haplotype tract T consists of a pair of sampled haplotypes

(T.H1 and T.H2), a startingmarker index (T.start), an endingmarker

index (T.end), and a fastIBD score (T.score).We use the convention

that the starting marker index is inclusive and the ending marker

index is exclusive. When shared haplotype tracts are first discov-

ered, the fastIBD score is equal to the pairwise haplotype score

defined below for the two haplotypes in the marker interval.

However, after shared haplotype tracts are found, overlapping

shared haplotype tracts are merged, and the merging algorithm

defines a new fastIBD score for themerged tract. In general, the fas-

tIBD score roughly approximates the frequency of the shared

haplotype.

Pairwise Haplotype Scores
For any pair of haplotypes H1 and H2 and any interval of markers

m1 < m2, we define a pairwise haplotype score S(H1, H2, m1, m2).

The Beagle model defines a unique sequence of HMM states for

each haplotype. If both haplotypes have the same sequence of

HMM states in the marker interval, the pairwise haplotype score

is the haplotype frequency or, more precisely, the frequency of

the shared sequence of HMM states. As a consequence of the LD

model’s being a HMM, the frequency of a sequence of HMM states

sm, smþ1, ., smþk can be expressed as a product of state and tran-

sition probabilities:

Pðsm; smþ1;.; smþkÞ ¼ PðsmÞ
Yk

j¼1

P
!
smþj j smþj%1

"

In the preceding equation, there is a term corresponding to each

marker: P(sm) for marker m and P(smþj j smþj%1) for marker m þ j

(j > 0). If the two haplotypes do not have the same HMM state

at one or more markers in the marker interval, one obtains the

pairwise haplotype score by replacing the corresponding state

P(sm) or transition probability P(smþj j smþj%1) with 100 at each

marker for which the two haplotypes have different HMM states.

This penalizes the pairwise haplotype score by inflating the esti-

mated shared haplotype frequency.

Merging Shared Haplotype Tracts
Two shared haplotype tracts T and U can be merged to create

a merged shared haplotype tract M if the pair of sampled haplo-

types in each tract corresponds to a single pair of individuals

and if either the marker intervals for the two shared haplotype

tracts overlap or the starting marker for one tract is the ending

marker for the other tract. When merging overlapping shared

haplotype tracts for a pair of individuals, we merge tracts with

the smallest starting marker indices first.

The marker interval for the merged tract is the union of the two

marker intervals. The fastIBD score of the merged tract is defined

to be less than or equal to the two component fastIBD scores.

For the purposes of further computation, we only need to keep

track of the haplotypes at the right end of the merged tract, so

the two notated haplotypes of the merged tract are the haplotypes

from the tract with the largest ending index. For example, if the

marker interval in shared haplotype tract T is a subset of the

marker interval in shared haplotype tract U, we say tract U covers

tract T, and we define the merged tract as M.H1 ¼ U.H1, M.H2 ¼
U.H2,M.start¼U.start,M.end¼U.end, andM.score¼min{T.score,

U.score}.

If shared haplotype tracts TandU can bemerged, and if one tract

does not cover the other tract, then either T.start % U.start and

T.end % U.end or U.start % T.start and U.end % T.end. If we

assume the former configuration, the merged tract haplotypes

areM.H1¼U.H1 andM.H2¼U.H2, themerged tractmarker interval

is M.start ¼ T.start, M.end ¼ U.end, and the merged-tract fastIBD

score M.score is the minimum of a left score and a right score.

Figure 1. Merging of Shared Haplotype Tracts
Four pairs of haplotypes have been sampled from individuals
1 and 2. Two shared haplotype tracts have been found (denoted
by patterned regions). The two tracts are merged into a single
shared haplotype tract.
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haplotype is very rare, the difference between the IBD and non-

IBD probabilities can become very large (because the very small

haplotype probability occurs in the non-IBD probability but essen-

tially disappears into the mean in the IBD probability). As a result,

in some regions several pairs of individuals were reported to have

very small (< 0.1 cM) IBD segments. We found that using the

minimum avoids this problem. However, the transition probabil-

ities from a state should sum to 1. They do sum to 1 if the mean

is used, but not if the minimum is used (in which case they sum

to < 1). Thus, using a minimum downweights the probabilities

when the two possibly IBD haplotypes are traveling through

different paths of the model, which is useful. We plan to investi-

gate this issue further in future research.

To demonstrate these probability calculations, we give a small

example on four SNP markers (however, note that the method is

designed for dense SNP data with thousands of markers per chro-

mosome). Again, we assume that the haplotypes are known.

However, in calculating the posterior probability of IBD, the

HMM method will account for haplotype uncertainty (the full

calculation of IBD probabilities for this example is not shown).

The LD model for the four SNPs is taken from previous work23

and is shown in Figure 1. The transition probabilities for the

model are P(eA) ¼ 0.518, P(eB) ¼ 0.482, P(eC) ¼ 0.627, P(eD) ¼
0.373, P(eE) ¼ 1.0, P(eF) ¼ 0.490, P(eG) ¼ 0.510, P(eH)¼ 1.0, P(eI) ¼
0.194, P(eJ) ¼ 0.806, P(eK) ¼ 1.0, P(eL) ¼ 1.0. Individual 1 has

haplotypes H1 ¼ 1 1 1 1 and H2 ¼ 1 2 2 1; individual 2 has haplo-

types H3¼ 2 1 1 1 and H4¼ 2 1 2 2. We calculate the probability of

the four haplotypes given that haplotypes H1 and H3 are IBD at all

four marker positions.

PðH1,H2,H3,H4 jH1 and H3 are IBDÞ¼PðH2ÞPðH4ÞPðH1,H3 j IBDÞ

PðH2Þ ¼ PðeAÞPðeDÞPðeHÞPðeLÞ ¼ ð0:518Þð0:373Þð1:0Þð1:0Þ ¼ 0:193

PðH4Þ ¼ PðeBÞPðeEÞPðeGÞPðeKÞ ¼ ð0:482Þð1:0Þð0:510Þð1:0Þ ¼ 0:246

PðH1,H3 j IBDÞ ¼minðPðeAÞ,PðeBÞÞ3 minðPðeCÞ,PðeEÞÞ
$ ð1% 3ÞPðeFÞð1% 3ÞPðeIÞð1% 3Þ ¼ ð0:482Þð0:005Þð0:627Þ
$ ð0:995Þð0:490Þð0:995Þð0:194Þð0:995Þ ¼ 1:41 3 10%4

Finally,

PðH1,H2,H3,H4 jH1 is IBD with H3Þ

¼ ð0:193Þð0:246Þ
!
1:41 3 10%4

"
¼ 6:7 3 10%6:

Informally, whenthe probability of the data is much higherunder

IBD than under non-IBD (high enough to overcome the low prior

probability of IBD), the posterior probability of IBD will be high.

The estimation of the IBD proceeds by first building the LD

model from the unphased genotypes by using ten iterations of

the model-building algorithm to obtain convergence.23 We then

add the IBD model to the LD model and use the forward-backward

algorithm for HMMs26,27 to obtain posterior probabilities of IBD

for each pair. Our software also reports the most likely haplotype

phasing given IBD, which can be useful for phasing related indi-

viduals. The procedure may be repeated several times with the

use of different random number seeds, with the maximum poste-

rior IBD probability from the multiple runs used. This avoids false

negatives due to the fitted LD model converging to a local

maximum that does not allow the haplotypes to follow their

true IBD configuration. In this study, we use ten runs for IBD prob-

abilities and five runs for HBD probabilities (see below).

Constructing the LD model takes the same amount of computa-

tional time as it would to phase the data set by using BEAGLE,

which is relatively fast.23 However, with n individuals, there are

on the order of n2 potential pairs on which to calculate IBD prob-

abilities, thus increasing the total computation time, relative to

phasing, by the order of n. Thus, it is not currently feasible to

compute IBD probabilities on all pairs of individuals over the

whole genome in a large data set with thousands of individuals.

Calculation of HBD probabilities involves only two haplotypes

(from a single individual), but the basic principle is the same.

The probability of the two haplotypes given that they are non-

HBD is found by multiplying the two haplotype probabilities

together. The probability of the two haplotypes given HBD is the

same as the probability of two haplotypes given IBD, as described

above.

For HBD, the basic unit is individuals, rather than pairs of indi-

viduals. Thus, estimating HBD probabilities for all individuals

takes only slightly longer than phasing all individuals in a data

set. We have estimated HBD probabilities on all individuals from

several case-control cohorts from the Wellcome Trust Case Control

Consortium17 with approximately 5000 individuals genotyped on

400,000 autosomal SNPs, thus demonstrating that our HBD detec-

tion method can be applied to large genome-wide association

studies. Genome-wide HBD could be useful for gene mapping in

diseases with rare recessive variants of strong effect.

We define as IBD or HBD any position at which the correspond-

ing IBD or HBD probability exceeds 0.5. To define the length of an

IBD or HBD region, we measure the genetic length from the first

position at which the pair is IBD or the individual is HBD to the

last position before the IBD or HBD probability drops below 0.5.

Comparison with Other Programs
We tested our method (implemented in BEAGLE) against GERM-

LINE version 1.4.08 and PLINK version 1.07,2 two existing state-

of-the-art programs for IBD detection. We also attempted to

include RELATE4 in our comparisons. However, we were unable

to successfully run this program. We ran GERMLINE with default

settings (a maximum of two mismatched homozygote markers

in a slice for it to be considered a match, and slice size of 128

markers), except that we adjusted the minimum length of reported

IBD segments, as described in the Results (the default is 5 cM). For

PLINK, we followed the method for pruning SNPs suggested in the

PLINK documentation for shared segment analysis (SNPs with

> 1% missing genotypes and < 5% minor allele frequency

removed, then pairwise LD-based pruning with window size 100,

eC
eF

eE

eG
eA

eB

eD

eH

eI
eJ

eK

eL

Figure 1. Example of an LD Model on Four SNPs
SNP 1 is represented by edges eA and eB; SNP 2 by edges eC, eD, eE;
SNP 3 by edges eF, eG, eH; and SNP 4 by edges eI, eJ, eK, eL. For
each SNP, allele 1 is represented by a solid line, whereas allele 2
is represented by a dashed line. Haplotype H1 (1 1 1 1) follows
the orange path (eA, eC, eF, eI), and haplotye H2 (2 1 1 1) follows
the blue path (eB, eE, eF, eI).
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To process the data in an efficient manner, we
use a slight variant of the algorithm of Browning
[2006], which is adapted from that of Ron et al.
[1998]. The algorithm is the same as that in
Browning [2006] except that the merging thresh-
old is changed as described below. This algorithm
processes the markers in chromosomal order,
starting with all haplotypes in a single node, and
in turn splitting the nodes by considering the
alleles at the next marker, and then merging nodes
based on the Markov criterion, as illustrated in
Figure 1. To implement the Markov criterion in the
merging procedure, a score is calculated for each
pair of nodes at the current level. The score is
described in detail in Browning [2006]. A low
score for a pair of nodes means that the two nodes
(i.e. haplotype clusters) have similar probabilities
for sequences of alleles at markers t11, t12, y, t1
k, for all k. A pair of nodes may be merged if the
score is less than a threshold mðn"1

x þ n"1
y Þ

1=2 þ b.
In this formula, m and b are scale and shift
parameters, respectively, that we have introduced
because simulation studies (unpublished data)
demonstrated increased power using a more
parsimonious model with fewer clusters at each
position (this is achieved by increasing the thresh-
old). In the results presented here we use m 5 4
and b 5 0.2, which gives good power over a range
of conditions. These parameters were not used
in Browning [2006] (effectively m 5 1 and b 5 0
were used).

The outcome of this procedure is a directed
acyclic graph. Edges of the graph are labeled by
alleles, and each haplotype in the sample traces a
path through the graph from the root node to the
terminal node, following the sequence of alleles.
Edges of the graph correspond to localized

haplotype clusters. The localized haplotype clus-
ter given by an edge of the graph consists of
all haplotypes in the sample tracing their path
through that edge. Figure 2 illustrates these
concepts.

INTERPRETATION OF MODEL

The fitted graph model describing the localized
haplotype clusters does not correspond to any
specific population genetic model, yet it flexibly
models the empirical pattern of LD seen in the
data. Roughly speaking, merges (where two edges
direct into the same node) correspond to historical
recombination. At recombination hot-spots one
would expect to see many merges, and a low
number of haplotype clusters. In fact, in regions of
very low LD (due to recombination hot-spots or to
widely spaced markers) the number of nodes at
each position may be reduced to one and the
haplotype clusters will simply correspond to
alleles, with one edge (cluster) for each allele at
each marker. In this case the haplotypic tests
reduce to single-marker tests.
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Fig. 1. Initial steps in procedure for creating localized haplotype clusters. (A) Starting with all haplotypes in a single node, the node
is split by the alleles at the first marker (a diallelic marker is shown here, however the method can be used with multiallelic markers).
The resulting nodes may be merged if the merging criterion is met (for this example the nodes are not merged). (B) The nodes are split
by the alleles at the second marker. The four nodes represent the four possible haplotypes when considering the first two markers.
(C) Pairs of nodes may be merged. In this example, the first and third nodes are merged. The resulting merged node corresponds to
all haplotypes with allele 1 at the second marker. (D) The three nodes are split by the third marker. The process continues by
considering merging the resulting nodes, then splitting by the fourth marker and so on.
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Fig. 2. Example of a directed acyclic graph representing loca-
lized haplotype clusters for four markers. For each marker, allele
1 is shown with a solid line and allele 2 by a dashed line. The
bolded path through the graph represents the haplotype 2122.
The starred edge represents the localized haplotype cluster
consisting of haplotypes 1122 and 2122.
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Chromosome 1 in the high variant coverage sequence
data is longer than that in the low variant coverage data
(Table 3), suggesting not just greater resolution but also
greater detection of IBD using sequence data. This may
be due to the fact that fastIBD is able to detect many
more small segments of size 0.5 cM or smaller with the
use of sequence data (high variant density) than that
using the low density genotype dataset.

Discussion
In this study, we examined how the density of genetic
variants in a dataset affects the power to detect IBD be-
tween individuals. We found that analysis of sequence
data with high SNP density improves resolution and
power for detecting IBD relative to microarray-based
genotyping, particularly for small segments. In our simu-
lation, there was good power (80%) to detect IBD seg-
ments of size 0.4 cM using high coverage sequence data
with a low false positive rate, compared to a power of

approximately (77%) for segments of size 1 cM using
microarray genotype data (WTCCC).
It is possible that the methods we examined in this

study may be further refined to improve the power to
detect even smaller IBD segments. We found that Germ-
line has slightly higher power to detect IBD using se-
quence data compared to fastIBD, but it has a much
higher false positive rate. That is, for high variant density
data, Germline detects many small segments, where
around 25% of them are false positives. We set the de-
tectable minimum length to 0.1 cM while running
Germline, which allows Germline be able to detect small
segments, but it increases the false positive rate. Germ-
line also provided lower power for detecting IBD seg-
ments using the microarray dataset (from WTCCC).
These results indicate that fastIBD provides more robust
and reliable IBD detection than Germline for these types
of datasets. Given these observations, the current imple-
mentation of fastIBD appears to be better than the
current implementation of Germline for detecting IBD

Figure 1 Empirical power of fastIBD. Empirical power of fastIBD to detect an IBD segment as a function of the number of SNPs within a
segment in the simulation study. Each plot presents different lengths of IBD segments examined. The power of each dataset is represented by
different colored circles and plotted against the number of SNPs contained within a given region.

Table 1 The average power of fastIBD and Germline
fastIBD Germline

Segment Size (cM) WTCCC HapMap 1000 g complete WTCCC HapMap 1000 g complete

0.2 0.126 0.251 0.562 0.629 0.043 0.344 0.665 0.645

0.4 0.327 0.518 0.781 0.801 0.099 0.551 0.836 0.806

0.6 0.495 0.649 0.864 0.874 0.135 0.617 0.901 0.907

1 0.767 0.840 0.904 0.899 0.231 0.794 0.941 0.944

2 0.909 0.918 0.935 0.919 0.389 0.905 0.982 0.992

Su et al. BMC Bioinformatics 2012, 13:121 Page 3 of 8
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WTCCC : puce avec SNPs éparses ; Hapmap : puce dense ;
1000G : Illumina ; Complete Genomics
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segments of 0.4, 0.6, 1, and 2 cM, we combined 2, 3, 5,
and 10 consecutive composite segments. In this way, we
generated 10 simulated individuals with specific chromo-
somal segments that are not IBD. In this simulation set-
ting, we expect that any pair of these 10 individuals with
composite chromosomal segments are unlikely to share
any part of that segment longer than 0.02 cM. Thus,
detecting an IBD segment longer than 0.02 cM among
these individuals can be considered as a false positive.
As in the first simulation, we investigated 100 regions

on Chromosome 1 for each of the 5 different lengths of
composite segments (0.2, 0.4, 0.6, 1, and 2 cM). A subset
of 100 individuals from WTCCC and the 1000 Genomes
datasets were randomly selected to create the 10 com-
posite individuals. We included the other 900 individuals
in the WTCCC data and 183 individuals in the 1000
Genomes data for IBD analysis. We did not investigate
the error rate for HapMap and Complete Genomic data
due to the limited number of individuals available for
study. For each IBD segment length, the false positive
rate is calculated by the number of SNPs that are
detected as IBD divided by the total number of SNPs
within the simulated segment. The error rates were then
averaged over 100 regions and any pair of these 10 indi-
viduals. For Germline, the input data need to be phased
genotype data. Thus, we phased the data before running
Germline using fastIBD. Both fastIBD and Germline
generate a list of all pairwise IBD segments.

We ran the fastIBD function in Beagle V3.3.1 with de-
fault settings. fastIBD applied a score threshold when
detecting IBD. The results in the previous study shows
that a threshold of 10−10 gives good power to detect IBD
and also keep the false discovery rate close to zero [14].
Here, we used the default threshold 10−8. We used de-
fault settings in Germline V1.5.0 except that we set the
minimum length (−min m) to 0.1 cM. This allows
Germline to have a chance of detecting small segments.
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Figure 7 Illustration of the construction of composite segments. Each line represents the chromosome sequence of an individual. The
colored circle represents the consecutive sequence of a segment size 0.02 cM, which may contain multiple SNPs. A composite segment of size
0.2 cM is composed of 10 consecutive segments of size 0.02 cM from 10 different individuals. To create a composite segment of size 0.4 cM, two
composite segments of size 0.2 cM are constructed and merged. A similar procedure is conducted to create composite segments of size 0.6, 1
and 2 cM, where three, five and ten small composite segments are constructed and merged respectively.

Su et al. BMC Bioinformatics 2012, 13:121 Page 7 of 8
http://www.biomedcentral.com/1471-2105/13/121

copying a haplotype from a chromosome of one individ-
ual into the same location in the other individual (Fig-
ure 6). We simulated 30 pairs for WTCCC, HapMap
and 1000 g data as well as 27 pairs for the deep coverage
sequencing data, where individuals contain these artifi-
cial IBD segments for each of the datasets (a subset of
individuals from the WTCCC and 1000 Genomes pro-
jects were selected). To assure that our results were not
influenced by the structure of a single region, we ran-
domly selected 100 regions, each 3 cM in length, on
Chromosome 1, and conducted the simulation for each
of these regions separately. In each region, we created
artificial IBD segments of lengths 0.2, 0.4, 0.6, 1, and
2 cM. The program may detect several small segments
within an artificially created IBD segment. Thus, we cal-
culated the number of SNPs on these small IBD seg-
ments identified by the program. For each length of IBD
segment, power was then assessed by taking the average
proportion of SNPs that are detected as IBD within the
simulated segments, over 100 regions and 30 pairs of
individuals.

Construction of composite individuals for assessing the
false positive rate. We then investigated the rate of falsely
detecting IBD when no IBD is present through a second
simulation. We started by constructing a composite
chromosomal segment for each of 10 simulated indivi-
duals [14]. To do this, we selected 100 individuals from
the each of the WTCCC and 1000 Genomes datasets.
Composite chromosome segments of length 0.2 cM were
constructed by copying 10 consecutive regions of length
0.02 cM from 10 different individuals (Figure 7). To create

Figure 5 The distribution of detected lengths of IBD segments across four investigated datasets using fastIBD. We report the counts of
detected IBD segments against estimated segment lengths on Chromosome 1 for 60 individuals in each of the datasets (54 individuals for the
deep coverage sequencing dataset).

Table 3 The total length (cM) of IBD segments detected
on Chromosome 1 using fastIBD

WTCCC HapMap 1000g complete

number of individuals 60 60 60 54

total length (cM) 17409 26843 29372 46936

Figure 6 Illustration of the procedure for creating artificial IBD
segments. For a pair of individuals, a segment of the chromosome
(shown in red) within a randomly chosen region on Chromosome 1
is copied to one chromosome in another individual.

Su et al. BMC Bioinformatics 2012, 13:121 Page 6 of 8
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«Vrai» haplotypes artificiels après mixage (pas de rélations
non-détectées)

IBD par copiage au hasard
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relatively small population could be affected dramatically
by some aspects of population history (e.g., growth type
and internal subdivision) [16]. In fact, recent studies have
shown that both the amount of the genome shared identi-
cal by descent and the proportion of the genome that is
covered by long runs of homozygosity differs by popula-
tion [5,17,18]. A more detailed assessment of IBD across
populations could help determine to what extent whole
genome sequence data can improve the power of these
mapping approaches. Additionally, the continued im-
provement of IBD detection methods and the testing of
those methods on dense genetic data can provide a foun-
dation for future genetic studies.

Materials and methods
Data
To assess the statistical power to detect chromosomal seg-
ments that are shared identical by descent between two
individuals, we conducted a simulation study. First, we col-
lected genotype data from four sources that represent

different levels of coverage (that is, the proportion of all var-
iants in the genome that are assayed by a given platform),
ranging from microarray genotype data to deep coverage
whole genome sequence data. These empirical genotype
data include: Microarray genotype data (WTCCC) from the
Wellcome Trust Case Control Consortium (WTCCC)
study. We obtained genotype data on 1000 controls from
UK National Blood Donors (NBS) cohort genotyped on the
Illumina 1.2 M chip. We used the SNP set released from
the WTCCC database, which represents a cleaned set of
data from their default QC procedures [19]
Denser genotype data (HapMap) from the HapMap

phase II project. We obtained genotype data on 60 unre-
lated samples from the CEU population (Utah residents
with ancestry from northern and western Europe) Low
coverage sequence data (1000 g) from the 1000 Gen-
omes Project. We obtained genotype data on 283 indivi-
duals that originate from Europe sequenced with 4X
coverage (2010.08 release).
Deep coverage sequence data (complete) from Univer-

sity of California at San Francisco Whole Genome Se-
quencing Consortium and Complete Genomics [20]. We
obtained genotype data on 54 samples of European ori-
gin sequenced by Complete Genomics with an average
of 50X coverage. We used the Complete Genomics de-
fault cut offs for full genotype calls (excluding partial
and no calls), which pass a strict quality score metric.

Construction of artificial IBD for assessing power
Next, to investigate the power to detect IBD of various
lengths, we constructed artificial IBD segments by

Figure 4 Empirical false positive rate of Germline. Empirical false positive rate of Germline to detect an IBD segment as a function of the
number of SNPs within a segment in the simulation study. Each plot presents different lengths of IBD segments examined. The error rate of each
dataset is represented by different colored circles and plotted against the number of SNPs contained within a given region.

Table 2 The average false positive rate of fastIBD and
Germline

fastIBD Germline

Segment Size (cM) WTCCC 1000 g WTCCC 1000 g

0.2 0.009 0.009 0.015 0.269

0.4 0.007 0.009 0.006 0.239

0.6 0.008 0.007 0.009 0.225

1 0.010 0.009 0.006 0.223

2 0.011 0.009 0.003 0.218

Su et al. BMC Bioinformatics 2012, 13:121 Page 5 of 8
http://www.biomedcentral.com/1471-2105/13/121
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the Akaike information criterion42 (AIC) to compare models while

controlling for their different degrees of freedom (see the algo-

rithm reported in Table S2).

Three models were used for the inference in the AJ population

(see Figure 1 and an additional description in the Results): (1)

a model of exponential expansion ðMEÞ, (2) a model including

a founder event followed by exponential expansion ðMFEÞ, and
(3) a model of two exponential-expansion periods separated by

a founder event ðMEFEÞ. The ME model did not provide enough

flexibility to fit the IBD-sharing summary extracted for the AJ pop-

ulation, resulting in a poor fit (particularly for shorter segments)

and unrealistically large values for the recent population size.

We therefore excluded this model from further analysis. For

models MFE and MEFE, we used the following rejection-sampling

approach to maximize the model likelihood around the least-

squares solution obtained in the previous step. (1) For eachmodel,

for each model parameter, we generated a list of neighboring

points by allowing each parameter to vary by 5 3% of its current

value. (2) For each point on such a local grid, we sampled several

random data sets of sharing individuals by using the correspond-

ing demographic parameters (details in Table S3). We created

each data set by sampling random sharing values for independent

individual pairs from the distribution of Equation 17. (3) For each

analyzed set of parameter values, we computed a likelihood as

the fraction of data points for which the deviation between AJ

and sampled sharing was smaller than a tolerance threshold

d (dx0:089 for MFE and dx0:037 for MEFE). (4) We updated the

current point to the most likely point in the analyzed neighbor-

hood, if any, and iterated steps 1–3 until no point with a higher

likelihood was found. (5) We applied the AIC to compare models.

For bothmodels, only one iteration of the above localmaximiza-

tion was required. The most likely parameter values in the grid

matched those obtained with the least-squares approach, except

for the current population size, which increased by 3% for model

MFE and decreased by 3% for model MEFE. When comparing the

Figure 1. Demographic Models
(A) Population of constant size.
(B) Exponential expansion (contraction
for Na > Nc).
(C) A founder event followed by exponen-
tial expansion.
(D) Two subsequent exponential expan-
sions divided by a founder event.

two models, we used a tolerance threshold

of dx0:037 and obtained an AIC value of

19.21 for the MEFE model, which allows

five parameters to vary (such d results in

a likelihood of 0.01 for the MEFE model).

Using the same acceptance threshold, we

thus required a log likelihood of at least

#5.6 (a likelihoodof~3.7310#3) formodel

MFE, which has four parameters, to be

selected. None of the 105 sampled points

were accepted with such a threshold,

leading us to choose the MEFE model. The

likelihoods of additional parameter values

estimated for the MEFE model with the

use of a wider grid are reported in Table S4.

Note that when sampling from Equa-

tion 17, we assumed independence of the

analyzed sharing length intervals Ri and of the pairs within

a data set, potentially underestimating the variance of randomly

sampled summaries of IBD. To account for the presence of small

correlations, we thus performed full coalescent simulations ac-

cording to the most likely set of parameters of each model by

only sampling a synthetic chromosome 1 for 500 diploid individ-

uals. We repeated the rejection-based comparison by using 104

such points for each model and obtained an equivalent result.

Accounting for Phase Errors
The inference procedure described in the previous sections

assumes that high-quality IBD information is available. When

real data sets are analyzed, several sources of noise, such as compu-

tational phasing errors, might distort summary statistics of haplo-

type sharing. In the absence of reliable probabilistic measures for

the quality of shared segments, modeling this potential bias is

complicated. To account for this additional noise, we refined the

inferred AJ demographic model by using simulations that mimic

SNP ascertainment, inaccurate phasing, and IBD discovery in the

analyzed data sets. We expected the distortion of IBD summary

statistics in the AJ data set to not be substantial (Figure S3). The

preliminary inference based on the assumption of high-quality

IBD information therefore provides an efficient means for ex-

ploring large portions of the parameter space and for performing

model comparison. This can be followed by such simulation-based

refinement, which requires considerable computation.

After finding the most likely parameters and selecting model

MEFE for the AJ data as previously described, we refined the ob-

tained solution by using a local-search approach. We iteratively

varied one demographic parameter at a time and kept a tested

value if it resulted in a decreased deviation from the AJ data

summary. Note that in order to account for the stochastic varia-

tion observed across multiple independent simulations of the

same demographic history, we would need to generate several

synthetic data sets for each tested set of demographic parameters.
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simulatedmutation rate).AnestimateofNewasobtained for
each data set across all simulated times of expansion (Fig-
ure 4D). As expected, the obtained estimate of Ne tended
to lie in the range between the ancestral and the current
size of the population. Long, recently originated segments
provide a better prediction of the current population size,
especially for remote expansions. In contrast, the high fre-
quency of shorter segments of more remote origins biases
the inference toward a smaller population size when these
segments are taken into account. For example, the effects
of a small ancestral population size can be observed on
segments between 4 and5 cM in length only for expansions
that occurred fewer than 120 generations ago; in contrast,
when segments between 1 and 2 cM in length are analyzed,
traces of a smaller ancestral population are still notable,
even for expansions that occurred as far back as 400 genera-
tions ago.When comparing these results to population-size
estimates obtained with heterozygosity from full synthetic
genomic sequence, we observed the heterozygosity-based
estimates of Ne to be strongly biased toward the small size
of the ancestral population. Although they present less
instability than do the IBD-based estimates, the inferred

values approached the ancestral population size, even for
expansions that occurred 400 generations before the
present. This analysis outlines the unique sensitivity of
long-range IBD sharing to recent demographic variation.

Evaluation of the Inference in Populations of Varying
Size
We tested the accuracy of our inference procedure for
the cases of either an exponential increase or decrease in
population size (expansion or contraction, respectively;
Figure 1B). We simulated 450 synthetic populations that
underwent an exponential expansion and 450 that under-
went exponential contraction (see Table S1 for a list of
parameters). We analyzed the IBD sharing of 500 diploid
samples from each simulated population along a 278 cM
chromosome. We evaluated the accuracy of the inferred
demography by using the ratio between true and predicted
sizes of each analyzed population (Figure 4B) for all gener-
ations between 1 and 100. We found our inferred popula-
tion size to be within 10% of the true value 95% of the
time. The population size of recent generations was harder
to infer because of the scarcity of long IBD segments in
very large populations (this scarcity is due to a low chance
of recent coalescent events).
Note that the reconstruction accuracy is influenced by

sample size and length of the analyzed region (see Material
andMethods). The rates of expansion and contraction also
substantially affect the ability to recover the correct popula-
tion size; faster expansion and contraction rates incurmore
noisy estimates (the testing reported in Figure 4 included
extreme and possibly unrealistically large rates of expan-
sion and contraction). This was evident when we classified
the synthetic populations as either strong or mild contrac-
tion or expansion events and separately assessed the infer-
ence accuracy for each of these classes (Figure S5).

Expansionþ Founder Eventþ ExpansionModel of the
AJ Population
We analyzed the demographic history of the AJ population
by applying ourmethod to a real data set of 500 individuals
(Material and Methods; segment-length distributions in
Figure 5). We initially tested several models by using the
proposed procedure. After inferring the most likely param-
eters for the chosen model, we used simulations to refine
the analytical solution and account for potential errors in
IBD detection (see Material and Methods and Table S2 for
an algorithmic summary of the analysis).
As a first step, we fitted a simple model of exponential

growth (Figure 1B). If only long (R5 cM) segments are
considered, the parameters of this model can be optimized
to provide a good match for the observed sharing. This
supports the occurrence of an expansion event in the recent
history of this population, as reported in our previous anal-
ysis using a simpler simulation-based approach.33 However,
exponential growth alone is unable to provide a good fit for
the observed frequency of shorter segments, suggesting
additional demographic dynamics during more ancient AJ
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Figure 3. Effects of Demographic Parameters on IBD Sharing
When a population of constant size Ne is considered (A), a larger
number of individuals in the population results in a decreased
chance of sharing IBD segments across all length intervals. A
similar behavior is observed for the case of an exponential popula-
tion expansion (B) parameterized by Na ancestral individuals
exponentially expanding toNc current individuals duringG gener-
ations. Larger values of Na and Nc correspond to a smaller chance
of IBD sharing for short and long segments, respectively. For fixed
Na and Nc, changes in G (affecting the expansion rate) have an
impact on segments of medium length, i.e., the slope of the distri-
bution between short and long segments.
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a founder event (Figure 1D). We focused our analysis on
generations 1–200 (i.e., setting G1 þ G2 ¼ 200 in
Figure 1D). The considered model allows Na3 founders to
exponentially expand to a population of Na2 individuals
duringG2 generations.After a founder event,Na1 individuals
are randomly selected and exponentially expand to reach
a current population ofNc individuals during the remaining
G1 generations. Using this model, we were able to obtain
a goodfit for the entire IBD frequency spectrum, correspond-
ing to the parameter values Na3 # 1;800; Na2 # 37;800;
Na1 # 230; and G1 ¼ 33 (therefore, G2 ¼ 167) and
Nc # 42;000;000: Model comparison based on the AIC
supports this model over simpler demographic scenarios
(see Material and Methods). We note that the most recent
expansion period was inferred to have a considerably high
rate (r ~ 0.37, defined in Equation 7). More complexmodels
(e.g., inferring the value of G2 and allowing for a founder
event predating the remote expansion) did not significantly
improve on the reported demography.
When real data is analyzed, the quality of computational

phasing and IBD detection might affect the reconstruction
accuracy. Inaccuracies in the recovery of long-range
IBD haplotypes are reflected in the inferred current size of
the AJ population, which is extremely large. This is most
likely due to long IBD segments being shortened to smaller
segments because of switch errors during computational
phasing, in addition to greater uncertainty associated with
the inference of recent large population sizes (Figure 3 and
Figure S5). We therefore refined inferred parameters to
take into account such potential bias by using realistic coa-

lescent simulations that also reproducenoisedue to compu-
tationalphasingand IBDdiscovery (Material andMethods).
We obtained an improved fit for a population composed of
~2,300 ancestors 200 generations before the present; this
population exponentially expanded to reach ~45,000 indi-
viduals 34 generations ago. After a severe founder event, the
population was reduced to ~270 individuals, which then
expanded rapidly during 33 generations (rate r ~ 0.29) and
reached a modern population of ~4,300,000 individuals.

Exponential Contraction in the MKK Individuals: The
Village Model
We additionally investigated the demographic profile of 56
samples of self-reported unrelated MKK individuals from
the HapMap 3 data set (Material and Methods). We de-
tected high levels of segmental sharing across individuals,
consistent with recent analysis of hidden relatedness in
this sample.32,33 Genome-wide IBD sharing was elevated
among all individual pairs, suggesting high rates of recent
common ancestry across the entire group rather than
the presence of occasional cryptic relatives due to errors
during sample collection (Figure S6). Optimizing a model
of exponential expansion and contraction (Figure 1A),
we obtained a good fit to the observed IBD frequency spec-
trum (Figure 6), suggesting that an ancestral population of
~23,500 individuals decreased to ~500 current individuals
during the course of 23 generations (r ~ $0.17). We note
that this result might not be driven by an actual gradual
population contraction in the MKK individuals, but it
most likely reflects the societal structure of this
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2 x 10–5

2 x 10–6

Figure 5. Reconstruction for the AJ Demographic History
We applied several demographicmodels to study the demographic history of 500 self-reported AJ individuals on the basis of the observed
distribution of haplotype sharing (green line). The parameters of exponential expansion can be optimized to provide a good fit when
only long (R5 cM) segments are considered (red line, Figure 1B; best fit:Nc # 97;700;000,G¼ 26, andNa # 1;300). However, thismodel
is not flexible enough to accommodate abundant short segments found in this population. Themilder slope observed between segments
of 2–5 cM in length suggests a larger ancestral population size that rapidly recovered from a severe founder event by expanding to reach
a large modern population size (purple line, Figure 1C; best-fit: Nc # 12;800;000; G ¼ 35; Na1 # 230; and Na2 # 70;600Þ: Still, this
model cannot provide a good fit for additional slope variation (observed for segments between 1–2 cM) that is well explained by an addi-
tional exponential expansion that precedes the founder event but that is distinct from the other, more recent expansion (orange line;
Figure 1D; best-fit:Nc # 42;000;000; G1 ¼ 33; Na1 # 23; Na2 # 37;800; Na3 # 1;800; and G2 ¼ 167). All population sizes are expressed
as diploid individuals. G2 was not optimized because it was assumed that G1 þ G2 ¼ 200.
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meilleur fit pour données d’Ashkenazim (n = 500 génotypés, ` = 750 k sites) :
EFE avec Nc = 2300 (-200 générations),↗ 45 k (-34 générations)↘ 270↗
4.3 M
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seminomadic population. Although little demographic
evidence has been reported, the MKK population is in
fact believed to have a slow but steady annual population
growth.47 We hypothesized that a high level of migration
across small-sized MKK villages (Manyatta) provides
a potential explanation for the observed IBD patterns in
this population. In such a model, a small genetic pool for
recent generations gradually becomes larger as a result of
migration across villages as one moves back into the past.
To validate the plausibility of this hypothesis, we simulated
a demographic scenario in which multiple small villages
interact throughhighmigration rates. This setting is similar
to Wright’s island model,48 and we shall refer to it as the
village model in this case (Figure S7).We extracted IBD infor-
mation for one of the simulated villages and attempted to
infer its demographic history by using a single-population
model of exponential expansionandcontraction (Figure1).
Indeed, the single-populationmodel provides a good fit for
this synthetic sample, and the severity of the gradual
contraction of the population was observed to be propor-
tional to the simulated migration rate. We thus used the
village model to analyze the MKK demography and relied
on coalescent simulations to retrieve its parameters: migra-
tion rate, size, andnumber of villages that provide a goodfit
for the empirical distributionof IBD segments.Weobserved
a compatible fit for this model, in which 44 villages of 485
individuals each intermix with a migration rate of 0.13
individuals per generation (Figure 6).
Note that, although our simulations involved several

villages of constant size, adequate choices of migration
rates would result in the signature of a drastic contraction
even among expanding villages (and, therefore, overall
expanding population). From a methodological point of
view, we further note that LD might also provide informa-
tion for inferring such a ‘‘village effect.’’ However, although
current strategies for IBD detection allow finding shared
haplotypes in the presence of computational phasing

errors, LD analysis over long genomic intervals is sub-
stantially affected by noisy phase information (Figure S8).

Discussion

Recent availability of high-density genetic data has enabled
the investigation of human diversity at increasingly high
levels of detail. Although the vast majority of human
genetic variation arose in the panhuman ancestral popula-
tion and is therefore shared across continents, substantial
local differentiation between populations occurred as a
consequence of fine-scale demographic events of more
recent history.49 The intricate structure of these events is
most visible through population-specific allele frequencies
that models of panmictic admixture fail to adequately
explain.18 As sequencing technologies provide new in-
sights into recent genetic variation, our ability to under-
stand these demographic patterns becomes essential.
In this paper, we developed a formal relationshipbetween

demographic history and the distribution of IBD-shared
haplotypes between purportedly unrelated individuals.
This allowed us to provide an inference procedure for
demographic events that occurred in recent millennia. The
proposed approach can take into account subtle correlation
structures induced by long-range haplotypes, a distinguish-
ing advantage compared to existing methods. Specifically,
methods that assume independence of markers (e.g., allele
frequency spectrum) ignore this correlation, whereas
methods that focus on stronger forms of local correlation
(e.g., LD) fail to capture this source of information. It is the
ability of our approach to account for long-range correla-
tions across individual pairs that translates into higher
resolution when reconstructing recent historical events.
With thematurationofpopulation-scale sequencing tech-

nologies, direct observation of rare variants will pave new
ways for investigating recent demography. Accounting for
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Figure 6. MKK Demography
IBD sharing is high across MKK samples,
particularly for long haplotypes. Our anal-
ysis of the observed distribution of haplo-
type sharing (red) with the use of a
single-population model (blue) suggests
occurrence of a severe population contrac-
tion in recent generations (~23,500 ances-
tral individuals decreasing to ~500 current
individuals during 23 generations at a high
exponential rate r ~ !0.17). An alternative
demographic model containing several
small demes that interact through high
migration rates creates the same effect as
a recent severe population bottleneck and
provides and alternative justification to the
abundance and distribution of IBD sharing.
In particular, we reconstructed a plausible
scenario (dashed CI obtained through
random resampling of 200 synthetic data
sets) in which 44 villages of 485 individuals
each intermix with a migration rate of
0.13 per individual per generation.
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meilleur fit pour données de Maasaı̈ (n = 78 génotypés, ` = 1.5 M sites) : EFE
avec Nc = 23500 (-23 générations) ,↗ 500

explication : villages avec migration de taux bas (⇒ ancêtres communs sont plus
anciens)
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does not necessarily indicate a single, punctual event, but probable

contact between an admixed population and Native American

individuals during that period. By contrast, we find no evidence for

continuing African gene flow in CLM.

Identity by descent analysis
We used germline [55] and the trio-phased OMNI data above

to identify segments identical-by-descent (IBD) within and across
populations (see Text S1). Not surprisingly, we found more IBD

Figure 2. (a) Individual ancestry proportions in the 1000 Genomes CLM, MXL, and PUR populations according to ADMIXTURE, (b) Map showing the
sampling locations for the populations most closely related to the Native components of the 1000 Genomes populations. (c) Principal component
analysis restricted to genomic segments inferred to be of Native Ancestry in these populations, compared to a reference panel of Native American
groups from [40], pooled according to country of origin as a proxy for geography. Populations sampled across many locations are labeled according
to the country of the centroid of locations. (d) Zoomed version of the PCA plot, showing specific Native American population labels, colored
according to country of origin.
doi:10.1371/journal.pgen.1004023.g002
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segments within populations (23936) compared to across popula-
tions (1440), and within-population segments were longer (Figure
S3).

The MXL population exhibits significantly less within-popula-
tion IBD compared to the other two panels (Figure 4). The
amount of IBD among unrelated individuals can be used to infer
the underlying population size under panmictic assumption: the
larger a population, the more distant the expected relationship
between any two individuals [56]. Using IBD segments longer
than 4 cM, we infer effective population sizes of 140,000 in MXL,
15,000 in CLM, and 10,000 in PUR. As we will show, these
largely reflect post- ADMIXTURE population sizes.

We expect long IBD segments to be inherited from a recent
common ancestor, and therefore to have identical continental
ancestry. Comparing the RFMIX ancestry assignments on
chromosomes that have been identified as IBD by germline thus
provides a measure of the consistency of the two methods (see [57]
for a related metric). Rates of IBD-Ancestry mismatch ranged
from 2:6% in segments of 5Mb to less than 0:2% for segments
longer than 40 Mb (Figure S4).

Patterns of ancestry in IBD segments within a population differ
markedly from those across populations (Figure 5): IBD segments
within populations contain many ancestry switches. This indicates
that many common ancestors lived after contact, and that the
effective population sizes estimated using IBD largely reflects post-
contact demography. The IBD patterns in cross-population IBD
segments exhibited fewer ancestry switches than a random control
(Figure S5), as may be expected if common ancestors often predate
the onset of ADMIXTURE. Cross-population IBD segments were also
found to be overwhelmingly of European origin: among the 120
longest cross-population IBD segments, 117 are in European-
inferred segments, two are among Native segments, and one is
among African segments. This is not due to overall ancestry
proportions, as can be observed by considering the alternate (non-
IBD) haplotypes at the same positions (Figure S5). This is likely a
result of the colonization history, in which European colonists
rapidly spread from a relatively specific region over a large
continent. This interpretation is supported by the ADMIXTURE

analysis (Figure S6), showing a common cluster of ancestry for
the European component dominant in PUR, CLM, MXL, and
Andean populations, but not in CEU, Eskimo-Aleut, and Na-
Dene. Finally, we were interested in testing whether the
relationship between IBD and ancestry can be used to date

Figure 3. Ancestry tract length distribution in PUR (a) and CLM (b) compared to the predictions of the best-fitting migration model.
Solid lines represent model predictions and shaded areas are one standard deviation confidence regions surrounding the predictions, assuming a
Poisson distribution of counts per bin. The best-fitting models are displayed under each graph. Pie charts sizes indicate the proportion of migrants at
each generation, and the pie parts represent the fraction of migrants of each origin at a given generation. Migrants are taken to have uniform
continental ancestry. ‘Single-pulse’ ADMIXTURE events occurring at non integer time in generations are distributed among neighboring generations: in
the CLM, the inferred onset was 13.02 generations ago (ga). The model involves founding 14 ga, but almost complete replacement 13 ga. At 30 years
per generation [68], 14.9 ga corresponds to c:1566, and 13 to c:1623. Model parameters and confidence intervals are displayed in Table S1 in the Text
S1 file.
doi:10.1371/journal.pgen.1004023.g003

Figure 4. Number of IBD tracts by length bin in the three panel
populations (independent of ancestry estimations), normal-
ized by the number of individual pairs. The lower level of IBD in
the MXL population indicate a much larger effective population size.
doi:10.1371/journal.pgen.1004023.g004
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IBD ? IFT6299 H2014 ? UdeM ? Miklós Csűrös xxvBy calibrating our results using TA~16kya, towards the most
recent end of the range of plausible values for the peopling of the
Americas (see e.g., [6] and references therein), we find a

mutation rate of 1:44|10{8bp{1gen{1 (bootstrap 95% CI:

1:32{1:53|10{8bp{1gen{1), within the range of recently
published human mutation rates [63]. The narrowest confidence

interval reported in [63] was 1:05{1:5|10{8bp{1gen{1,
obtained from a de novo exome sequencing study [64]. Our
sampling confidence interval is narrower than this value, but the
main source of uncertainty here is the degree to which the
bottleneck in our model reflects the bottleneck at the founding of
the Americas, or the earlier split with the ancestors to the
Chinese (CHB) and Japanese (JPT) sample, as well as uncertainty
with respect to the timing of these two events (see Figure 7). The
effect of changing the founding time or mutation rate assump-
tions would be to scale all parameters and confidence intervals
according to T!N!1=m: Thus the absolute uncertainty on
individual parameters is larger than the sampling uncertainty
suggests.

Estimating Native American allele frequencies
There is scarce publicly available, genome-wide data about

Native American genomic diversity. The 1000 Genomes dataset
offers the opportunity to provide a diversity resource for Native
American genomics by reconstructing the genetic makeup of
Native American populations ancestral to the PUR, CLM, and
MXL. This is particularly interesting in the case of the Puerto
Rican population, where such reconstruction may be the only way
to understand the genetic make-up of the pre-Columbian
inhabitants of the Islands. Using the expectation maximization
method presented in the Methods section, we estimated the allele
frequencies in the Native-American-inferred part of the genomes
of the sequenced individuals. These estimates are available at
http://genomes.uprm.edu/cgi-bin/gb2/gbrowse/.

Figure 8 shows the distribution of the number of Native
American haplotypes per site and the resulting confidence
intervals for allele frequency in each population for exome capture
target regions. Absolute confidence intervals are narrow for rare
variants, and reach a maximum for SNPs at intermediate

Figure 7. Plausible parameter range for the human mutation rate and the founding time of the Native American populations. The
shaded blue area is the 95% confidence interval from the current analysis. The horizontal line shows the lowest mutation rate estimate from [63], and
the vertical line shows the lowest plausible date for the founding of the ancestral Native American populations according to [6]. The plausible region,
given by the overlap of the three areas, would correspond to a mutation rate of 0:97{1:6|10{8bp{1gen{1 and a Native American founding time
15{24kya.
doi:10.1371/journal.pgen.1004023.g007

Figure 8. (a) Number of inferred Native American haplotypes per site, out of 120 CLM, 132 MXL, and 110 PUR haplotypes. (b) Distribution of
confidence intervals widths for allele frequency estimations among the exomic Native American segments of the three panels.
doi:10.1371/journal.pgen.1004023.g008
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