VARIANTES STRUCTURALES

- 1. petits indels
- 2. copy number variation
- 3. réarrangements

Variantes structurales * IFT6299 H2014 * UdeM * Miklós Csűrös

Petits indels

petits indels (1..10 ou ..20 pb) — variantes génomiques 1/8 aussi fréquentes que les SNPs (mais presque même longueur combinée entre SNP et indels)

Table 1. Summary of small INDELs identified from 98 million

re-sequencing traces	
Traces screened	98,350,511
Bases analyzed (trimmed) Reference human genome (hg18)	42,000,606,219
Cumulative coverage	13.5×
Variants identified	3,400,787
Unique (nonredundant) variants	1,955,656
Insertions	978,721
Deletions	976,935
Total bases affected	11,909,159

- on infère les petits trous à partir des alignements des lectures
- il faut refaire l'alignement pour identifier la variante en commun

Mills & al Genome Research 21:830 (2011); Neuman, Isakov & Shomron Briefings in Bioinformatics 14:46 (2012)

DINDEL

travailler avec des candidats de haplotypes + alignement statistique entre haplotype et lectures

haplotypes : combiner les lectures en blocs de haplotypes considérer toute combinaison de blocs fréquents + variantes proposées à l'entrée

 $(\leq 8 \text{ haplotypes à la fois})$

Albers & al Genome Research 21 :961 (2011)

DINDEL : alignement

haplotype définit un modèle probabiliste — alignment par Viterbi variables observées : R^b , $b = 1, ..., \ell$ bases dans la lecture variables inconnues : X^b position de base b, I^b indicateur pour insertion de base bancrer au milieu de la lecture alignée (b_0) transitions considèrent homopolymer runs

Albers & al Genome Research 21:961 (2011)

Détection et couverture

PPV=positive predictive value

sensitivity =
$$\frac{TP}{TP + FN}$$
 PPV = $\frac{TP}{TP + FP}$

Neuman, Isakov & Shomron Briefings in Bioinformatics 14:46 (2012)

Meilleures pratiques

Tool name	Advantages	Limitations
GATK	Highly supported with good overall performance	Low sensitivity at very low coverage (<10×; can be improved by less stringent parameters)
Dindel	Best performance at low coverage	Only suitable for Illumina data analysis and has long running time
SAMtools mpileup	High PPV and simple use	Lowest sensitivity at high coverage ($>50\times$)
VarScan	High sensitivity at intermediate/high coverage (>30 \times) and simple use	Low PPV at default parameter settings and low sensitivity at low coverage (<30×)

Figure 5: Venn diagram depicting the number of indels found for each software with $30 \times$ and $150 \times$ coverage and read length 72. Inclusion of indels called in any of the software results in a decrease in PPV with only a mild sensitivity improvement. Inclusion of indels supported by at least two software results in a sensitivity improvement for some of the software and a significant increase in PPV, crucial in high coverage data.

Neuman, Isakov & Shomron Briefings in Bioinformatics 14:46 (2012)

Variation structurale

classes principales : suppression, insertion, duplication, inversion/translocation

Alkan, Coe & Eichler Nature Reviews Genetics 12:363 (2011)

Signatures de SV

Alkan, Coe & Eichler Nature Reviews Genetics 12:363 (2011)

Breakdancer

détection de SV à partir des paires discordantes :

- 1. paire discordante : orientation incompatible et/ou distance surprenante
- 2. régions avec trop de paires discordantes
- 3. liaisons : régions liées par ≥ 2 paires discordantes

Figure 1 | Overview of BreakDancer algorithm. (a) The workflow.
(b) Anomalous read pairs recognized by BreakDancerMax. A pair of arrows represents the location and the orientation of a read pair. A dotted line represents a chromosome in the analyzed genome. A solid line represents a chromosome in the reference genome.

Chen & al. Nature Methods 6 :677 (2009)

Duplications

duplications : vérifier paires et couverture par lectures

1. mapping : identifier des lectures trop fréquentes et discordantes (mauvaise orientation ou distance > μ + 3σ)

Medvedev & al. Genome Research 20 :1613 (2010)

CNVer

2. groupage de paires discordantes, calculer positions (s, t) sur la référence pour la partie intérieure

Medvedev & al. Genome Research 20 :1613 (2010)

CNVer (cont.)

3. "Donor graph" : représenter la référence par blocs uniques (compression de régions dupliquées), y ajouter les clusters de paires discordantes, arêtes bi-orientées

4. optimisation de flot dans le réseau (sans assemblage)

Medvedev & al. Genome Research 20 :1613 (2010)