
Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös

VARIANTES STRUCTURALES

1. petits indels

2. copy number variation

3. réarrangements



Petits indels

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös ii

petits indels (1..10 ou ..20 pb) — variantes génomiques 1/8 aussi fréquentes que
les SNPs (mais presque même longueur combinée entre SNP et indels)

Results

Small INDEL discovery using DNA sequencing data
from 79 humans
To gain a better understanding of small INDEL variation in human
populations, we examined 98 million Applied Biosystems (Sanger)
DNA re-sequencing traces that had been deposited into the trace
archive at the National Center for Biotechnology Information
(NCBI) (Supplemental Table 1). Many of these traces were gener-
ated previously by genome centers for SNP discovery projects or for
BAC sequencing projects that were not used in published genome
assemblies. Traces that were generated from targeted, PCR-based
re-sequencing projects were excluded from our analysis. The final
trace set includes DNA sequence information from 79 diverse
humans, making it an ideal resource for variation discovery (Sup-
plemental Table 2). We confirmed that these traces provide excel-
lent coverage of the human genome (Supplemental Fig. 1).

By comparing these 98 million traces to build hg18 of the
reference human genome sequence (The International Human
Genome Sequencing Consortium 2001), we identified 1.96 mil-
lion nonredundant small INDELs from an initial discovery set of
3.4 million INDELs (Table 1; Supplemental Tables Chr1–ChrY; see
Methods). We previously established that our INDEL discovery
pipeline has a validation rate of 97.2% (Mills et al. 2006; please see
Methods). We also determined that 1.36 million of the 1.96 mil-
lion INDELs in this study (69.3%) were discovered in more than

one independent trace or could be confirmed in the chimpanzee
(The Chimpanzee Sequencing and Analysis Consortium 2005) or
Celera (Venter et al. 2001) genomes (Table 1). Thus, additional
validation was achieved through these comparisons.

Our INDELs were found on all 24 human chromosomes at an
average spacing of one INDEL per 1589 bp of DNA. They ranged
from 1 bp to 10,000 bp in length and followed a size distribution in
which the majority of INDELs were <100 bp in length (Supple-
mental Fig. 2; Wheeler et al. 2008). Like known SNPs, which affect
;15 Mb of DNA (dbSNP build 129), our INDEL variants affected
11.9 Mb of the human genome. Thus, the amount of genetic
variation that is caused by small INDELs, in terms of base pairs, is
considerable and approaches that caused by known SNPs.

Comparisons with personal human genomes and populations
We next wished to compare our 1.96 million variants to the small
INDELs that have been discovered in personal human genomes
and populations. We first compared our variants to the INDELs
that that have been deposited to dbSNP and found that 37%
(726,871/1.96 million) of our INDELs had been deposited pre-
viously. Thus, 63% of our INDELs are novel compared to the
INDELs in dbSNP (build 129). We also examined five of the per-
sonal human genomes that have been sequenced, including four
‘‘healthy’’ genomes (Levy et al. 2007; Bentley et al. 2008; Wang
et al. 2008; Wheeler et al. 2008) and the genome of a patient with
acute myelogenous leukemia (Ley et al. 2008). Twenty-two percent
(432,958) of our 1.96 million INDELs were present in one or more
of these genomes (Fig. 1; Supplemental Table 3). Finally, we com-
pared our INDELs to the 1.48 million INDELs that recently were
reported by the 1000 Genomes Project (Fig. 1C; The 1000 Genomes
Project Consortium 2010). We determined that 463,377 of our 1.96
million INDELs (23.6%) were present in the 1000 Genomes Project
data set (Fig. 1C). The relatively small overlap between our INDELs
and the INDELs from these other studies (Fig. 1; Supplemental
Table 3; dbSNP) suggests that INDEL discovery is likely to be in-
complete in human populations.

Structural variants (SVs) and transposon insertions
Our INDEL discovery range (of 1 bp to 10,000 bp) overlaps the
discovery ranges that have been defined for structural variants
(SVs), copy number variants (CNVs), and transposon insertions.
For example, the 1000 Genomes Project recently defined SVs as
variants that are >50 bp in length (The 1000 Genomes Project
Consortium 2010; Mills et al. 2011), and other groups have defined
SVs as variants that are >1 kb (Iafrate et al. 2004). We identified
7245 variants that are >50 bp and 957 variants that are >1000 bp
among our collection of 1.96 million INDELs (Table 1; Supple-
mental Table 4). Thus, a small fraction of our 1.96 million INDELs
(0.4%) overlaps these larger variant classes. We compared these
7245 variants to: (1) SVs in the Database of Genomic Variants
(Iafrate et al. 2004), (2) SVs that were reported recently by Conrad
et al. (2010a,b), and (3) SVs that were reported recently by The
1000 Genomes Project Consortium (2010) (Mills et al. 2011). We
found that 3582 of our 7245 variants (49.4%) were novel compared
to these other variants (Supplemental Table 4). Many of the
remaining 3663 variants provide breakpoint resolution for known
SVs at the single-nucleotide level for the first time. We also sus-
pected that some of our INDELs might have been caused by trans-
poson insertions (Supplemental Fig. 2). Indeed, 1150 transposon

Table 1. Summary of small INDELs identified from 98 million
re-sequencing traces

Traces screened 98,350,511
Bases analyzed (trimmed) 42,000,606,219
Reference human genome (hg18) 3,107,677,273
Cumulative coverage 13.53

Variants identified 3,400,787
Unique (nonredundant) variants 1,955,656

Insertions 978,721
Deletions 976,935

Total bases affected 11,909,159
Total double hit 1,355,228

Match chimp allele 878,574
Match celera allele 648,941
Match variant allele 688,990

Total double center 477,295
Transposon insertions (with TSDs) 1150

Alu 1004
L1-Ta/pre-Ta 70
SVA 58

INDELs overlapping SV size range
>50 bp 7245
>1000 bp 957

98 million human traces were obtained from the NCBI Trace Archive and
were compared to the reference human genome to identify potential
variants. All of the data were assembled into a MySQL database and de-
posited into dbSNP (Supplemental Tables Chr1–ChrY). INDEL-positive
traces were compared to (a) other INDEL-positive traces, (b) the chimp
genome (The Chimpanzee Sequencing and Analysis Consortium 2005),
and (c) the Celera genome (Venter et al. 2001) to determine whether the
allele was identified in other genomes and could be classified as a ‘‘double
hit’’ allele. INDEL-positive traces from independent projects and centers
were tracked to provide independent confirmation (Supplemental Tables
Chr1–ChrY). INDELs were mapped to the promoters, 59 and 39 UTRs,
splice sites, and introns of genes. This and other annotations were tracked
in a MySQL database (and are listed in Supplemental Tables Chr1–ChrY).
INDELs that were caused by Alu, L1, and SVA retrotransposon insertions
are listed in Supplemental Table 16.

Genome Research 831
www.genome.org

Small INDELs in human genomes

 Cold Spring Harbor Laboratory Press on January 1, 2014 - Published by genome.cshlp.orgDownloaded from 

– on infère les petits trous à partir des alignements des lectures
– il faut refaire l’alignement pour identifier la variante en commun

detection tools [5]. Sequence reads covering indels
are generally more difficult to map since their correct
alignment either involves complex gapped alignment
or paired-end sequencing inference [13]. The key
computational software tools required during
deep-sequencing indel detection analysis are align-
ment and indel detection tools that interpret the
alignment results in order to infer the presence of
an indel. This analysis process varies between differ-
ent methods and is based on per base quality, map-
ping property, number of supporting reads,
realignment around potential indels, known vari-
ation data and various other probabilistic matrices.
An effective combination of the two will produce
the optimal detection pipeline that will result in
accurate and reliable variation calling (Figure 1).
The effect of different alignment tools on detection
efficiency has been studied and accounted for [11],
recommending the use of single-end reads gapped
alignment enabled mapping tools such as BWA
[13] and Novoalign [14]. However, these studies
did not address the effects and implications of the
software chosen to detect the indels; therefore, fur-
ther knowledge on the effects of these tools is still
required.

The variety of available indel identification soft-
ware is rapidly increasing with better performance,
sensitivity and specificity as the main objectives.
Indel identification becomes more complex when
detection is made using single-end reads shorter
than <100 nt since they lack insert length variance
(the gap between sequences in paired-end reads) that
facilitates indel detection [15]. We set out to

compare four common indel detection software –
VarScan [16], Dindel [17], SAMtools mpileup [18]
and the Genome Analysis Toolkit (GATK) [19].
Using simulated sample data, we compared the
detection software sensitivity and predictive values
while changing initial parameters such as read
depth (coverage), read length, indel size and fre-
quency. We implemented these indel tools on real
experimental data in order to demonstrate concur-
rence to our simulations. In general, our study pin-
points several key features that assist successful
experimental design and appropriate tool selection.
Our study may also serve as a basis for future evalu-
ation of additional indel calling methods.

METHODS
The simulated data
In order to evaluate how well the different software
can detect indels, we simulated several genomic
regions that contain indels and SNPs in variable fre-
quencies. In order to construct the simulation data, we
extracted a section of 10 M base pairs in length from
human chromosome 16 (between 10 000 001 and
20 000 000; build GRCh37/hg19) to be used as a ref-
erence sequence. Using a specialized software (inGAP
[20]), SNPs were inserted at a rate coinciding with
observed human genome SNP rate of 1:1000 bases
[21]. Indels were inserted to the simulated read data
according to the specific comparison analysis (speci-
fied below). We then created a set of simulated deep
sequencing single-end reads data using the same soft-
ware, each read data according to the specific variable

Figure 1: Basic indel calling workflow.The initial step is alignment against a reference genome in which all possible
indels are detected. The following step, performed by the indel calling tools, is the collection of these possible
indels, calculating various metrics, depending on the specific tool, that either support or oppose the presence of
each indel. An optimal combination of both alignment and indel calling tools should result in an accurate set of con-
fidently called indels.

Indel detection tools: evaluation for improved detection 47

 at U
niversite de M

ontreal on January 5, 2014
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

Mills & al Genome Research 21 :830 (2011) ; Neuman, Isakov & Shomron Briefings in Bioinformatics 14 :46 (2012)



DINDEL

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös iii

travailler avec des candidats de haplotypes + alignement statistique entre haplotype
et lectures

haplotypes : combiner les lectures en blocs de haplotypes
considérer toute combinaison de blocs fréquents + variantes proposées à l’entrée

sequence. Note that this may result in a change of both the posi-
tion and the actual sequence of the candidate variant. The second
preprocessing step is to group all candidate SNPs and indels into
realignment windows of at least 120 bp. For each window Dindel
will generate candidate haplotypes, which, therefore, will also be at
least 120-bp long. All candidate variants corresponding to a par-
ticular window will be considered against the same set of reads.
This allows us to compare different hypotheses as formulated in
terms of candidate haplotypes.

The core of the Dindel program is the realignment of reads to
candidate haplotypes for each realignment window defined in the
preprocessing step. We define Ri as the nucleotide sequence for
read i, and Hj as the nucleotide sequence for candidate haplotype
j. The main operations of the realignment algorithm for a particu-
lar window then are:

1. Identify the set of reads {Ri} to be realigned.
2. Generate the set of candidate haplotypes {Hj}.
3. Compute the maximum likelihood Pmax(Ri | Hj) and maximum-

likelihood alignment of each read Ri given each candidate
haplotype Hj using the probabilistic realignment model.

4. Estimate haplotype frequencies from the read-haplotype like-
lihoods Pmax(Ri | Hj) and the prior probability of each candidate
haplotype.

5. Estimate quality scores for the candidate indels and other se-
quence variants.

The computation of the read-haplotype likelihood in step 3 is
generally the most compute-intensive step. In the fourth step,
different algorithms may be applied, depending on the setting. For
diploid samples we explicitly evaluate posterior probabilities for
every pair of haplotypes; for pooled reads or individuals we apply
a Bayesian expectation-maximization (EM) algorithm to estimate
haplotype frequencies. Below, we describe each of these steps in
more detail.

Genotype likelihoods

As part of the output, Dindel also provides genotype likelihoods for
each candidate indel. In the case of trios, the genotype likelihoods
can be easily combined with a model for Mendelian segregation or
a model that is specifically designed to detect de novo mutations.
Another situation where a more complex prior is useful is in the
analyses of a population of samples, especially when the samples
are sequenced at low depth. In this case the Dindel pooled analysis
is able to output a genotype likelihood for every sample and every

candidate indel, which can then be used in imputation software
that accepts likelihoods, e.g., Beagle (Browning and Browning
2007) or QCALL (Le and Durbin 2011), to obtain more accurate
indel genotypes. This strategy was used for the low-coverage pilot
of the 1000 Genomes Project to infer indel genotypes.

The realignment algorithm

Identification of reads for realignment

Dindel realigns mapped and unmapped reads to the candidate
haplotypes. We assume that for the mapped reads the read mapper
has found the correct region, and from the read-alignment file we
include every read that has an overlap of at least 20 bp with the
realignment window according to the read mapper. Importantly,
Dindel also attempts to realign unmapped reads for which the
mate is mapped in the region surrounding the window. We include
every unmapped read for which the mate is mapped within a dis-
tance of the mean plus/minus four standard deviations of the li-
brary insert size distribution from the realignment window. This
increases sensitivity for longer insertions and deletions, for which
the read mapper may not have mapped all of the reads to the ref-
erence sequence.

Generation of candidate haplotypes

Dindel generates candidate haplotypes from the candidate vari-
ants provided by the user, but it also infers candidate variants from
the read-alignment file itself. Candidate variants identified from
the read-alignment file are mostly potential SNPs not specified
by the user. Incorporating such a SNP may improve the alignment of
reads to candidate haplotypes, and as a result improve the inference
of the indel, since, in principle, each read should align to one of
the two haplotypes (for a diploid individual) without mismatch in
the absence of sequencing and mapping errors. The haplotypes are
generated such that for every non-reference sequence variant, the
reference variant is always present in one of the other candidate
haplotypes so that genotype likelihoods can be calculated.

The generation of candidate haplotypes itself is a two-step
process. Figure 2 illustrates the procedure with an example, and is
described in more detail in the Supplemental material. First, can-
didate variants are inferred from the read-alignment file, creating
a set of candidate haplotypes consisting of all combinations of
these variants. Second, the candidate variants provided by the user
are added to each of these candidate haplotypes, creating a set of

Figure 2. Procedure for generation of candidate haplotypes. We first consider the empirical distribution of bases determined from the initial alignments
of reads to the reference and infer a heuristic haplotype block model to preserve sequences that always occur together in one read. We then choose n
block-haplotypes with the highest empirical frequency, and generate candidate haplotypes by considering all combinations of these n block-haplotypes.
The number of candidate haplotypes obtained this way is thus 2n. It is possible that multiple subhaplotypes from the same block are chosen. In the second
step, all candidate variants (most importantly, the candidate indels) are added to these n candidate haplotypes, resulting in a set of, at most,k ! 2n

candidate haplotypes, where k is the number of candidate variants tested.

Accurate indel calls from short-read data

Genome Research 963
www.genome.org

 Cold Spring Harbor Laboratory Press on January 2, 2014 - Published by genome.cshlp.orgDownloaded from 

(≤ 8 haplotypes à la fois)

Albers & al Genome Research 21 :961 (2011)



DINDEL : alignement

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös iv

haplotype définit un modèle probabiliste — alignment par Viterbi
variables observées : Rb, b = 1, . . . , ` bases dans la lecture
variables inconnues : Xb position de base b, Ib indicateur pour insertion de base b
ancrer au milieu de la lecture alignée (b0)
transitions considèrent homopolymer runs

read

17 18 1914 15 1611 12 138 9 105 6 72 3 41

25 26 2722 23 2419 20 2116 17 1813 14 1510 11 127 8 94 5 61 2 3

haplotype

b0

Xb
i

Ib
i

R R R17 18 1916 16 1615 16 1610 13 147 8 94 5 61 2 3L L L

0 0 00 0 01 1 10 0 10 0 00 0 00 0 00 0 00 0 0

Rb
i

T T CA A TT C GT T AT C GC C GC G CA C GA T T

TT A AC G TT A AC C GC G CA C G

Figure S2. Probabilistic alignment model. Top horizontal bar represents a haplotype.
The numbers inside the boxes represent the position of each base in the haplotype; above
the horizontal bar an example haplotype sequence is shown. Below that is a horizontal
bar that represents a read, with in each box a number that represents the position of
each base in the read. The read sequence is shown in the bottom of the figure, as an
instantiation of the observed variables Rb

i in the model which represent the observed read
bases. In between is shown the Bayesian network, where the circles represent random
hidden variables, the gray squares represent the observed variables, and the arrows rep-
resent conditional dependencies between the variables. The hidden variables are Xb

i , the
position of each read base in the haplotype, and Ib

i , which indicates whether base b in
read i is part of an insertion with respect to the haplotype. b0 (marked in yellow) is the
base in the read for which a prior probability of Xb0

i 6= {L, R}, ie the probability that
the read is aligned to the window specified by the haplotype, and Ib0

i = 0, the probability
that this base is part of an insertion, will be specified. For the hidden variables here the
most likely value given the haplotype sequence and the read sequence, as inferred using
the Viterbi algorithm is shown respectively above and below the corresponding variables
in the Bayesian network. The colors in the read and the haplotype illustrate the di↵erent
alignments possible. The green bases are an example of the case where consecutive bases
in the read (here 6 and 7) are aligned to consecutive bases in the haplotype (3 and 4)
without gap. The red bases are an example of the case where consecutive bases in the read
(13 and 14) are aligned to non-consecutive bases 10 and 13 in the haplotype, signifying a
deletion with respect to the haplotype. Blue shows the case where the read contains an
inserted sequence with respect to the haplotype. For the inserted bases Ib=18,19,20,21

i = 1,
and for those bases Xb

i is not incremented until the first base (read base 22) that is not
part of the insertion and aligned to the haplotype.

Albers & al Genome Research 21 :961 (2011)



Détection et couverture

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös v

In order to produce an evaluation model for
future indel calling tools, we examined both tech-
nical and biological parameters that affect detection
capabilities across software. We demonstrated a sig-
nificant correlation between these parameters and a
variety of performance indicators such as sensitivity
and precision.

Variable effects
We presented a model for indel calling performance-
associated variables testing, describing each variable’s
predicted effect on various elements of the detection
process. Increased coverage and read length were
shown to be significantly correlated with increased
sensitivity. We conclude that when one aims to
increase coverage, increasing the sequenced reads’

length rather than amount of reads should be favored

in order to increase sensitivity while maintaining a

high PPV. Our data also demonstrate that raising the

coverage by increasing the number of sequenced

reads beyond 30! only mildly improves sensitivity

and even when extremely high coverage was imple-

mented, there were still indels that could not be ac-

counted for due to their location within genomic

repetitive regions. Only when other measures such

as increased read length or software combination

were implemented we could detect some of these

indels. We also showed that working with short read

lengths (36 nt), insertions longer than >3 nt, are sig-

nificantly more likely to remain undetected and

proper consideration should be taken when search-

ing for the presence of such insertions.

Figure 4: Performance versus coverage, both detected indels (bars) and PPV (lines) against coverage.Our set par-
ameters for the filtered VarScan do not permit indel calling with coverage <20!, so it did not detect any indels in
coverage "10!. The figure depicts the combined increase in detected indels and decrease in PPV as coverage in-
creases. Unfiltered VarScan’s PPV is not presented in this figure since it is much lower (0.77^0.41) than the rest of
the software.

Table 1: Indel calling performance for each of the tested tools implemented on sequencing data

Tool name Indels found Indels missed Insertions found Insertions missed Deletions found Deletions missed

Dindel 175 27 97 16 78 11
GATK 145 57 84 29 61 28
mpileup 153 49 90 23 63 26
VarScan 103 99 62 51 41 48

Source: Ref. [26]; also see text.
These results support our simulation-based observations in which Dindel presents the highest sensitivity in low coverage experiments, whereas
GATK and VarScan require additional parametermodification in order to reach their optimal sensitivity values.

52 Neuman et al.

 at U
niversite de M

ontreal on January 5, 2014
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

PPV=positive predictive value

sensitivity =
TP

TP + FN
PPV =

TP

TP + FP

Neuman, Isakov & Shomron Briefings in Bioinformatics 14 :46 (2012)



Meilleures pratiques

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös vi

Software effects
Our comparative study demonstrated the importance
of software-specific parameter settings. In order to
exemplify this, VarScan was run naively with its de-
fault parameters and then again with a more strict
indel inclusion parameters setting. This resulted in
an extensive decrease in the number of false positive
calls across all tests and only a mild decrease in sen-
sitivity. We should state that VarScan outputs several
different variations of a detected indel; this accounts
for a large portion of its low PPV demonstrated in
our tests and the decrease in PPV as indel length
increases. When comparing the different software’s
performance (Table 2), VarScan’s performance was
highly affected by coverage, presenting a significant
rise in sensitivity for coverage higher than 30! and
the highest sensitivity for coverage > 70!. When
dealing with low coverage (<30!), Dindel and
SAMtools mpileup presented the highest sensitivity.
Higher coverage resulted in similar performance for
GATK and Dindel. Dindel’s performance can be due
to its inherent testing of each aligner-detected indel,

which also results in longer processing times, making
it the most time consuming of the tested tools. We
found that the majority of undetected indels were
shared across software, concluding that the benefit
from summing two indel calling methods (accepting
indels called in any of the two) results in only a mild
increase in sensitivity, at the cost of a similar mild
decrease in PPV (Figure 5). However, including
indels supported by at least two software did not
change the sensitivity, although the PPV was signifi-
cantly higher. This is highly important when dealing
with high coverage data, in which our data demon-
strated a mild decrease in PPV for each of the tools
(average PPV excluding unfiltered VarScan¼ 0.972).
In this high coverage data, including only the indels
supported by at least two software, resulted in a PPV
of 0.991.

We emphasize two important factors for improv-
ing performance: tool selection and parameter set-
ting. The latter was demonstrated using the indel
calling tool VarScan and was shown to affect per-
formance to a greater extent. Since VarScan calls

Figure 5: Venn diagram depicting the number of indels found for each software with 30! and 150! coverage and
read length 72. Inclusion of indels called in any of the software results in a decrease in PPV with only a mild sensitiv-
ity improvement. Inclusion of indels supported by at least two software results in a sensitivity improvement for
some of the software and a significant increase in PPV, crucial in high coverage data.

Table 2: Advantages and limitations for each of the tested indel detection tools

Tool name Advantages Limitations

GATK Highly supported with good overall performance Low sensitivity at very low coverage (<10!; can be
improved by less stringent parameters)

Dindel Best performance at low coverage Only suitable for Illumina data analysis and has long
running time

SAMtools mpileup High PPV and simple use Lowest sensitivity at high coverage (>50!)
VarScan High sensitivity at intermediate/high coverage (>30!) and

simple use
Low PPV at default parameter settings and low sensitivity
at low coverage (<30!)

Indel detection tools: evaluation for improved detection 53

 at U
niversite de M

ontreal on January 5, 2014
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

Neuman, Isakov & Shomron Briefings in Bioinformatics 14 :46 (2012)



Variation structurale

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös vii

classes principales : suppression, insertion, duplication, inversion/translocation

0CVWTG�4GXKGYU�^�)GPGVKEU

/QDKNG
GNGOGPV

4GH�

4GH�

4GH�

0QXGN�UGSWGPEG�KPUGTVKQP

+PVGTURGTUGF�FWRNKECVKQP

6TCPUNQECVKQP

4GH�4GH�

&GNGVKQP

4GH�

+PXGTUKQP

6CPFGO�FWRNKECVKQP

4GH�

/QDKNG�GNGOGPV�KPUGTVKQP

4GH�

Figure 1 | Classes of structural variation. Traditionally, structural variation refers  
to genomic alterations that are larger than 1 kb in length, but advances in discovery 
techniques have led to the detection of smaller events. Currently, >50 bp is used as  
an operational demarcation between indels and copy number variants (CNVs). The 
schematic depicts deletions, novel sequence insertions, mobile-element insertions, 
tandem and interspersed segmental duplications, inversions and translocations in a 
test genome (lower line) when compared with the reference genome.

Array comparative genomic 
hybridization
(Array CGH). A technique 
based on competitively 
hybridizing fluorescently 
labelled test and reference 
samples to a known target 
DNA sequence immobilized  
on a solid glass substrate  
and then interrogating the 
hybridization ratio.

SNP microarrays
Hybridization-based assays  
in which the target DNA 
sequences are discriminated 
on the basis of a single  
base difference. Assays are 
processed with a single sample 
per array and perform both 
SNP genotyping and 
copy-number interrogation.

Single-base extension
Single-base-extension 
reactions use a primer that 
binds to a region of interest 
and follow this with an 
extension reaction that allows 
the incorporation of a single 
base after the primer.

technologies infer copy number gains or losses com-
pared to a reference sample or population, but differ in 
the details and application of the molecular assays.

Array CGH. Array CGH platforms are based on the 
principle of comparative hybridization of two labelled 
samples (test and reference) to a set of hybridization tar-
gets (typically long oligonucleotides or, historically, bac-
terial artificial chromosome (BAC) clones). The signal 
ratio is then used as a proxy for copy number (see BOX 1 
for details). An important consideration is the effect of 
the reference sample on the copy-number profile. For 
example, when only one sample is examined, a loss in the  
reference sample is indistinguishable from a gain in  
the test sample. For this reason, a well-characterized ref-
erence is key to interpretation of array CGH data19. Early 
studies of germline CNVs were based on BAC arrays or 
low-resolution oligonucleotide platforms and allowed 
detection of CNVs typically greater than 100 kb1,2,6 
(BOX 2). These initial studies highlighted the incred-
ible number of CNVs observed in healthy individuals; 
however, the breakpoints of these alterations were not 
sufficiently well-defined to allow accurate assessment of 
the proportion of the genome altered or its gene con-
tent. This led to a drastic overestimation of the extent 
of copy-number polymorphism using large-insert BAC 
clones2, which was subsequently refined by oligonucle-
otide microarrays or sequence-based studies of the same 
DNA samples4,5,20,21.

Currently,  Roche NimbleGen and Agilent 
Technologies are the major suppliers of whole-genome 
array CGH platforms and routinely produce arrays with 
up to 2.1 million (2.1M) and 1M long oligonucleotides 
(50–75-mers), respectively, per microarray. Detection of 
a CNV typically requires a signal from at least 3 to 10 

consecutive probes (BOX 1); as a result, SNP and CGH 
microarrays can routinely detect anywhere from dozens  
to several hundred events per genome depending on the 
platform applied (BOXES 1,2). Two studies have recently 
used ultra-high-resolution arrays (24M to 42M probes) 
for array CGH-based SV discovery in samples from 
HapMap individuals5,19. Although such high-density 
arrays are not practical for a large number of samples 
(30 and 40 samples were used in these studies), these 
approaches enabled the discovery of CNVs down to 
500 bp, with breakpoints precise enough to allow the 
identification of sequence motifs at a subset of vari-
ants. One key advantage of array CGH platforms is 
the availability of custom, high-probe-density arrays 
from both major manufacturers. This has led to their 
widespread adoption in clinical diagnostics, essentially 
replacing karyotype analysis as the primary means of 
detecting copy-number alterations among children with 
developmental delay22.

SNP arrays. SNP microarray platforms are also based on 
hybridization, with a few key differences from CGH tech-
nologies. First, hybridization is performed on a single  
sample per microarray, and log-transformed ratios are 
generated by clustering the intensities measured at each 
probe across many samples20,23,24. Second, SNP platforms 
take advantage of probe designs that are specific to 
single-nucleotide differences between DNA sequences, 
either by single-base-extension methods (Illumina) or 
differential hybridization (Affymetrix)20,23,24. One key 
disadvantage is that, per probe, SNP microarrays tend to 
offer lower signal-to-noise ratio than do the best array 
CGH platforms. This is apparent in comparisons of  
array CGH and SNP platforms in terms of detection  
of CNVs by a purely ratio-based approach24–27. However, 
a key advantage of SNP microarrays is the use of SNP 
allele-specific probes to increase CNV sensitivity, dis-
tinguish alleles and identify regions of uniparental  
disomy through the calculation of a metric termed B 
allele frequency (BAF) (BOX 1).

SNP arrays have proved popular in CNV-detection 
studies, historically as complements to array CGH 
platforms for fine-mapping regions2 and currently in 
the large-scale discovery of CNVs in a broad variety of 
populations16,20,23,28,29. Early SNP arrays demonstrated 
poor coverage of CNV regions, but recent arrays (such 
as the Affymetrix 6.0 SNP and Illumina 1M platforms) 
incorporate better SNP selection criteria for complex 
regions of the genome and non-polymorphic copy-
number probes (which are examined for log ratios but 
not BAF)20,23,30. Another important consideration is the 
choice of population because the average heterozygosity 
affects the proportion of SNPs that will generate a mean-
ingful BAF signal (typically, heterozygosity is 30–40% in 
Illumina platforms). This is particularly relevant when 
dealing with populations that may have experienced a 
drastic bottleneck, as opposed to more outbred popula-
tions, and thus may affect the number of probes needed 
to identify an alteration23,24. Some studies combine array 
CGH and SNP platforms to offer higher confidence in 
CNV detection2,20,30.

REVIEWS

364 | MAY 2011 | VOLUME 12  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved

Alkan, Coe & Eichler Nature Reviews Genetics 12 :363 (2011)



Signatures de SV

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös viii

58�ENCUUGU #UUGODN[4GCF�RCKT 5RNKV�TGCF4GCF�FGRVJ

0CVWTG�4GXKGYU�^�)GPGVKEU

/'+

0QV�CRRNKECDNG

0QV�CRRNKECDNG

0QV�CRRNKECDNG

#PPQVCVGF
VTCPURQUQP

42�� 42��

/'+

#PPQVCVGF
VTCPURQUQP

+PXGTUKQP

#UUGODNG

%QPVKI�
UECȭQNF

#UUGODNG

%QPVKI�
UECȭQNF

#UUGODNG

#NKIP�VQ
4GRDCUG

%QPVKI�
UECȭQNF

#UUGODNG

%QPVKI�
UECȭQNF

+PXGTUKQP+PXGTUKQP

%QPVKI�
UECȭQNF

#UUGODNG

%QPVKI�
UECȭQNF

#UUGODNG

0QXGN�
UGSWGPEG�
KPUGTVKQP�

+PXGTUKQP

/QDKNG�
GNGOGPV�
KPUGTVKQP

+PVGTURGTUGF�
FWRNKECVKQP

6CPFGO�
FWRNKECVKQP

&GNGVKQP

Figure 2 | Structural variation sequence signatures. There are four general sequence-based analytical approaches 
used to detect structural variation. Theoretically, read-pair (RP), split-read and assembly methods can be used to 
discover variants from all classes of structural variant (SV), but each has different biases depending on the 
underlying sequence content of the variants and the data properties of the sequence reads. However, read-depth 
approaches can be used to detect only losses (deletions) and gains (duplications), and cannot discriminate between 
tandem and interspersed duplications. Briefly, read-pair methods analyse the mapping information of paired-end 
reads and their discordancy from the expected span size and mapped strand properties. Sensitivity, specificity and 
breakpoint accuracy are dependent on the read length, insert size and physical coverage3,4,59,62,65,66,68,69. Breakpoints 
are indicated by red arrows. Read-depth analysis examines the increase and decrease in sequence coverage to 
detect duplications and deletions, respectively, and predict absolute copy numbers of genomic intervals45,62,74–76. 
Split-read algorithms are capable of detecting exact breakpoints of all variant classes by analysing the sequence 
alignment of the reads and the reference genome; however, they usually require longer reads than the other 
methods and have less power in repeat- and duplication-rich loci62,78,79. Assembly algorithms83–86,115 have the most 
power to detect SVs of all classes at the breakpoint resolution, but assembling short sequences and inserts often 
result in contig/scaffold fragmentation in regions with high repeat and duplication content89. MEI, mobile-element 
insertion. Repbase is a database of repetitive elements.

REVIEWS

368 | MAY 2011 | VOLUME 12  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved

Alkan, Coe & Eichler Nature Reviews Genetics 12 :363 (2011)



Breakdancer

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös ix

détection de SV à partir des paires discordantes :
1. paire discordante : orientation incompatible et/ou distance surprenante
2. régions avec trop de paires discordantes
3. liaisons : régions liées par ≥ 2 paires discordantes

678 | VOL.6 NO.9 | SEPTEMBER 2009 | NATURE METHODS

ARTICLES

RESULTS
Simulation
To quantify BreakDancer’s performance with respect to differ-
ent parameter settings, we produced synthetic data based on 
844 structural variants identified on chromosome 17 of J. Craig 
Venter’s genome11, which include 425 deletions, 415 insertions 
and 4 inversions ranging from 20 bp to 7,953 bp. We excluded 
indels shorter than 20 bp as they are relatively easy to detect using 
the Smith-Waterman algorithm (Supplementary Fig. 1). Many 
variants in this set occurred in repetitive regions that are difficult 
to map or assemble (Supplementary Note).

We considered a deletion or an inversion as detected if it over-
lapped 50% reciprocally with a predicted variant. We considered 
an insertion as detected if its single breakpoint overlapped a pre-
dicted variant.

We simulated 50-bp paired-end reads from the chromosome 17 
nucleotide sequence of Venter’s genome using the software MAQ 
version 0.7.1 (ref. 20) and obtained 100-fold physical coverage to 
the US National Center for Biotechnology Information build 36 
reference sequence. These reads have normally distributed insert 
size with a mean size of 200 bp and a standard deviation (s.d.) 
of 20 bp. We defined anomalously mapped read pairs (ARPs) 
as those that were confidently mapped by MAQ 0.7.1 (MAQ 
mapping quality > 10) and had separation distance > 3 s.d. We 
found that about 365 (43.2%) of the known variants contained 
2 or more anomalously mapped reads in their flanking regions 
and are likely detectable by BreakDancerMax. BreakDancerMax 

detected 324 (89%) of these 365 variants with a 1.48% false posi-
tive rate, including 147 that were shorter than 60 bp (Fig. 2 and 
Supplementary Table 1).

These 324 variants detected by BreakDancerMax included 
214 deletions, 109 insertions and 3 inversions with varying 
true positive rate in different size ranges and coverages (Online 
Methods and Supplementary Fig. 2). Of the 214 deletions, 
BreakDancerMax predicted 203 (95%) as deletions with accurate 
sizes (Pearson’s r = 0.92) (Supplementary Fig. 3a). Of the 109 
insertions, BreakDancerMax predicted 72 (66%) as insertions with 
less accurate sizes (r = 0.65) and breakpoints (Supplementary Fig. 
3a,b). Longer deletions were more accurately predicted in terms 
of both size and breakpoint.

The confidence score we derived to prioritize BreakDancerMax 
predictions (Online Methods) demonstrated improved statistical 
properties when compared to simply using the number of anoma-
lously mapped read pairs, which remains the de facto standard 
metric21–23. It provides finer distinction among variants that are 
supported by identical number of anomalously mapped read pairs 
(Supplementary Fig. 4). It also reduces the result’s dependency 
on the separation threshold and leads to relatively consistent true 
and false positive rates. (Supplementary Fig. 5).

We ran BreakDancerMini on the same data and required the 
anomalous regions having two-sample Kolmogorov-Smirnov test 
statistics Dnn   2.3, where n and n  are the number of normally 
mapped reads in the test region and in the whole genome, respec-
tively (Online Methods and Supplementary Fig. 6). We observed 
dramatic improvement in detecting small indels (Fig. 2). At  
100-fold physical coverage, BreakDancerMini detected 543 (64.3%) 
variants with a 7.3% false positive rate, including 407 (75.0%) that 
were shorter than 60 bp. We merged the indels (<100 bp) detected 
by BreakDancerMini with those detected by BreakDancerMax and 
obtained a nonredundant set of 683 variants, including 365 dele-
tions, 290 insertions and 21 inversions. Altogether, we detected 
621 (74%) of the known variants with a 9.1% false positive rate.

We repeated this simulation under identical conditions but 
included 10–20-bp indels. In this set, BreakDancerMax alone 
only detected 24% of the 1,897 known variants with a 7% false 
positive rate. However, in combination with BreakDancerMini, 
we detected 68.0% of known variants with a 10.3% false positive 
rate, 62.6% of which were 10–20 bp. The size of indels appeared 
to be reasonably accurately predicted throughout the entire range 
of detection (Supplementary Fig. 7).

Mapping
parameters

Detection
parameters

Paired-end
reads Mapping

(i) Genome-
wide tally of
anomalous
read pairs

(v) Compute
confidence

scores

(ii) Search for
anomalous

regions

(iii) Identify 
interconnected

clusters

(iv) Structural 
variation position,

type, size and
number of anomalous

mapped read pairs

Structural
variants

Deletion Insertion Inversion Intrachromosomal
translocation

Interchromosomal
translocation

a

b

Figure 1 | Overview of BreakDancer algorithm. (a) The workflow. 
(b) Anomalous read pairs recognized by BreakDancerMax. A pair of arrows 
represents the location and the orientation of a read pair. A dotted line 
represents a chromosome in the analyzed genome. A solid line represents 
a chromosome in the reference genome.

80 TPR BDMax Q30
FPR BDMax Q30
TPR analytic
TPR detectable
TPR BDMini
FPR BDMini
TPR BD all
FPR BD all

70

60

50

T
P

R
 a

nd
 F

P
R

 (
%

)

40

30

10 20 30 40 50
Physical coverage (fold)

60 70 80 90 100

20

10

0

+
+

Figure 2 | Performance of BreakDancer in simulation. True positive rate 
(TPR) and false positive rate (FPR) of BreakDancerMax (BDMax) at the 
confidence threshold of Q  30 (Q30) were analyzed. ‘TPR analytic’ refers 
to the percent of variants that can hypothetically be detected by BDMax 
under an analytic model (Online Methods). ‘TPR detectable’ is the percent 
of variants whose flanking regions (300 bp both to the left and to the 
right) contain 2 or more confidently mapped anomalously mapped read 
pairs in the MAQ alignment. The performance of BreakDancerMini (BDMini) 
was characterized by its TPR and FPR. The combined performance (BD all) 
was obtained by merging the results of these two programs.

 

©
20

09
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

Chen & al. Nature Methods 6 :677 (2009)



Duplications

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös x

duplications : vérifier paires et couverture par lectures

sensitivity of our method, we measure its ability to identify de-
letion calls from Kidd et al. (2008), who used PEM of Sanger-style
reads to identify indels in NA18507, which were then validated via
aCGH. Since the mean and standard deviation size of their data set
was large (37 6 4 kb), their calls are generally overestimates of the
actual variants. Therefore, we consider a call detected if we make
a call that lies fully inside of it. In this way, we are able to detect
84% of Kidd et al.’s calls, with 96% of these containing a loss call
(Fig. 2A). For the purposes of verifying the statistical significance of
these comparisons, we shuffled our results by moving each of our
predictions to a random location on the genome while maintain-
ing its length and call type. We created 10 different shuffled ver-
sions of our results and repeated the comparison against Kidd et al.
with each one of them. On average, only 12% of the Kidd et al.
deletions were overlapped by one of the shuffled calls, with 59% of
these overlapping a loss call.

Using the same data set as in this work, Bentley et al. (2008)
used PEM to discover deletions within NA18507. Comparing

against their deletion calls greater than 1 kb (1933 calls), we found
that 47% of their calls overlap with ours, with 71% of these over-
lapping one of our loss calls (Fig. 2A). Against the shuffled data,
only 3% overlap a call, with 53% of these overlapping a gain.
When using a more stringent threshold of 50% reciprocal overlap,
we found 32% of their calls overlap one of ours, with 86% of these
overlapping a loss.

As most PEM-based methods, Kidd et al. (2008) and Bentley
et al. (2008) predict the locations of insertions, rather than the
original duplicated sequence, which makes it difficult to compare
our gain calls against their insertions. We therefore compare our
gain calls with the study of McCarroll et al. (2008), who used
aCGH to identify genomic regions with a significant difference
in intensity in a pool of 270 HapMap individuals (including
NA18507). By further using the HapMap-wide intensity data for
each variant locus, they estimated its actual (nonrelative) copy
number in each individual. Because the human genome we use as
our reference was not one of the genomes considered, calls that are

Figure 1. Depth-of-coverage and linking clusters. (A) A tandem duplication changes the DOC and creates discordant mate pairs. The reference genome
consists of the segments ABC, while the donor has ABBC. The mate pairs are shown along the donor as they are sequenced and on the reference as they are
mapped. The green (light) mate pairs are concordant, with the correct orientation and distance; however, the three bold mate pairs that span the
adjacency between the two Bs are discordant. They form a linking cluster that indicates a putative adjacency in the donor from the end of B to the
beginning of B (shown by the green edge). In addition, the duplication affects the DOC, as the density of reads mapping to the B segment is twice as high
as in the rest of the genome. (B) A screen shot of the Savant (Fiume et al. 2010) genome browser (http://compbio.cs.toronto.edu/savant) on a 9-kb region
of chromosome 1, showing the DOC and the linking clusters found by CNVer in our dataset, the gain call CNVer predicts, and an overlapping call from the
GSV database of known variants. The underlying variation is likely a tandem duplication, like the one shown in A, because of the clear increase in the DOC
and the presence of the green linking cluster. (C ) A 19-kb region of chromosome 7 containing a deletion validated by sequencing (Kidd et al. 2008). There is
a clear drop off in the DOC, as well as a linking cluster that connects the region left of the deletion to the one right of the deletion. Despite the noise in the DOC
signal, the linking cluster allows CNVer to discern the breakpoints of the 10-kb deletion: they are predicted to within 28 bp on the left and 3 bp on the right.

Detecting copy number variation

Genome Research 1615
www.genome.org

 Cold Spring Harbor Laboratory Press on January 1, 2014 - Published by genome.cshlp.orgDownloaded from 

1. mapping : identifier des lectures trop fréquentes et discordantes (mauvaise orien-
tation ou distance > µ+ 3σ)

Medvedev & al. Genome Research 20 :1613 (2010)



CNVer

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös xi

2. groupage de paires discordantes, calculer positions (s, t) sur la référence pour la
partie intérieure

with two sets of mappings: a set of read mappings M, which is later
used for DOC calculation, and a set of mate pair mappings D,
which is later used to identify linking clusters.

Stage 2: Finding linking clusters
Discordant mate pairs that are consistent with a single variant will
map with a similar mapped distance, order, and orientation to the
reference. We identify the order and orientation of a mate pair
mapping using a shorthand notation. For example, a mapping that
is [+!] has the left read mapping to the positive strand and the
right read mapping to the negative strand. In this way, we char-
acterize every mapping from D as being of type [+!], type [!+],
type [++], or type [!!]. To find the linking clusters, we partition D
into four subsets according to their types, and cluster each subset
independently. Ideally, each cluster collects the mappings of all of
the reads that span a single donor breakpoint, allowing for the fact
that the insert size can deviate 6 3s (mate pairs with larger de-
viations are ignored). To begin, the algorithm notes the locations
(left, right) of the leftmost mate pair mapping. It then makes
a cluster that includes all the mappings (left9, right9) such that left #
left9 # left + m + 3s and |left9 ! left ! (right ! right9)|#6s for type
[++] and [!!] clusters and |left9! left! (right9! right)|#6s for type
[+!] and [!+] clusters. Each of the mappings in this cluster is
marked as used and never again considered by the algorithm. The
algorithm then picks the leftmost mate pair mapping that has not
yet been used and repeats the process. This continues until all of
the mappings have been used. Note that a single mate pair may be
involved in multiple clusters via its different mappings; however,
a single mate pair mapping cannot be in more than one cluster. We
discard all clusters with a distance between the left and right mates
greater than 10 Mb. Finally, all clusters that do not contain enough
mappings are discarded (13 mappings for the full data set, three for
the 25% subsample, and two for the remaining subsamples). In
total, there were 646,000 type [+!], 641 type [!+], 298 type [++],
and 302 type [!!] clusters for the full data set.

Next, for each cluster we identify its innermost positions—
the locations that would have been closest to the donor’s break-
point. Though we do not explicitly know the location of the reads
in the donor, we can infer the relative order from the type of clus-
ter. For [+!] and [!+] clusters, this is the right end of the rightmost
positive read mapping and the left end of the leftmost negative
read mapping. For [++] clusters, it is the right end of the rightmost
read mapping, and the right end of the rightmost read mapping
taken out of the left reads of the mate pairs (see Fig. 3 for a pictorial
depiction, and for the definition for type [!!] clusters).

This clustering algorithm is efficiently implemented in O(D
log D) time using a sort followed by a simple left-to-right scan of
D. The output of the algorithm is the set of variables linClu(i,s) and
linClu(i,t), which represent the location of the two innermost po-
sitions for cluster i (which of the positions is s, and which is t is
shown in Fig. 3), and the variables linCluType(i), which represent
the type of the ith cluster.

Stage 3: Partitioning the reference
For duplications in regions that already have multiple copies in the
reference genome, we usually cannot identify which of the copies
has been duplicated. For reads sampled from one of these regions,
it is likewise usually impossible to determine their origin. There-
fore, we group together highly similar regions of the reference into
blocks, and allow our algorithm to work with these blocks rather
than with the individual regions.

To identify these blocks we start with all maximal pairwise
local alignments of the reference to itself (called the self-alignment),

where each alignment must contain at least 100 nonrepeat
masked bases and have $99% similarity (downloaded from http://
hgdownload.cse.ucsc.edu/goldenPath/hg18/vsSelf/). Next, we take
any alignment that spans an endpoint of another alignment and
split it at that point. This is repeated until convergence, when there
are no more alignments that can be split. In this way, no two
alignments will involve partially overlapping regions. Next, we
transitively expand the set of alignments. That is, if there are
alignments between A and B and between B and C, then we add an
alignment between A and C, if one does not already exist. This is
repeated until the set of all alignments is transitive.

The endpoints in the final set of alignments induce a partition
of the reference into regions. Furthermore, because the alignments
are transitive, these regions are organized into equivalence classes,
according to the alignments. Each equivalence class, which we call
a block, represents a set of highly similar regions.

The output of this stage of the method is stored using vari-
ables as follows: The jth region of the ith block is stored as the
closed interval partition(i,j). Furthermore, for each block, we label
the endpoints of each of its regions with s and t in such a way that
the s ends of all the regions represent the same endpoint of the
multiple alignment. We thus have the variables partition(i,j,s) and
partition(i,j,t) to represent the endpoints of each region.

Stage 4: Building the donor graph
Given the partition of the genome and the linking clusters, our
algorithm next builds the donor graph, which is bidirected. In
bidirected graphs, each edge has two separate orientations, one
associated with each vertex, as opposed to directed graphs where
an edge has only one orientation. Allowing different orientations
captures the fact that DNA is double stranded, and that we do not
know which strand each read comes from (for more background,
see Kececioglu 1991; Medvedev and Brudno 2009). The idea be-
hind the donor graph is that it represents the donor genome using
the available information—namely, the adjacency information
about the blocks, both via the reference sequence and the linking
clusters. The endpoints of each block i are represented with vertices
called vr(i,s) and vr(i,t), and the block itself with a sequence edge
between them. This edge is potentially broken up into a path by
‘‘entry/exit’’ points for donor edges (we call these the vd vertices).

Figure 3. Clustering. (A) A cluster originates in the donor, where the
mate pairs of the cluster are all of those that span a given location. The
innermost positions of this cluster, specified by s and t, are (nearly) adja-
cent. If this adjacency doesn’t exist in the reference, then the cluster will
map discordantly. Nevertheless, all of the mate pairs within the cluster will
have a similar mapped distance, order, and orientation. There are four
distinct types of clusters, based on the order and orientation of the mate
pair mappings, as shown in B. In each case, we can identify the locations
s and t in the reference, and mark them as a putative adjacency in the
donor.

Detecting copy number variation

Genome Research 1619
www.genome.org

 Cold Spring Harbor Laboratory Press on January 1, 2014 - Published by genome.cshlp.orgDownloaded from 

Medvedev & al. Genome Research 20 :1613 (2010)



CNVer (cont.)

Variantes structurales ? IFT6299 H2014 ? UdeM ? Miklós Csűrös xii

3. “Donor graph” : représenter la référence par blocs uniques (compression de
régions dupliquées), y ajouter les clusters de paires discordantes, arêtes bi-orientées

These, in effect, subdivide each block into sub-blocks. Further-
more, any two vr vertices are connected if they represent adjacent
locations in the reference, and any two vd vertices are connected if
they correspond to the same linking cluster. Figure 4 shows a toy
example of a donor graph, while for our data set, the donor graph
of chromosome 1 contains 175 thousand vertices and 351 thou-
sand edges. We now give a formal definition.

The vertex set is the union of partition vertices {vr (i, end) such
that 1 # i # nblk, end2 {s,t}} and linking vertices {vd (i, end) such that
1 # i # nclu , end2 {s,t}}, where nblk and nclu are the number of blocks
and of linking clusters. Thus, for every block and every linking
cluster, we have an s and a t vertex, and every vertex represents a set
of genomic locations. Next, for each block i, let brk(i) be the fol-
lowing set of pairs sorted in increasing order of the second element:

ðvdðk; endÞ; jlinCluðk; endÞ # partitionði; j; sÞjf Þ
such that linCluðk; endÞ 2 partitionði; jÞg

This sequence contains all of the linking cluster endpoints that are
contained in some interval j of the ith block, together with their
offset from the s end of the interval. We refer to the first element of
the xth pair of brk(i) as brk(i,x). We now build the edgeset as follows.

1. Within every block i, we chain together all the vertices whose
location is in i. Formally, if brk(i) is empty, we make an edge out

of vr(i,s) and into vr(i,t). Otherwise, for every 1 # x # |brk(i)|# 1,
we make an edge out of brk(i,x) and into brk(i,x + 1). We also add
an edge out of vr(i,s) and into brk(i,1) and an edge out of brk(i,
|brk(i)|) and into vr(i,t). Intuitively, each edge corresponds to
a portion of the ith block, and thus to a set of similar sequences
of the reference. These edges are therefore referred to as se-
quence edges.

2. Next, we connect any partition vertices which contain adjacent
locations. Formally, for each end, end9, i, i9, j, j9, if partition(i9,
j9,end9) # partition(i,j,end) = 1, then we make an edge between
vr(i,end) and vr (i9,end9). The directionality of the edge is given
solely by end and end9, as follows. If end = s (respectively, t) then
the edge goes into (respectively, out of) vr (i,end), and if end9 = s
(respectively, t) then the edge goes into (respectively, out of) vr

(i9,end9). We refer to these edges as reference edges, because they
represent adjacencies present in the reference.

3. Finally, we connect the linking vertices associated with each
cluster. Formally, for each linking cluster i, we add an edge be-
tween vd(i,s) and vd(i,t). The directionality of the edge is given by
the type of the cluster. Types [+#] and [#+] correspond to the
edge going out of s and into t, type [++] to going out of both
s and t, and type [##] going into both s and t. We refer to these
edges as donor edges, because they represent adjacencies that
are putatively present in the donor.

Finally, we add two special Start and End
vertices to the graph, symbolizing the
beginning and end of the genome, an
edge out of Start into the partition vertex
with the leftmost location, and an edge
out of the partition vertex with the right-
most location and into End. By walking
along this graph from Start to End and
concatenating the sequences associated
with each sequence edge, we can spell a
genomic sequence. For example, the ref-
erence itself is spelled by some walk in this
graph, since every two regions adjacent
in the reference are connected by a ref-
erence edge. The key desired property of
the graph, however, is that each of the
donor haplotypes, which contain both
the reference and donor adjacencies, can
be spelled by a walk (with the exception
of any novel, donor-specific sequence).

Stage 5: Finding flow
Having constructed the donor graph, one
possible goal is to find which of the
many possible walks corresponds to the
donor genome. However, this amounts to
assembling the whole donor, which is a
much more difficult task than discover-
ing CNVs. For our purposes, we need to
find only the copy counts of each sub-
block, which are given by the traversal
counts of a walk on the sequence edges.
We therefore model this as a minimum
cost flow problem, a much easier opti-
mization task.

A flow is a function f that assigns
a non-negative integer fe to each edge of
the graph such that for each vertex except
Start and End, the flow along the in-edges
is equal to the flow along the out-edges

Figure 4. Donor graph. We show a toy example of a donor genome (A) and a reference (B). Identical
regions have the same color, with inversions having a reverse color gradient. The donor differs from the
reference only in that there is one nontandem inverted duplication, as shown in A. (B) The partitioning of
the reference, indicated by triplets; for example, (3,1,s) refers to the location of the s endpoint of the first
region of the third block. There are four blocks in the partition: blue (1), green (2), red (3), and violet (4).
There are two regions in the blue block, each with different directionality; and there are two regions in
the red block, with the same directionality. There are also two linking clusters, and their s and t endpoints
are indicated by linClu. It is not illustrated, but cluster 1 is of type [++] and cluster 2 is of type [##]. It is
easy to check that the two linking clusters correspond with the duplication in the donor, both in their
location and their type. (C ) The donor graph. There are two special Start and End vertices, signifying the
start and end of the genome. The other uncolored vertices are the donor vertices; the colored vertices
are the partition vertices, with the darker color representing the s endpoints and the lighter the t
endpoints. Sequence edges are shown with long dashed lines, donor edges with short dashed lines, and
reference edges with regular lines.

Medvedev et al.

1620 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on January 1, 2014 - Published by genome.cshlp.orgDownloaded from 

4. optimisation de flot dans le réseau (sans assemblage)

Medvedev & al. Genome Research 20 :1613 (2010)


