ASSEMBLAGE de novo

Assemblage * IFT6299 H2014 * UdeM * Miklós Csűrös

Assemblage de la séquence du génome

Entrée : lectures d'ADN (appariées en général)

Sortie : (longues) séquences de régions contigues, déterminées selon chevauchements entre les fragments

s1:	AATGCCGGATTC
s2:	GCCTTACACAGGATTC
s3:	ACACTGTCAAG
s4:	ACTGAAGGATTC
s5:	GAAGGTTTACGGACC

B : AATGCCTTACACTGAAGGTTTA....GGATTCAAGGATTC..CGGACC

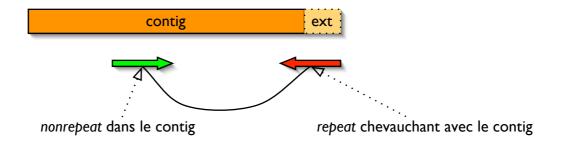
TIGR assembler (1995)

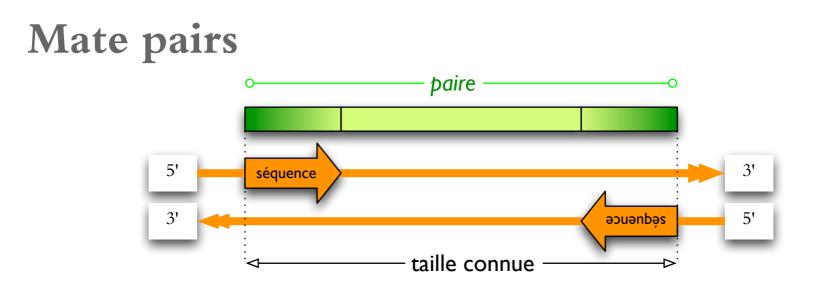
une approche glouton utilisée pour assembler le génome de H. influenzae

 analyse de k-mers dans les fragments : chevauchements potentiels entre fragments avec k-mers partagés (score determiné par nombre de k-mers en commun)
identification de fragments avec régions répétées
initialisation de la séquence assemblée (contig) par un fragment

4. répéter : ajout du meilleur fragment à la séquence assemblée

En 2 : fragment avec trop de chevauchements potentiel=repeat

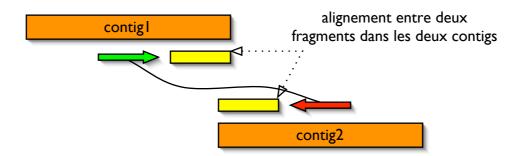

Sutton et al, Genome Sci. Techn. 1:9 (1995)


TIGR 2

trouver meilleur fragment à ajouter : alignement local (Smith-Waterman), pour tous les fragments avec chevauchements potentiels

contig finit s'il n'y a plus de fragments à ajouter : à la frontière d'une région répétée ou à un vrai trou

extension dans la région répétée : utiliser des séquences shotgun appariées (mate pairs)



distances : 2k (M13), 10k (plasmid), 100k (BAC)

aident à orienter des contigs, à construire des ossatures (*scaffolds*), et à traverser des régions répétées

TIGR 3

joindre des contigs si évidence par chevauchements et mate pairs

Assemblage : overlap-layout-consensus

Overlap : déterminer les chevauchements parmi les séquences shotgun

Layout : déterminer l'ordre des séquences shotgun

Consensus : déterminer la séquence des contigs

Calcul de tous les chevauchements

 $\mathcal{F} = \{f_1, \ldots, f_n\}$ ensemble de séquences shotgun

trouver le meilleur chevauchement entre chaque paire : $O(n^2 \ell^2)$ où ℓ est une borne supérieure sur la longueur des fragments.

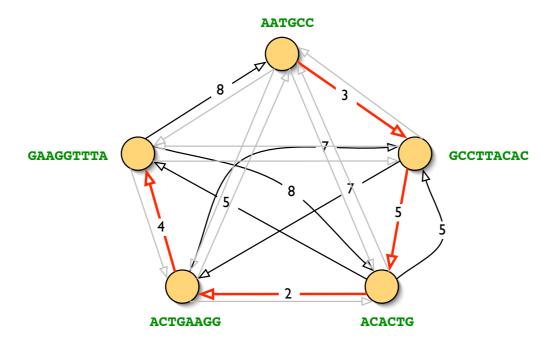
Améliorer :

- 1. moins de paires comparés (hachage par k-mers)
- 2. trouver le meilleur chevauchement plus rapidement (alignement rapide)

 \Rightarrow graphe de chevauchements (overlap graph)

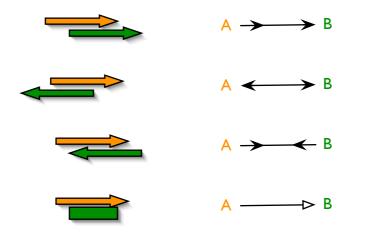
Problème théorique : shortest superstring — NP-difficile

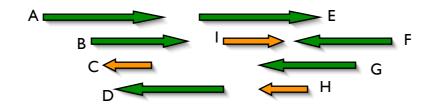
(-> mauvaise abstraction -- on a des beaucoup de régions répétées dans le génome !)


Un exemple (CAP3)

Séquence combinée de tous les fragments:

- 1. Tableau de hachage des k-mers de la séquence combinée.
- 2. Chaque fragment f ainsi que son complément sont comparés à la séquence combinée, pour trouver des HSPs (v. BLAST).
- 3. Les chevauchements potentiels de 2) sont évalués par alignement dans une bande.

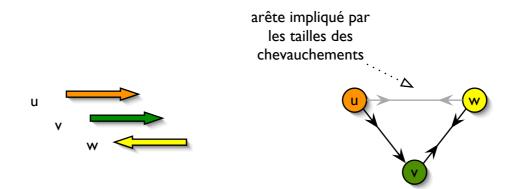

Graphe de chevauchements


[problème d'orientation ignoré]

Layout

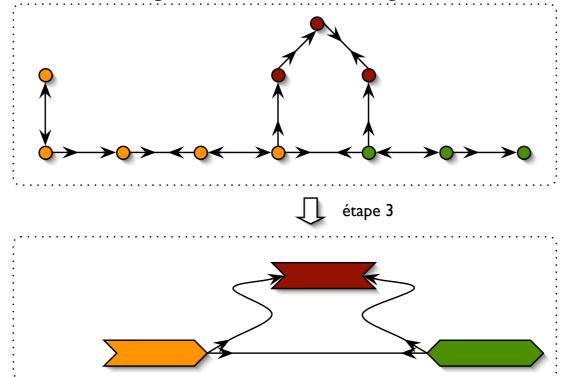
Catégories de chevauchements (orientation inconnue des fragments)

Exemple



compter les flèches arrivant à un vertex : layout=chemin avec arêtes de chevauchements propres+ forêts avec arêtes de contention

Simplification du graphe


1. enlever les arêtes de couverture complet

2. enlever des arêtes «transitifs» : si $u \rightleftharpoons v, v \rightleftharpoons w$ et $u \rightleftharpoons w$ sont des arêtes compatibles (orientation+taille de chevauchements), alors enlever $u \rightleftharpoons w$

Simplification du graphe 2

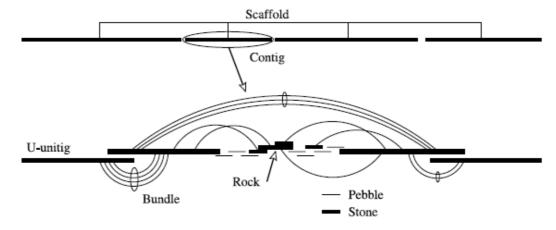
3. collapser des chemins : «super-vertices» ou contigs

Séquence de consensus

Le layout donne la position approximative de chaque fragment. Trouver la séquence de consensus : alignement multiple

Profile : enregistrer la fréquence de symbols dans l'alignement multiple

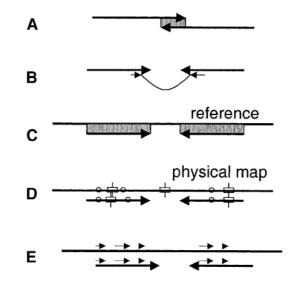
Joindre les séquences consécutives au contig dans l'ordre spécifié dans la phase *layout*, maintenir un profile dans le contig


Problème : alignement d'une séquence à un profile (dans une bande autour de la position approximative)

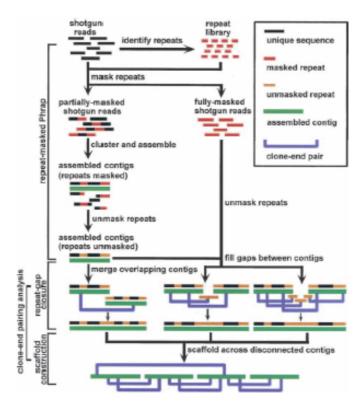
 \Rightarrow contigs

Ossatures

Joindre des contigs si liens entre eux par deux mate pairs ou plus.

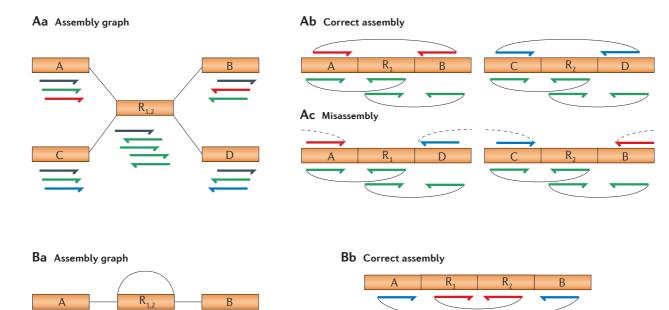

Ajout d'autres contigs dans les trous des ossatures

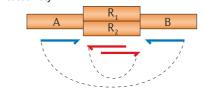
Myers & al, Science 287 :2196 (2000)


Ossatures — liens

Sources de liens : chevauchements entre contigs, mate pairs, alignement à un autre génome de référence, alignement à une carte physique, conservation de synténie

Pop & al, Genome Res 14 : 149 (2004)


De séquences à d'ossatures


Wang & al, Genome Res 12 : 824 (2002)

Repeats

la plus difficile est de séquencer les régions répétées : danger de réarragment et compression

Treangen & Salzberg Nat Rev Genet 13:36 (2012) '

Séquençage par hybridation (SBH)

Idée : C ensemble de sondes (p.e. tous les k-mers) arrangé sur une puce

On teste la présence de chaque $c \in C$ dans une molécule d'ADN (séquence u) par hybridation

spectrum : ensemble de k-mers dans u

$$S_k(u) = \{u[i, \cdots, i+k-1] : i = 1, \cdots, |u|-k+1\}.$$

Problème : reconstruction de u à partir de $S_k(u)$.

Reconstruction à partir du spectrum

Approche 1 : graphe de chevauchements où chaque k-mer de u est un vertex et des arêtes représentent des chevauchements de taille (k - 1). On cherche un chemin hamiltonien.

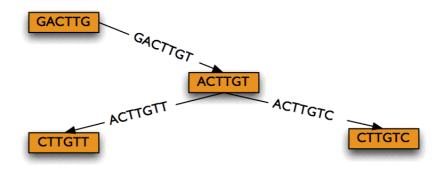
Approche 2 : g.d.c où chaque k-mer de u est une arête entre son préfixe et suffixe de taille (k - 1) [quand le spectrum inclut tous les k-mers, c'est un graphe de Bruijn] On cherche un chemin eulérien.

Chemin eulérien

Déf Un chemin/cycle eulérien d'un graphe visite chaque arête exactement une fois.

Thm. Il existe un cycle eulérien dans un graphe connecté orienté ssi degré_{arr} $(u) = degré_{sort}(u)$ dans chaque vertice u.

Il existe un algorithme qui trouve un cycle [ou chemin] eulérien (ou annonce qu'il n'y en a pas) en temps linéaire.


Séquençage shotgun par SBH

Il est désirable de calculer le spectrum avec un grand k (longueur d'une séquence qui peut être recounstruite est $\approx 2^k$) mais il n'est pas [encore] pratique d'utiliser des puces avec k = 20 p.e.

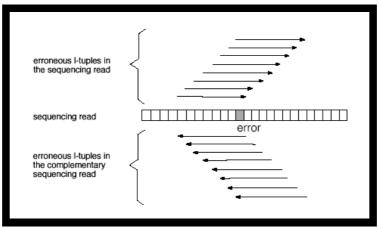
Idée : pourquoi ne pas générer le spectrum à partir de séquences shotgun?

- 1. ensemble $\mathcal{F} = \{s_1, s_2, \dots, s_n\}$ de séquences shotgun 2. ensemble de k-mers (p.e. k = 24) $\mathcal{F}_k = \bigcup_{i=1}^n \{s_i[j..j+k-1]: j = 1, \dots, |s_i| - k + 1\}$
- 3. assembler la séquence à partir de \mathcal{F}_k comme en SBH (chemins eulériens)

Idury-Waterman

1. Réduction du graphe par transformations pareilles à ce qu'on a vu pour layout (Myers 1995).

2. Chemins eulériens modifiés : la même arête peut être visitée plus qu'une fois (p.e. région répétée) ; quelques arêtes ne sont pas visitées de tout (erreurs de séquençage)


Idury et Waterman, J Comput Biol 2: 291 (1995)

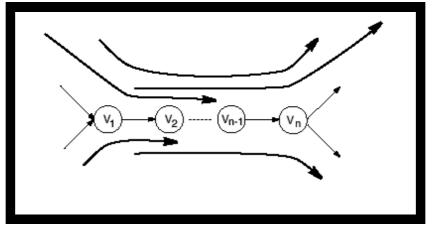
Euler

Une autre approche à l'assemblage shotgun inspirée par SBH : Euler

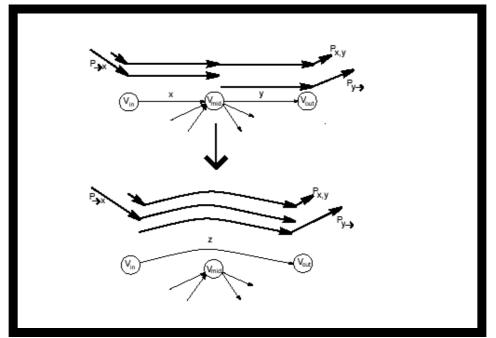
- correction d'erreurs : identification de k-mers rares
- augmentation de graphe de Bruijn pour transformer le problème du super-chemin eulérien en celui du chemin eulérien

Euler : erreurs

problème avec Idury-Waterman : trop de sommets dans le graphe créés par des erreurs de séquençage

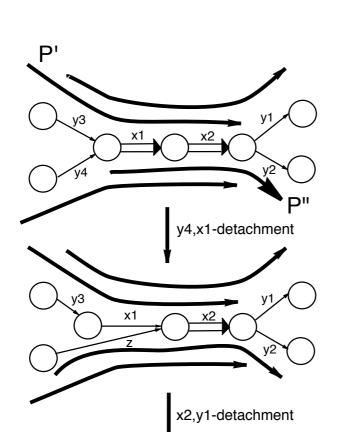

solution de Euler : orphelin est un rare k-mer u dans le [multi-]spectrum S t.q. il existe exactement un $v \in S$ avec ||u - v|| = 1 et v est fréquent — remplacer u par v.

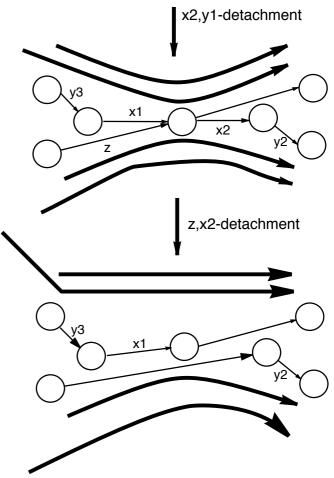
Euler : super-chemins


Départ : ensemble de k-mers avec info sur leurs occurrences (lecture shotgun + position dans la lecture)

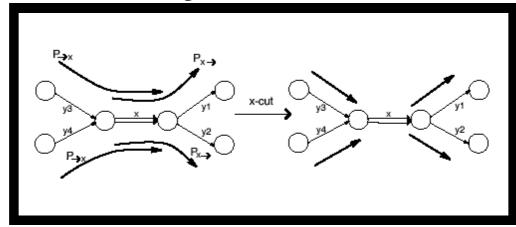
construire le graphe de Bruijn à arêtes multiples (une arête pour chaque occurrence d'un k-mer)

chemins initiels : définis par les séquences shotgun



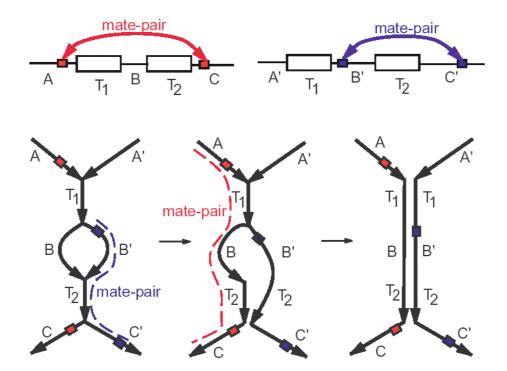

Euler : détachements

+ vérifier quels chemins sont consistents


Euler : détachements 2

Euler : coupures

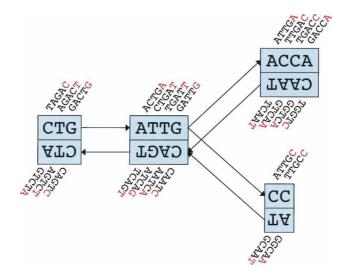
On ne peut pas décider...2 contigs


Philosophies

Euler : transformations de graphe pour obtenir un graphe eulérien

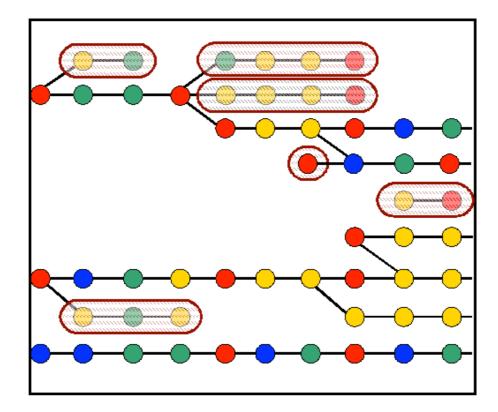
Idury-Waterman : réductions de graphe qui remplacent les chemins par des arêtes

Mate pairs et de Bruijn


utiliser les mate pairs pour séparer les chemins

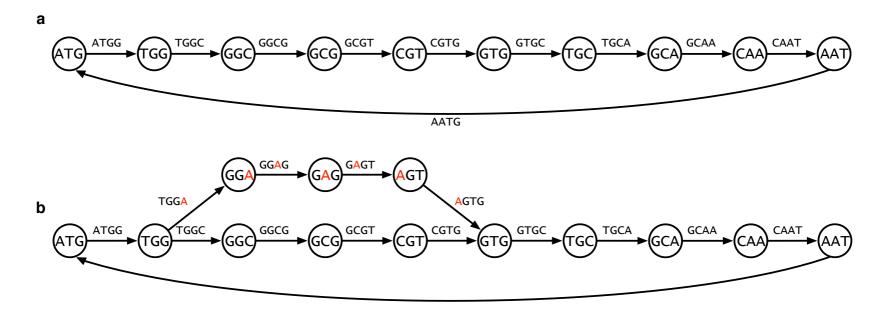
Pevzner & Tang, Bioinformatics 17: S225 (2001)

Velvet


un nœud correspond à une séquence et son complément inverse : au début pour k-mers (k = 21), après fusionner si aucune ambiguïté

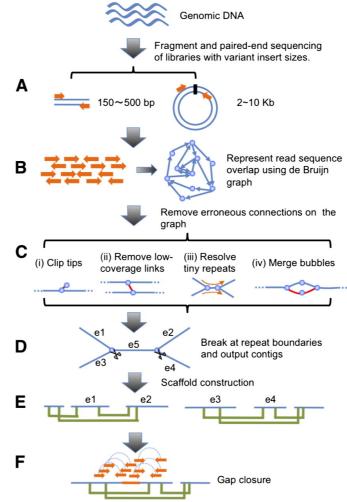
manipulation : correction d'erreurs (tips et bubbles)

Zerbino & Birney Genome Res 18:821 (2008)


Tips

enlever cul-de-sac (longueur $\leq 2k$) — identifier avec parcours par profondeur

Simpson & al Genome Res 19:1117 (2010)


Bubbles

Tour Bus correction (Velvet) : parcours par largeur + nœud visité 2e fois + reculer et identifier ancêtre commun + alignement entre les deux possibilités

Compeau, Pevzner & Tessler Nat Biotechnol 29:987 (2011)

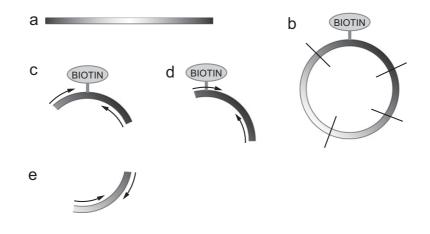
Exemple : SOAPdenovo

Li & al Genome Res 20 :265 (2011)

ALLPATHS-LG

recette de données de séquençage + algorithme adapté

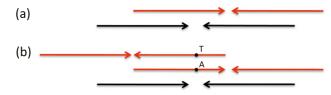
Table 1. Provisional sequencing model for de novo assembly


Libraries, insert types*	Fragment size, bp	Read length, bases	Sequence coverage, \times	Required
Fragment	180 [†]	≥100	45	Yes
Short jump	3,000	≥100 preferable	45	Yes
Long jump	6,000	≥100 preferable	5	No [‡]
Fosmid jump	40,000	≥26	1	No [‡]

*Inserts are sequenced from both ends, to provide the specified coverage.

[†]More generally, the inserts for the fragment libraries should be equal to \sim 1.8 times the sequencing read length. In this way, the reads from the two ends overlap by \sim 20% and can be merged to create a single longer read. The current sequencing read length is \sim 100 bases.

[‡]Long and Fosmid jumps are a recommended option to create greater continuity.

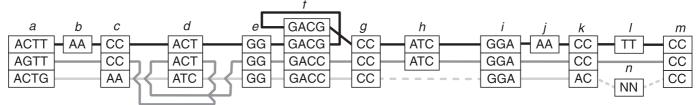

jump libraries et erreurs :

Gnerre & al Proc Nat Acad Sci USA 108 :1513 (2011)

ALLPATHS-LG

1. «doublage» avec jumps : de-Bruijn collapsé pour 96-mers

- 2. correction d'erreurs selon distribution de 24-mers
- 3. resolution avec appariements de lectures


⇒ 48-core, 512G RAM : 3 semaines de calcul pour génome dun mammifère

(SOAPdenovo : 3 jours)

Gnerre & al Proc Nat Acad Sci USA 108 :1513 (2011)

Évaluation

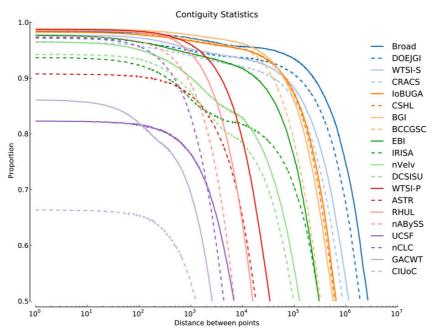

comparaison du génome diploïde avec la séquence assemblée : chemins maximaux (contigs ou échafaudage) avec adjacences consistentes avec un haplotype ou l'autre

Figure 3. An adjacency graph example demonstrating threads, contig paths, and scaffold paths. Each stack of boxes represents a block edge. The nodes of the graph are represented by the *left* and *right* ends of the stacked boxes. The adjacency edges are groups of lines that connect the ends of the stacked boxes. Threads are represented (*inset*) within the graph as alternating connected boxes and colored lines. There are three threads shown: (*top to bottom*) black, gray, and light gray. The black and gray threads represent two haplotypes; there are many alternative haplotype threads that result from a mixture of these haplotype segments, which are equally plausible given no additional information to deconvolve them. The light-gray thread represents an assembly sequence. For the assembly thread, consistent adjacencies are shown in solid light gray. The dashed light gray line between the *right* end of block *i* represents a structural error (deletion). The dashed light-gray line between the *right* end of block *k* and the *left* end of block *m* represents a scaffold gap, because the segment of the assembly in block *n* contains wild-card characters. The example, therefore, contains three contig paths: (from *left* to *right*) blocks *a*...*g* ACTGAAATCGGGACCCC; blocks *i*, *j*, *k* GGAAC; and block *m* CC. However, the example contains only two scaffold paths because the latter two contig paths are concatenated to form one scaffold path.

Earl & al Genome Res 21 :2224 (2011)

Évaluation : contiguité

Figure 5. The proportion of correctly contiguous pairs as a function of their separation distance. Each line represents the top assembly from each team. Correctly contiguous 50 (CC50) values are the lowest point of each line. The legend is ordered *top* to *bottom* in descending order of CC50. Proportions were calculated by taking 100,000,000 random samples and binning them into 2000 bins, equally spaced along a log₁₀ scale, so that an approximately equal number of samples fell in each bin.

est-ce que'une paire de positions i < j (tiré au hasard) dans un haplotype se trouvent dans un scaffold aligné correctement?

Earl & al Genome Res 21 :2224 (2011)

Assembleurs de novo

ID	Overall	CPNG50	SPNG50	Struct	CC50
Broad	31	2 (7.25 × 10 ⁴)	3 (2.11 × 10 ⁵)	3 (1244)	1 (2.66 × 10 ⁶)
BGI	37	$1(8.23 \times 10^4)$	$6(1.17 \times 10^{5})$	6 (1878)	7 (5.66 \times 10 ⁵)
WTSI-S	38	9 (2.48 \times 10 ⁴)	$1 (4.95 \times 10^5)$	2 (475)	$3(1.14 \times 10^{6})$
DOEJGI	44	14 (1.15 \times 10 ⁴)	2 (4.86 \times 10 ⁵)	1 (456)	2 (1.89 $ imes$ 10 ⁶)
CSHL	57	$3(4.23 \times 10^4)$	$8(7.17 \times 10^4)$	14 (5146)	6 (6.11 \times 10 ⁵)
CRACS	58	$11(1.55 \times 10^4)$	$5(1.44 \times 10^5)$	4 (1666)	4 (8.61 \times 10 ⁵)
BCCGSC	60	$5(3.63 \times 10^4)$	$4(1.46 \times 10^5)$	10 (2867)	$8(3.22 \times 10^5)$
EBI	64	$16(9.39 \times 10^3)$	7 (1.13 \times 10 ⁵)	7 (2055)	9 (3.04 \times 10 ⁵)
IoBUGA	65	7 (3.06×10^4)	$12(3.54 \times 10^4)$	15 (6310)	$5(6.47 \times 10^5)$
RHUL	71	$6 (3.20 \times 10^4)$	$13 (3.31 \times 10^4)$	8 (2551)	$15 (1.59 \times 10^4)$
WTSI-P	74	$4(3.80 \times 10^4)$	$11 (4.21 \times 10^4)$	13 (4895)	$13(3.41 \times 10^4)$
DCSISU	99	$12(1.35 \times 10^4)$	$10(5.61 \times 10^4)$	12 (4319)	$12(9.75 \times 10^4)$
nABySS	100	$10(1.99 \times 10^4)$	$16(2.00 \times 10^4)$	5 (1731)	$16(6.97 \times 10^3)$
IRISÁ	103	$17 (8.20 \times 10^3)$	9 (5.82 \times 10 ⁴)	11 (3725)	9 (3.04 \times 10 ⁵)
ASTR	106	8 (2.52×10^4)	$14 (3.13 \times 10^4)$	9 (2818)	$14 (1.81 \times 10^4)$
nVelv	114	$18(5.65 \times 10^3)$	$15(2.75 \times 10^4)$	18 (8626)	$11(1.27 \times 10^5)$
nCLC	115	$15 (9.47 \times 10^3)$	$18 (9.54 \times 10^3)$	16 (7283)	$18 (4.36 \times 10^3)$
UCSF	138	$12(1.35 \times 10^4)$	$17(1.35 \times 10^4)$	20 (24,987)	$17 (6.84 \times 10^3)$
GACWT	149	$20(2.53 \times 10^{3})$	$19(7.82 \times 10^{3})$	17 (8622)	$19(2.60 \times 10^{3})$
CIUoC	152	$19(5.60 \times 10^3)$	$20(5.60 \times 10^3)$	19 (11,282)	$20(1.27 \times 10^{3})$

(CPNG50) contig path NG50; (SPNG50) scaffold path NG50; (Struct) sum of structural errors; (CC50) length for which half of any two valid columns in the assembly are correct in order and orientation

(Broad) ALLPATHS-LG, (WTSI-S) SGA, (BGI) SOAPdenovo

Earl & al Genome Res 21 :2224 (2011)