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approche classique : isolation d’un seul espèce + clonage + séquençage

métagénomique : extraction d’ADN d’un échantillon environmental (+ amplifica-
tion ) + séquençage

? pour bcp d’organismes (99%), on n’arrive pas avoir une culture au laboratoire
? bcp d’organismes ne fonctionnent que dans une communauté avec d’autres

analyses :
G composition taxonomique
G composition fonctionnelle
H métagénomique comparative
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approche classique : filtrage d’une région (primers spécifiques) qui identifie l’espèce
+ comparaison à une grande base de données sur cette région

ARN ribosomique petite sous-unité (16S chez procaryotes) — régions hyperva-
riables (V1–V9)

Curated databases such as The Ribosomal Database Project (42),
GreenGenes (43) and SILVA (44), where sequences undergo
quality assessment and alignments are manually optimized, are
crucial for optimal phylogenetic placement of test sequences.
Two analysis pipelines are in common use for analysing 16S
rRNA gene sequence data: QIIME (45) and Mothur (46),
though there is no standardized way of applying these pipelines
to datasets.

An important deliverable of 16S rRNA gene sequencing is the
identification of microorganisms that cause disease. Current mi-
crobial diagnostics provide information about the presence or
absence of known pathogens in patient samples, but the culture-
based techniques are much more targeted and selective when
compared to 16S rRNA gene sequencing (47). More than 50%
of cases of pneumonia in children and adults requiring hospital-
ization have no diagnosis. DNA sequencing therefore has the im-
mediate potential to fill a major unmet clinical need.

Although identification and characterization of disease-
causing organisms is the ultimate goal (see section Whole-
Genome Sequencing), measures of the microbial community
structure, such as species richness, community evenness and di-
versity, can reveal a great deal about dynamics and selection
pressures experienced by the system (Fig. 3 and Table 1).

Association of these parameters with relevant environmental
and clinical measurements can give important insight into states
of health and disease (48,49). Increased richness, evenness and

diversity can be associated with stable, longer established or
less active ecosystems (50). Microbial community stability, re-
sistance to environmental pressures such as diet and antibiotic
use, and resistance to invasion with pathogens are also likely
to be important in human disease states affecting the bowel,
mouth, lungs, skin and vagina (51).

WHOLE-GENOME SEQUENCING

Complete genome sequencing is the foundation for the compre-
hensive understanding of an organism’s function. Bacteria were
the first free-living organisms to undergo complete genome
sequencing, with Haemophilus influenzae being completed in
1995 (52). As of July 2013, the National Center for Biotechnol-
ogy Information’s microbial genome site listed 2552
complete genomes, although the bacteria sequenced in their
entirety have been highly selected, with multiple genomes of
commonly cultured clinical strains and an absence of some
entire phyla (53).

It is now feasible to map all the genes that characterize a par-
ticular group of organisms, their ‘pangenomes,’ by sequencing a
broad range of isolates from different sources (54). This reveals
the genes that are core and that define the genomes of a particular
group as well as those that are accessory, perhaps possessed by a
single isolate or a subset with a particular lifestyle or pathology.
It also allows inference of how pathogenicity evolves within

Figure 2. Approximately 1.5 kb 16S rRNA gene of E.coli showing the nine variable regions that make it an ideal target as a phylogenetic marker gene.

Figure 3. A diagram demonstrating species richness and evenness and how they
describe the composition of a community. Each shape represents an individual
and the colour and nature of the shape represents a different type of organism.
Increased numbers of different types of organism is described as increased
species richness. When no one organism is dominant, the community is described
as even.

Table 1. Explanation of commonly used ecological terms in the field of micro-
biota research

Term Explanation

Evenness A measure of the skew in abundance of community members.
Is there one dominant organism or are all evenly
represented?

Richness The number of different types of organism present.
Diversity A combination of richness and evenness—can be considered

to be a summary statistic for community structure as
membership, abundance and evenness are taken into
account.

Simpson index A common diversity index indicating the probability that two
individuals taken at random from a population are the
same. Often presented as the inverse so that increasing
diversity is mirrored by an increasing index value.

Shannon index Alternatively, Shannon entropy—another common diversity
index that quantifies the uncertainty of predicting the next
individual taken from a sample.

Alpha diversity Within sample diversity.
Beta diversity Between sample diversity.
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bases de donnés d’ARNs alignés :
? Ribosomal Database Project (RDP)
? greengenes
? ARB-SILVA
+ outils spécialisés pour la recherche / alignement rapide
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Analyse taxonomique / binning
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séquençage + comparaison à un arbre phylogénétique
on veut lier les séquence à des unités taxonomiques (OTU = operational taxonomic
unit)
méthodes de classifications : alignement/similarité, composition (k-mers, codons)

Taxonomy-dependent methods
A majority of methods available for binning datasets
obtained using shotgun sequencing belong to the
taxonomy-dependent category. In these methods,
the extent of ‘similarity’ of reads with sequences
(in reference databases) or pre-computed models
(built using sequences in reference databases) drives
the assignment process. Reads failing to exceed
pre-determined similarity thresholds are categorized
as ‘unassigned’. Based on the strategy used for com-
paring reads with sequences/pre-computed models,
taxonomy-dependent methods can be sub-classified
into alignment-based, composition-based and hybrid
methods.

Alignment-based methods
A majority of these methods work by aligning
reads to sequences or Hidden Markov Models

(HMMs) corresponding to known taxonomic
groups. Alignment-based methods typically employ
algorithms like BLAST [9], BLAT [10], or
read-mapping methods like BWA [11], BOWTIE
[12] to first align individual reads to nucleotide/pro-
tein sequences belonging to known and characterized
genomes. Collections of such reference sequences are
present in major public repositories such as NCBI
(ftp://ftp.ncbi.nih.gov/blast/db/), PFAM (http://
pfam.sanger.ac.uk/), UniProt (http://www.uniprot.
org/), EMBL (http://www.ebi.ac.uk/embl/),
NCBI Genbank (http://www.ncbi.nlm.nih.gov/
genbank/), NCBI Refseq (http://www.ncbi.nlm
.nih.gov/RefSeq/), DDBJ (http://www.ddbj.nig.ac
.jp/) and Ensembl (http://www.ensembl.org/).
Reads are finally assigned to different taxonomic
groups by analyzing the quality of their alignments
with various hit sequences. This approach in its

Figure 1: A schematic representation of various categories of algorithms available for binning metagenomic data-
sets obtained using shotgun sequencing.

Classification of metagenomic sequences 671
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Analyse fonctionnelle
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Figure 2. Subsystem and Populated Subsytem. The Histidine Degradation Subsystem was used as an example to demonstrate relevant terms. (A) The subsystem
comprises of 7 functional roles (e.g. Histidine ammonia-lyase (EC 4.3.1.3), Urocanate hydratase (EC 4.2.1.49) etc.). Together with the spreadsheet it becomes the
‘Populated subsystem’. (B) The Subsystem Spreadsheet is populated with genes from 8 organisms (simplified from the original subsystem) where each row
represents one organism and each column one of the functional roles of the subsystem. Genes performing the specific functional role in the respective organism
populate the respective cell. Gray shading of cells indicates proximity of the respective genes on the chromosomes. (C) The Subsystem Diagram illustrates the
populated subsystem: key intermediates (circles with roman numerals), connected by enzymes (boxes with abbreviations matching the spreadsheet abbreviations)
and reactions (arrows). There are three distinct variants of Histidine Degradation presented in this populated subsystem. Variant 1 (green shading) is present in
Caulobacter crescentus, Pseudomonas putida and Xanthomonas campestris. N-Formimino-L-Glutamate (IV) is converted to L-Glutamate (VI) via N-Formyl-L-
Glutamate (V) by enzymatic activities of Formiminoglutamic iminohydrolase (EC 3.5.3.13) (ForI) and of N-formylglutamate deformylase (EC 3.5.1.68) (NfoD).
Variant 2 (yellow shading) is present inHalobacterium sp., Deinococcus radiodurans andBacillus subtilis. In this variant the conversion from intermediate IV to VI
is performed by Formiminoglutamase (EC 3.5.3.8) (HutG). Variant 3 (blue shading) is present in Bacteroides thetaiotaomicron and Desulfotela psychrophila.
Here the Glutamate formiminotransferase (EC 2.1.2.5) (GluF) performs the conversion from intermediate IV to VI.

5694 Nucleic Acids Research, 2005, Vol. 33, No. 17
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base de données sur procésssus
biologiques
vocabulaire contrôlée
← sous-systèmes (SEED)
(autre BD utile : KEGG)

Overbeek & al. Nucleic Acids Res 33 :5691 (2005)
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IDBA-UD

However, when applying to single cell or metagenomic
assembling, highly uneven sequencing depth aggravates these
problems further that affect the performance of these tools
substantially due to the following issues. Issue (A): erroneous
vertices and branches in high-depth regions; Issue (B): gaps in
low-depth short repeat regions.

Problems (a) and (c) due to Issue (A):
Due to highly uneven sequencing depth, the assumption of an
incorrect k-mer having lower multiplicity is not valid. Those
incorrect ones in the high-depth regions may even have higher
multiplicity than the correct ones in the low-depth regions, thus
simply using a single threshold to remove incorrect vertices will not
work. Setting the threshold too low induces many incorrect vertices
and edges (those in high-depth regions) in the graph. Setting the
threshold too high will remove many correct vertices and edges in
low-depth regions. We remark that there exist some error correction
algorithms for reads/k-mers (Chaisson and Pevzner, 2008; Kelley
et al., 2010; Medvedev et al., 2011), but they do not perform very
well in datasets with very uneven sequencing depths.

Problems (b) and (c) due to Issue (B):
Recall that most existing assemblers do not have a good method to
resolve Problems (b) and (c) probably, except IDBA. Even for IDBA,
in low-depth short repeat regions [For very long repeats (longer
than the whole span of a paired-end read), it is almost impossible to
resolve it.], when k is small, the branching problem makes it difficult
to construct a contig to be passed to the next iteration. When k is
increased, due to the low-depth issue, we still have the missing k-mer
problem (the gap problem).

Velvet-SC (Chitsaz et al., 2011) is the only tool that tries to address
the assembling problem of single-cell sequencing data with very
uneven sequencing depths. Following Velvet, Velvet-SC picks an
appropriate k to balance the gap and the branching problem; and uses
variable thresholds to address problems related to Issue (A). Short
erroneous contigs are filtered iteratively using different thresholds
from low to high sequencing depths based on a global average
of the multiplicity of all k-mers. Its performance is already better
than existing tools designed for even sequencing depth. However,
problems related to Issue (B) are not yet handled. In this article,
we propose an assembler called IDBA-UD for de novo assembly of
reads with uneven sequencing depths that tackles both issues.

To resolve Issue (A), IDBA-UD extends and enhances the idea
of variable thresholds of Velvet-SC (Chitsaz et al., 2011) to filter
out erroneous contigs. To cater for very extreme sequencing depths,
instead of using a global average of the multiplicity of all k-mers,
we adopt variable ‘relative’ thresholds depending on the sequencing
depths of their neighboring contigs based on the idea that short
contigs with much lower sequencing depths than their neighboring
contigs tend to be erroneous For the gap and branching problems,
we follow the approach of IDBA and iterate from a small k to a
large k so that the missing k-mers for large k can be obtained from
contigs constructed in the iterations of small k.

Then we tackle Issue (B) as follows. The problem of Issue (B)
is due to the low-depth short repeat regions such that using small
k, we cannot get the contig out since it is a repeat region and the
branches may be complicated due to the ambiguity of using a small
value of k. When k increases, however, due to the low sequencing
depths some k-mers are missing. Even if we iterate from small k to

large k, this problem of missing k-mers cannot be resolved. So, we
employ the technique of local assembly with paired-end information
to handle these cases. Paired-end reads with one end aligned to
some long confident contigs are grouped together. Local assembly
is performed on the unaligned ends. Since we consider only the read
pairs with one end aligned to the contig, the ambiguity due to small
k is removed. If the insert size is longer than the repeat involved,
it is likely that we can extend the contig over this repeat region,
thus constructing the missing k-mers for large k. Note that this local
assembly step can also help to resolve some branching problems in
high-depth regions too.

To further reduce the size of the de Bruijn graph and to speed up
the assembly process, at every iteration, we conduct an additional
error correction step by aligning the erroneous reads from the high-
depth regions to confident contigs (i.e. with many supporting reads)
which turns out to be very effective.

We compared the performance of IDBA-UD with other
assemblers on data in actual situations when the sequencing depths
are extremely uneven, e.g., with the ratios larger than 100:1.
Experiments on both simulated and real datasets showed that IDBA-
UD produces much longer contigs than existing assemblers with
higher coverage and precision.

2 METHODS
A flowchart of the major steps of IDBA-UD is shown in Figure 1. IDBA-UD
iterates the value of k from kmin to kmax. In each iteration, an ‘accumulated de
Bruijn graph’Hk for a fixed k is constructed from the set of input reads and the
contigs (Ck−s and LCk−s) constructed in previous iterations, i.e. these contigs

Fig. 1. Flowchart of IDBA-UD
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enlever les tips 
(chemins courts) et 

les bubbles

découper les ponts avec 
couverture trop petite

corriger les 
lectures qui s'alignent 
bien avec les contigs

extensions aux extrémités 
à partir de 

lectures appariées

joindre les contigs 
à la fin

problèmes : bcp de séquences hétérogènes ; cou-
verture variable à travers des génomes

de Bruijn :
petit k→ trop de branchements (ambiguı̈té) ;
grand k→ trop d’erreurs, moins de contigs

IDBA-UD : travailler avec k, k + 1, k + 2 . . .
(⇒ fusion / désambiguation de chemins)
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IDBA-UD

Fig. 3. Example of resolving repeats by iteration from k to k+1. The repeat
region is a single k-mer, uvw and u′vw′ appear in the genome. After the
iteration, repeat v is resolved

AACTG cannot be reconstructed because of the branches. However, when
considering the de Bruijn graph when k =3, IDBA-UD will align the paired-
end reads to the contig ACGATCGTAGCTGA (Fig. 2) whereas the reads of
the other ends covering the repeat regions will only be ...AACT and ACTG...
(reads covering the other repeat region ...TACTT... are not involved because
they are far away). Thus, local assembly (by considering the reads locally)
can produce a simple path containing the critical 5mer AACTG to resolve
branches as if there were no repeats.

Algorithm 3 Local-Assembly(C, R, d, δ ):
1 Remove contigs shorter than 2l from C
2 Align reads in R to contigs in C
3 For each (r,s)∈R
4 if r uniquely aligned to last d+3δ bases of c, Rc :=Rc∪ {s}
5 if r uniquely aligned to last d+3δ bases of crc, Rrc

c :=Rrc
c

∪ {s}
6 For each c∈C
7 LCc := IDBA({last d+3δ bases of c} ∪Rc

8 LCrc
c := IDBA({last d+3δ bases of crc} ∪Rrc

c
9 return ∪c∈G(LCc∪ LCrc

c )

Let Ck be the set of contigs (simple paths) in Hk . The set of paired-end
reads Rc are those with one read aligned with the ends of each long contig
c (with length at least twice of read length) in Ck (crc stands for the reverse
complement of contig c). The other unaligned ends of these aligned paired-
end reads, which would cover the genome regions extended about an insert
distance beyond each end of a long contig, are extracted separately. Assume
the insert distances of paired-end reads satisfy the normal distribution N(d,δ).
IDBA-UD groups the last d+3δ bases of c/crc and Rc/Rrc

c together and
then locally assembles them into the set of local contigs LCk using IDBA
[Algorithm 1 without Steps (e), (g) and (h)] as shown in Algorithm 3. Since
those reads which are far away from the contig c will not be mixed up with
these unaligned ends, the contig c and these unaligned ends (reads) of Rc

can be used to construct a smaller and simpler de Bruijn graph whose simple
paths (represented by the set of contigs LCk) might reconstruct some of the
missing k-mers and be considered as reads for the next iteration. Thus, the
contigs can be extended longer and longer at each iteration. The expected
number of resolved branches can be computed by Theorem 3 (Appendix).

2.3 Error correction
To reduce the errors in reads, error correction on some erroneous bases
is performed based on the alignment between reads and confident contigs.
Errors in reads are corrected only if they can be aligned to contigs with certain
similarity, say 95%. The reads which can be multi-aligned to different contigs
will not be considered for corrections. This approach of error correction is
especially effective for high-depth regions because the confident contigs are
well-supported by many reads.

A position of a contig is labeled as ‘confirmed’ if one base type appears
over 80% in all reads aligned to that position. Each read, aligned to a contig
region with all positions confirmed and the number of different bases no >3,
will be corrected according to the confirmed bases.

A pre-error-correction step for improved efficiency can be used to remove
errors in high-depth regions as the first step in IDBA-UD if the sequencing
depths are extremely uneven. A medium k-value and filtering threshold will

be used to assemble reads to form contigs and errors in reads are corrected
based on its alignment with the output contigs.

2.4 Scaffold
The reads are finally aligned to contigs so as to build a scaffold graph in
which each vertex u represents a contig and each edge (u, v) represents the
connection between u and v with a support of >p (3 by default) paired-end
reads. After the scaffold graph is built, scaffold algorithm (Li et al., 2010)
will be applied to further connect contigs.

3 RESULTS
To evaluate the performance of our algorithm, experiments (All
experiments were done on a machine with 8-core 2.40 GHz Intel
CPU and 144 GB memory. The tested assembler was run with
multiple threads, if it supports.) are carried out on several datasets
with different properties. Results on existing general purpose
assemblers like Velvet (Zerbino and Birney, 2008), SOAPdenovo
(Li et al., 2010), IDBA (Peng et al., 2010) and special purpose
assemblers like Velvet-SC (Chitsaz et al., 2011), Meta-IDBA (Peng
et al., 2011) were compared. Different k-values were tried for each
assembler and the result with best performance are shown and
compared.

Two most important statistics, N50 and coverage are calculated to
evaluate the contiguity and completeness of assembly results. N50 is
the length of the longest contig such that all the contigs longer than
this contig cover at least half of the genome being assembled (Earl
et al., 2011). Coverage is the proportion of the genome being covered
by output contigs. In this article, only correct contigs are considered
in the calculation of N50 and coverage. A contig is considered as
correct if it can be aligned to the genome reference by BLAT (Kent,
2002) with 95% similarity. For correct contigs, the substitution errors
are computed by comparing the alignment between contigs and
genome reference. For unaligned contigs, the number of contigs
and the number of bases are recorded for comparison.

3.1 Error correction
The performance of our error correction algorithm is assessed
by correcting the simulated reads sampled from Lactobacillus
delbrueckii genome (∼1.85 Mb). The simulated dataset contains
1.85 million length-100 reads (100×) uniformly sampled from
the reference with 1% error rate. The error correction algorithm
was executed on this dataset with output contigs of IDBA with
k =60 (kmin =kmax in this case). The correction result is shown
in Table 1. There are 1 856 822 error bases in the dataset. Our
algorithm corrected 1 627 727 bases with 1 626 929 (99.95%) being
true positive. Note that our target of error correction is to reduce the
errors without introducing other errors. The remaining erroneous
reads either contain too many errors to be aligned to contigs or are
from those regions which cannot be assembled correctly. This high-
precision and low-sensitivity error correction algorithm is suitable

Table 1. Error correction result on simulated 100× length-100 reads of
L.delbrueckii (∼1.85 Mb) with 1% error rate

No. of errors No. of corrected No. of TP No. of FP

1 856 822 1 627 727 1 626 929 (99.95%) 798 (0.05%)
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Figure 1: Flowchart of the main steps and bioinformatics tools required for pathway reconstruction from
metagenomics surveys. Numbers in circles correspond to specific tools and programs developed for the corres-
ponding steps and listed in the right part of the figure (links listed on Table 1). Curly brackets point to application
specific databanks.The analytic procedure ideally bifurcate at the starting point according to the investigation strat-
egy: DNA can undergo a PCR-based amplification step to increase the amount of a specific marker gene (e.g. ribo-
somal RNA) and then subject to Roche 454 sequencing or can be fragmented and prepared into libraries for
metagenomics Illumina/SOLiD sequencing. Both those techniques are characterized by the generation of a huge
amount of short reads that necessitate care and powerful instrumentation for their handling and processing. The
simplest analytic choice is to map short reads into reference databases such as that maintained by the Ribosomal
Database Project for the taxonomy survey via 16S sequencing (1) or into NCBI non-redundant (nr/nt) for environ-
mental microbiome or, in case of gut microbiome surveys, the better-scoped MetaHIT (2). Another possibility is
to assemble the short reads into longer contigs using new generation assemblers specific for unevenly distributed
reads deriving from the multitude of different microbes represented in the community (3). Their application im-
proves the efficiency of gene finding programs that, even though applicable directly on reads, have a higher level of
information to ensure more confident gene identification (4).Once coding sequences have been obtained, their cor-
responding proteins can be searched in reference functional databases encoding information in the form of HMMs
or PSSM frommultiple sequence alignments (5) or directly in reference protein sets derived from primary databanks
or from genome-derived collections. The first approach leads to a direct identification of associated functions that
can be used to identify and score pathways (6) and in the end apply a battery of statistical techniques for sample
characterization (7). The second approach can be used to obtain taxonomic and functional distributions (8) and
allows to directly feed metabolic pathway identification (9) that in turn can be converted into stoichiometric
models (10) for simulating the behaviour of single organisms or the relationships within a community, with the
potential of predicting their response to changing environmental conditions.

Functional annotation and pathway inference in metagenomics data 697
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UniFrac : % de l’arbre qui est unique (mesure la distance entre la compoisition
taxonomique de deux échantillons)
→ visualisation par positionnement multidimensionnel (multidimensional scaling)
— PCoA = principal coordinate analysis

primers, we excluded all nonbacterial sequences from the analysis. We added the
aligned sequences to a tree representing a range of phylogenetic groups from the
Ribosomal Database Project II (29) by Phil Hugenholtz (15). This sequence
addition used the parsimony insertion tool and a lane mask (lanemaskPH)
supplied in the same database so that only phylogenetically conserved regions
were considered. We exported the tree from Arb and annotated each sequence
with 1 of 20 sample designations (Table 1). We then performed significance tests,
UPGMA clustering, and principal coordinate analysis using UniFrac.

Jackknifing. We used jackknifing to determine how the number and evenness
of sequences in the different environments affected the UPGMA clustering
results. Specifically, we repeated the UniFrac analysis with trees that contained
only a subset of the sequences and measured the number of times we recovered
each node that occurred in the UPGMA tree from the full data set. In each
simulation, we evaluated 100 reduced trees in which all of the environments were
represented by the same specified number of sequences, using sample sizes of 17,

20, 31, 36, 40, and 58 sequences. These thresholds reflect the sample sizes from
different environments in our original data set. If an environment had more than
the specified number of sequences, we removed sequences at random; environ-
ments with fewer sequences were removed from the tree entirely.

RESULTS

We used UniFrac to determine which of the microbial com-
munities represented by the 20 different samples were signifi-
cantly different (Table 2) and as the basis for a distance matrix
to cluster the samples using UPGMA (Fig. 2) and to perform
principal coordinate analysis (Fig. 3). We used jackknifing to
assess confidence in the nodes of the UPGMA tree (Table 3).

FIG. 1. Calculation of the UniFrac distance metric. Squares, triangles, and circles denote sequences derived from different communities.
Branches attached to nodes are colored black if they are unique to a particular environment and gray if they are shared. (A) Tree representing
phylogenetically similar communities, where a significant fraction of the branch length in the tree is shared (gray). (B) Tree representing two
communities that are maximally different so that 100% of the branch length is unique to either the circle or square environment. (C) Using the
UniFrac metric to determine if the circle and square communities are significantly different. For n replicates (r), the environment assignments of
the sequences were randomized, and the fraction of unique (black) branch lengths was calculated. The reported P value is the fraction of random
trees that have at least as much unique branch length as the true tree (arrow). If this P value is below a defined threshold, the samples are
considered to be significantly different. (D) The UniFrac metric can be calculated for all pairwise combinations of environments in a tree to make
a distance matrix. This matrix can be used with standard multivariate statistical techniques such as UPGMA and principal coordinate analysis to
compare the biotas in the environments.
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into some of the processes that occur in 
communities, but do not provide informa-
tion on which community members are 
involved. Techniques such as RNA-based 
stable-isotope probing11,12, fluorescence 
in situ hybridization (FISH)–microau-
toradiography13, isotope arrays14 and 
FISH–secondary-ion mass spectrometry15 

and its variants16 allow substrate usage and 
specific processes to be linked to species, 
but are limited to particular substrates, are 
subject to cross-feeding, are not applicable 
in all environments and do not generally 
provide molecular details on the genes 
that are involved17. Environmental DNA 
cloning and screening enable specific eco-

system functions to be linked to genes18, 
but such linking to bacterial or archaeal 
species is rare, and when successful, neces-
sitates the co-cloning of a phylogenetic 
marker19. Novel techniques that are based 
on single-cell isolation and simultaneous 
PCR of a phylogenetic marker with a 
functional gene of interest show prom-
ise20,21, but have not yet been scaled up to 
high-throughput simultaneous analysis of 
a large number of genes or functions and 
still have sensitivity issues22.

Environmental shotgun sequenc-
ing23–27 has recently provided ecosystems 
biology with a possible global ‘one-does-
all’ method. The random sampling of 
sequence data from the combined commu-
nity members (the metagenome) provided 
a first unbiased and large-scale glimpse 
into the total molecular parts list of com-
munities, and allowed the researchers 
(in theory) to simultaneously investigate 
genes, their functions and the individuals 
that exert them23. This promise has led 
researchers from all over the world to 
initiate metagenomic sequencing projects 
— more than 100 projects have been 
completed or are currently underway28. In 
addition, novel sequencing technologies 
with increasingly longer read lengths and 
the rapidly falling cost of sequencing will 
only expedite this process.

Metagenomic sequencing has so far 
added more than 10 billion bp to sequence 
databases9,28. The larger projects usually 
sequence approximately 50–100 Mb per 
environment, which should provide a 
firm foundation to start investigating the 
functioning of the underlying communi-
ties. However, this process is far from easy. 
Deriving ecosystem functioning from 
metagenomes requires careful sampling 
and DNA-extraction designs, followed by 
a considerable amount of far-from-trivial 
sequence-data processing (assembly and 
gene prediction on short reads), including 
the prior determination of a set of metage-
nome descriptors that describe the basic 
functional and phylogenetic composition 
of a sample29 (BOX 1; FIG. 2). Unfortunately, 
these descriptors are also interlinked and 
are influenced by various biological and 
technical factors, and therefore yield a rich 
spectrum of pitfalls (for example, observed 
phylogenetic composition is dependent on 
sampling strategy and observed functional 
composition is dependent on sequence cov-
erage and read length29 (FIG. 2)). In addition, 
the phylogenetic assignment of sequence 
reads, which is of paramount importance to 
the linking of molecular functions to spe-

Figure 1 | Systems biology: from proteins to environments. a | Different spatial scales at which 
systems biology can be performed (based on the ‘dimension’ definitions in REF. 6). The columns 
show data availability for each scale and the rows indicate the aspect of the system that is targeted 
by the data (+++, ample data available and good knowledge of the system aspect; ++, a number of 
high-throughput data sets available and fair knowledge of the system aspect, but more data are 
still needed to build comprehensive models; +, a few scattered non-high-throughput data sets 
available and model building is restricted to case studies; x, almost no data available). b |  At the 
ecosystem scale, read outs are available at different levels: molecules (ranging from trace elements 
to small signalling compounds to metabolism intermediates), genes or proteins, and cells or indi-
viduals. Here, we show some of the more promising high-throughput approaches to the generation 
of data that would facilitate eco-systems biology. No high-throughput tools are currently available 
that can map interactions, and this information will need to be inferred from other data sources 
(see the main text).
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sequencing is therefore likely to be the 
input data source of choice for this type of 
analysis in the near future46–49.

Many examples of the collaboration and 
cooperation of microorganisms, including 
the formation of complex consortia or 
biofilms and cell–cell communication, seem 
to occur at micrometre-range distances in 
open systems50. Therefore, analogous to pro-
tein complexes in cellular systems biology, 
the observation of physical cell–cell interac-
tions between organisms provides strong 
indications of functional interactions in the 
ecosystem network. This is especially true 
when evidence for interactions, for example, 
from FISH microscopy, is combined with 
chemical measurements of metabolized 
compounds51. Although microscopy 
data is scattered and no high-throughput 
approaches to detect cell–cell interactions 
(an ‘ecosystems yeast two hybrid’ at the 
cellular level) have yet been described, 
ongoing advances in high-throughput and 
three-dimensional microscopy, combined 
with automated image-analysis techniques 
should allow data to be gathered on a larger 
scale52. Until then, indirect measures might 

provide a solution. For example, investigat-
ing taxon occurrence patterns could provide 
signs of metabolic cooperation. Indeed, 
studies of both macroorganisms and micro-
organisms have indicated clear non-random 
distribution patterns53,54. However, as other 
factors, such as competition, niche (species-
composition cycles and biogeography can 
be predicted from habitat parameters55 or 
organismal physiological traits56) and sam-
pling, might also contribute to the patterns 
observed, further studies will need to show 
what information can be extracted from 
such data.

Cell–cell signalling — communication and 
quorum sensing. Evidence is accumulating 
that microorganisms do not live as isolated 
individuals, but as populations of cells 
that are continuously producing, sensing 
and responding to chemical signals, which 
allows them to communicate and cooper-
ate. The best studied of these processes 
is quorum sensing, a process in which 
bacteria can ‘measure’ the cell density of 
their population to initiate processes such 
as bioluminescence, biofilm formation, 

sporulation and virulence33,34. Inter-spe-
cies communication is less understood, 
although the discovery of more examples 
of this phenomenon has strengthened 
the general notion that these processes 
are more ubiquitous than previously 
thought33,57. These observations herald the 
exciting prospect of reconstructing the 
various inter-species small-molecule-based 
signalling cascades that drive social behav-
iour in environments. Although the data 
are currently too fragmented to be used in 
a global systems approach, the modelling 
of specific processes could constitute a 
proof-of-principle case study. To include 
this aspect of microbial interactions in 
global ecosystems biology, an integrated 
effort is needed to detect both the produc-
tion of, and the response to, the plethora of 
small molecules that are produced by these 
organisms. Environmental metabolomics 
approaches, combined with metagenomic, 
meta-transcriptomic58 and meta-pro-
teomic59,60 data, should eventually allow the 
reconstruction of ecosystem-wide com-
bined protein small-molecule networks, 
similar to those that have been achieved for 
single organisms (see Further information 
for a link to the STITCH chemical–protein 
interactions resource61). This approach 
could ultimately result in the molecular 
modelling of community multicellular 
behaviour types other than quorum sens-
ing, such as dispersal, nutrient acquisition 
and biofilm formation62.

Spatial and temporal variation
Previous studies have detected variation 
in species composition in various habitats, 
both spatially (reviewed, for example, in 
REFS 35,63–65) and temporally (for example, 
REFS 66,67). Spatio–temporal variation has 
been linked to variation in environmental 
conditions35,68, even to the point at which 
environmental parameters can be predictive 
of species composition55. Similar spatio–
temporal variation has been observed from 
a functional point of view69. Comparative 
metagenomics approaches24,25,29 recently 
charted the molecular basis of spatial func-
tional variation of environments from the 
kilometre25,42,70 to centimetre38 and even mil-
limetre scale71 (FIG. 3), and with time-series 
metagenomics studies underway28, studying 
temporal (and spatio–temporal72) aspects 
should become possible at the molecular 
level. The recent development of phylo-
chips, metagenome-based microarrays and 
high-throughput sequencing-based moni-
toring will further expedite the amount of 
dynamic data that is available (for example, 

Figure 3 | Visualizing complex environmental patterns. Novel visualization techniques will be 
needed to describe complex data and patterns. The example shown here is a summary of the meta-
bolic variation along a longitudinal transect of ocean surface water samples (data from REF. 42; the 
samples used (red) were selected for similarity in habitat type). Colour intensity shows the contribu-
tion to the overall variance for different KEGG84 maps that are involved in central metabolism (for 
example, red indicates maps with low contribution and therefore low variability over sites, whereas 
yellow indicates maps with high contribution) and grey indicates no significant KEGG mapping for 
these samples. The inset shows the large contribution of photosynthesis to the overall functional 
variation among samples.
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Figure 1 | Compositional differences in the microbiome by anatomical site. 
High-throughput sequencing has revealed substantial intra-individual microbiome 
variation at different anatomical sites, and inter-individual variation at the same 
anatomical sites4,5,25,52,89,93. However, higher-level (for example, at the level of phyla) 
taxonomic features display temporal (longitudinal) stability in individuals at specific 
anatomical sites. Such site-specific differences and the observed conservation 
between human hosts provide an important framework to determine the biological 
and pathological significance of a particular microbiome composition. The figure 
indicates the relative proportion of sequences determined at the taxonomic phylum 
level at eight anatomical sites. Certain features, such as the presence (+) or absence (–) 
of Helicobacter pylori, can lead to permanent and marked perturbations in 
community composition93.

16S ribosomal RNA
A component of the 30S  
small subunit of prokaryotic 
ribosomes. Sequencing of the 
16S rRNA has been used to 
identify prokaryotic taxonomy 
in complete environmental 
samples such as the 
microbiome.

Microbiome
The totality of microbes, their 
genetic information and the 
milieu in which they interact. 
Microbiomes typically consist 
of environmental or biological 
niches containing complex 
communities of microbes.

alterations can in turn be induced through selection by 
environmental factors10,15, such as dietary changes or 
exposure to antibiotics10,15.

Tools for studying the metagenome. The taxonomic 
diversity that is inherent in complex environmental 
communities and the task of identifying specific asso-
ciations with host traits create unique challenges. One 
approach to metagenome analysis involves assigning 
unassembled sequences generated by shotgun high-
throughput sequencing (HTS)16 to the NCBI non-
redundant Clusters of Orthologous Groups (COG) 
or the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) databases17. This method facilitates the assess-
ment of interactions that occur within the microbiome, 
and potentially between a microbiome and its host18. 
However, because a substantial fraction of the meta-
genome (~33%) is not well-represented by reference 

genomes, this strategy provides only a limited under-
standing of the functional potential of the microbiota. 
An alternative approach is to use catalogues of known 
genes to identify functional clusters in a sample; such 
clusters could correspond to the proposed taxonomic 
enterotypes5. A catalogue of the microbial genes present 
in the human gut, for example, is being generated using 
several approaches including sequencing, assembling 
and characterizing non-redundant microbial genes 
from faecal samples19, and whole-genome sequencing 
of reference microbial species20.

As technologies for sequencing and bioinformat-
ics continue to evolve (see REF. 21 for a review of the 
state-of-the-art technologies), scientific priorities will 
include elucidating the ‘core’ metagenome that occupies 
a specific human niche and discerning the differences 
between normal and diseased hosts. As an example of 
the latter goal, Greenblum et al.22 applied new tools to 
understand interhost metagenomic variation in relation 
to phenotypes such as obesity and inflammatory bowel 
disease (IBD). By categorizing metagenomic sequences 
based on gene function, they constructed community-
level metabolic networks varying in gene abundance, 
and examined the topological features of these networks 
in relation to host phenotype. Their analysis identified 
specific network topologies related to obesity and IBD; 
skewed topologies chiefly differ in genes related to host 
interactivity, particularly metabolic functions. Such  
topological tools can now be applied to explore differences  
in other host disease states.

Taxonomic variation. The composition of the micro-
biome varies by anatomical site (FIG. 1). The primary 
determinant of community composition is anatomical 
location: interpersonal variation is substantial23,24 and is 
higher than the temporal variability seen at most sites 
in a single individual25. The temporal stability observed 
at an anatomical site suggests that individuals can be 
grouped according to the major enterotypes present 
in the colon5 or the vagina4. However, minor perturba-
tions such as dietary changes can rapidly cause substan-
tial intestinal metagenomic changes, and enterotypes 
are known to cluster based on the dietary abundance 
of animal protein relative to carbohydrate26. Similarly, 
nasopharyngeal microbiota in young children varies 
seasonally24, and vaginal microbiota varies with menses4.

In the absence of marked perturbations the aggregate 
microbiota of an individual varies rather narrowly within 
host-specific boundaries; the basis of such bounda-
ries have not been established, but may represent Nash  
equilibria13. Because minor microbial populations have 
the potential to bloom, the temporal variation observed 
in a host may be mirrored by the inter-individual vari-
ation observed at a single time point27; that the system 
is dynamic suggests that there are greater interpersonal 
similarities than a snap-shot view indicates. However, 
large perturbations such as antibiotic exposure28 
or enteric infections (L.A. David, Harvard Society  
of Fellows, Cambridge, USA, personal communica-
tion), can lead to transient disequilibrium29 or to the  
development of a new stable state.
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in the distal gut results in !10% of the metabolites in
the host systemic blood flow being of bacterial origin
[12]. Changes in gut microbiota have been linked
with numerous GIT and other systemic diseases
[13]. The broad implications of GIT microbiota on
human physiology and ready access to this commu-
nity via faecal sampling (about 60% of faecal material
is microbial biomass [13,14]) have driven studies
probing the status of the GIT microbial ecosystem
in healthy and diseased populations.

In healthy individuals, changes in the GIT micro-
biota have been associated with host genetics [15],
aging [16] and dietary patterns [17,18]. A recent
population study involving 39 individuals from dif-
ferent cultures, geographical locations, races, as well
as gut-associated and dietary disease patients found
that subjects’ GIT microbial communities could be
segregated into three statistically robust clusters [19].
These clusters, known as enterotypes, were also
found to be consistent across major populations,
including 85 European [7] and 154 American [18]
individuals. Enterotypes were differentiated by
the relative abundances of three bacterial genera,

Bacteroides, Prevotella (both of the phylum
Bacteroidetes) and Ruminococcus (of the phylum
Firmicute) [19]. The stratified nature of the entero-
type data indicate that the microbial ecology in each
individual’s gut establishes a stable and structured
biodiversity that is independent of nationality, con-
tinent, sex, age or other physical phenotypic factors
such as body mass index.

Other studies suggest that long-term rather than
short-term diet are important in shaping GIT micro-
bial communities. Comparisons between children
from Europe on a typical Western diet—high in
animal protein and fat—and children from Burkina
Faso in Africa on a low animal protein and high
carbohydrate diet found the Bacteroides enterotype
was higher in Europeans while the Prevotella entero-
type predominated in African children [20]. Another
recent study also found that animal fat and high pro-
tein versus carbohydrate-rich diets correlated with
the Bacteroides and Prevotella enterotypes, respectively
[17]. In the same study, controlled feeding of 10
subjects with high-fat, low-fibre versus low-fat,
high-fibre diets produced detectable changes in

Figure 3: The pervasive presence of the microbiota across human surfaces and its integration with the host biol-
ogy. The left-hand side lists key attributes and influences underlying the human host genome and the right-hand
side lists key attributes and influences underlying the microbiota.The figure is split into three horizontal subsections
illustrating environmental factors (boxes distinguishing the biotic and the abiotic elements), genetic and cellular
feature (including the source of variability) and disorders.
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the cohort. For this purpose, we used a non-redundant set of 650
sequenced bacterial and archaeal genomes (see Methods). We aligned
the Illumina GA reads of each human gut microbial sample onto the
genome set, using a 90% identity threshold, and determined the
proportion of the genomes covered by the reads that aligned onto
only a single position in the set. At a 1% coverage, which for a typical
gut bacterial genome corresponds to an average length of about
40 kb, some 25-fold more than that of the 16S gene generally used
for species identification, we detected 18 species in all individuals, 57
in $90% and 75 in $50% of individuals (Supplementary Table 8). At
10% coverage, requiring ,10-fold higher abundance in a sample, we
still found 13 of the above species in $90% of individuals and 35
in $50%.

When the cumulated sequence length increased from 3.96 Gb to
8.74 Gb and from 4.41 Gb to 11.6 Gb, for samples MH0006 and
MH0012, respectively, the number of strains common to the two
at the 1% coverage threshold increased by 25%, from 135 to 169.
This indicates the existence of a significantly larger common core
than the one we could observe at the sequence depth routinely used
for each individual.

The variability of abundance of microbial species in individuals
can greatly affect identification of the common core. To visualize
this variability, we compared the number of sequencing reads aligned
to different genomes across the individuals of our cohort. Even for
the most common 57 species present in $90% of individuals with
genome coverage .1% (Supplementary Table 8), the inter-individual
variability was between 12- and 2,187-fold (Fig. 3). As expected10,23,
Bacteroidetes and Firmicutes had the highest abundance.

A complex pattern of species relatedness, characterized by clusters
at the genus and family levels, emerges from the analysis of the net-
work based on the pair-wise Pearson correlation coefficients of 155
species present in at least one individual at $1% coverage
(Supplementary Fig. 9). Prominent clusters include some of the most
abundant gut species, such as members of the Bacteroidetes and
Dorea/Eubacterium/Ruminococcus groups and also bifidobacteria,
Proteobacteria and streptococci/lactobacilli groups. These observa-
tions indicate that similar constellations of bacteria may be present in
different individuals of our cohort, for reasons that remain to be
established.

The above result indicates that the Illumina-based bacterial pro-
filing should reveal differences between the healthy individuals and
patients. To test this hypothesis we compared the IBD patients and
healthy controls (Supplementary Table 1), as it was previously
reported that the two have different microbiota22. The principal com-
ponent analysis, based on the same 155 species, clearly separates
patients from healthy individuals and the ulcerative colitis from
the Crohn’s disease patients (Fig. 4), confirming our hypothesis.

Functions encoded by the prevalent gene set

We classified the predicted genes by aligning them to the integrated
NCBI-NR database of non-redundant protein sequences, the genes in
the KEGG (Kyoto Encyclopedia of Genes and Genomes)24 pathways,
and COG (Clusters of Orthologous Groups)25 and eggNOG26 data-
bases. There were 77.1% genes classified into phylotypes, 57.5% to
eggNOG clusters, 47.0% to KEGG orthology and 18.7% genes
assigned to KEGG pathways, respectively (Supplementary Table 9).
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Figure 3 | Relative abundance of 57 frequent microbial genomes among
individuals of the cohort. See Fig. 2c for definition of box and whisker plot.
See Methods for computation.
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Figure 2 | Predicted ORFs in the human gut microbiome. a, Number of
unique genes as a function of the extent of sequencing. The gene accumulation
curve corresponds to the Sobs (Mao Tau) values (number of observed genes),
calculated using EstimateS21 (version 8.2.0) on randomly chosen 100 samples
(due to memory limitation). b, Coverage of genes from 89 frequent gut
microbial species (Supplementary Table 12). c, Number of functions captured
by number of samples investigated, based on known (well characterized)
orthologous groups (OGs; bottom), known plus unknown orthologous
groups (including, for example, putative, predicted, conserved hypothetical
functions; middle) and orthologous groups plus novel gene families (.20
proteins) recovered from the metagenome (top). Boxes denote the
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the cohort. For this purpose, we used a non-redundant set of 650
sequenced bacterial and archaeal genomes (see Methods). We aligned
the Illumina GA reads of each human gut microbial sample onto the
genome set, using a 90% identity threshold, and determined the
proportion of the genomes covered by the reads that aligned onto
only a single position in the set. At a 1% coverage, which for a typical
gut bacterial genome corresponds to an average length of about
40 kb, some 25-fold more than that of the 16S gene generally used
for species identification, we detected 18 species in all individuals, 57
in $90% and 75 in $50% of individuals (Supplementary Table 8). At
10% coverage, requiring ,10-fold higher abundance in a sample, we
still found 13 of the above species in $90% of individuals and 35
in $50%.

When the cumulated sequence length increased from 3.96 Gb to
8.74 Gb and from 4.41 Gb to 11.6 Gb, for samples MH0006 and
MH0012, respectively, the number of strains common to the two
at the 1% coverage threshold increased by 25%, from 135 to 169.
This indicates the existence of a significantly larger common core
than the one we could observe at the sequence depth routinely used
for each individual.

The variability of abundance of microbial species in individuals
can greatly affect identification of the common core. To visualize
this variability, we compared the number of sequencing reads aligned
to different genomes across the individuals of our cohort. Even for
the most common 57 species present in $90% of individuals with
genome coverage .1% (Supplementary Table 8), the inter-individual
variability was between 12- and 2,187-fold (Fig. 3). As expected10,23,
Bacteroidetes and Firmicutes had the highest abundance.

A complex pattern of species relatedness, characterized by clusters
at the genus and family levels, emerges from the analysis of the net-
work based on the pair-wise Pearson correlation coefficients of 155
species present in at least one individual at $1% coverage
(Supplementary Fig. 9). Prominent clusters include some of the most
abundant gut species, such as members of the Bacteroidetes and
Dorea/Eubacterium/Ruminococcus groups and also bifidobacteria,
Proteobacteria and streptococci/lactobacilli groups. These observa-
tions indicate that similar constellations of bacteria may be present in
different individuals of our cohort, for reasons that remain to be
established.

The above result indicates that the Illumina-based bacterial pro-
filing should reveal differences between the healthy individuals and
patients. To test this hypothesis we compared the IBD patients and
healthy controls (Supplementary Table 1), as it was previously
reported that the two have different microbiota22. The principal com-
ponent analysis, based on the same 155 species, clearly separates
patients from healthy individuals and the ulcerative colitis from
the Crohn’s disease patients (Fig. 4), confirming our hypothesis.

Functions encoded by the prevalent gene set

We classified the predicted genes by aligning them to the integrated
NCBI-NR database of non-redundant protein sequences, the genes in
the KEGG (Kyoto Encyclopedia of Genes and Genomes)24 pathways,
and COG (Clusters of Orthologous Groups)25 and eggNOG26 data-
bases. There were 77.1% genes classified into phylotypes, 57.5% to
eggNOG clusters, 47.0% to KEGG orthology and 18.7% genes
assigned to KEGG pathways, respectively (Supplementary Table 9).

Relative abundance (log10)

Blautia hansenii
Clostridium scindens
Enterococcus faecalis TX0104
Clostridium asparagiforme
Bacteroides fragilis 3_1_12
Bacteroides intestinalis
Ruminococcus gnavus
Anaerotruncus colihominis
Bacteroides pectinophilus
Clostridium nexile
Clostridium sp. L2−50
Parabacteroides johnsonii
Bacteroides finegoldii
Butyrivibrio crossotus
Bacteroides eggerthii
Clostridium sp. M62 1
Coprococcus eutactus
Bacteroides stercoris
Holdemania filiformis
Clostridium leptum
Streptococcus thermophilus LMD−9
Bacteroides capillosus
Subdoligranulum variabile
Ruminococcus obeum A2−162
Bacteroides dorei
Eubacterium ventriosum
Bacteroides sp. D4
Bacteroides sp. D1
Coprococcus comes SL7 1
Bacteriodes xylanisolvens XB1A
Eubacterium rectale M104 1
Bacteroides sp. 2_2_4
Bacteroides sp. 4_3_47FAA
Bacteroides ovatus
Bacteroides sp. 9_1_42FAA
Parabacteroides distasonis ATCC 8503
Eubacterium siraeum 70 3
Bacteroides sp. 2_1_7
Roseburia intestinalis M50 1
Bacteroides vulgatus ATCC 8482
Dorea formicigenerans
Collinsella aerofaciens
Ruminococcus lactaris
Faecalibacterium prausnitzii SL3 3
Ruminococcus sp. SR1 5
Unknown sp. SS3 4
Ruminococcus torques L2−14
Eubacterium hallii
Bacteroides thetaiotaomicron VPI−5482
Clostridium sp. SS2−1
Bacteroides caccae
Ruminococcus bromii L2−63
Dorea longicatena
Parabacteroides merdae
Alistipes putredinis
Bacteroides uniformis

–4 –3 –2 –1

Figure 3 | Relative abundance of 57 frequent microbial genomes among
individuals of the cohort. See Fig. 2c for definition of box and whisker plot.
See Methods for computation.
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biological validation is challenging (Southward et al, 2005;
Larsen et al, 2012). A related methodology, Predicted Relative
Metabolomic Turnover, leverages changes in inferred

microbial enzyme activity to predict environmental ocean
metabolites (Larsen et al, 2011). Joint metabolic predictions
have been made to model a set of two- and three-microbe
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enfants de la ville de Florence, Italie et du village du Boulpon, Burkina Faso
→ diète riche en fibre→ présence de bactéries qui consument les polysaccharides

0.8%, respectively). The differential distribution of Firmicutes
and Bacteroidetes delineates profound differences between the
two groups (Fig. S1).
Statistical analysis using a parametric test (ANOVA) indicates

that Firmicutes (P = 7.89 × 10−5) and Bacteroidetes (P = 1.19 ×
10−6) significantly differentiate the BF from the EU children.
This result is strengthened by the nonparametric Kruskal–Wallis
test, which again indicated significant discriminating factors in
Firmicutes (P = 3.38 × 10−5), Bacteroidetes (P = 4.80 × 10−4),
Actinobacteria (P = 8.82 × 10−3), and Spirochaetes (P = 1.11 ×
10−5) phyla. Firmicutes are twice as abundant in the EU children
as evidenced by the different ratio between Firmicutes and
Bacteroidetes (F/B ratio ± SD, 2.8 ± 0.06 in EU and 0.47 ± 0.05
in BF), suggesting a dramatically different bacterial colonization
of the human gut in the two populations. Interestingly, Prevotella,
Xylanibacter (Bacteroidetes) and Treponema (Spirochaetes) are
present exclusively in BF children microbiota (Figs. 2 A and B,
Fig. S2, and Table S5). We can hypothesize that among the
environmental factors separating the two populations (diet,
sanitation, hygiene, geography, and climate) the presence of

these three genera could be a consequence of high fiber intake,
maximizing metabolic energy extraction from ingested plant
polysaccharides.
Diet plays a central role in shaping the microbiota, as dem-

onstrated by the fact that bacterial species associated with a high-
fat, high-sugar diet promote obesity in gnotobiotic mice (12). In
such a model, indigenous bacteria maintain energy homeostasis
by influencing metabolic processes. The ratio of Firmicutes to
Bacteroidetes differs in obese and lean humans, and this pro-
portion decreases with weight loss on low-calorie diet (9). It is
therefore reasonable to surmise that the increase in the F/B ratio
in EU children, probably driven by their high-calorie diet, might
predispose them to future obesity. This F/B ratio may also be
considered a useful obesity biomarker.

16S rRNA Gene Surveys Reveal Hierarchical Separation of the Two
Pediatric Populations. We further assessed differences in the total
bacterial community at the single sample level by clustering the
EU and BF samples according to their bacterial genera as found
by the RDP classifier (Ribosomal Database Project v. 2.1).

Fig. 2. 16S rRNA gene surveys reveal a clear separation of two children populations investigated. (A and B) Pie charts of median values of bacterial genera
present in fecal samples of BF and EU children (>3%) found by RDP classifier v. 2.1. Rings represent corresponding phylum (Bacteroidetes in green and
Firmicutes in red) for each of the most frequently represented genera. (C) Dendrogram obtained with complete linkage hierarchical clustering of the samples
from BF and EU populations based on their genera. The subcluster located in the middle of the tree contains samples taken from the three youngest (1–2 y
old) children of the BF group (16BF, 3BF, and 4BF) and two 1-y-old children of the EU group (2EU and 3EU). (D) Relative abundances (percentage of sequences)
of the four most abundant bacterial phyla in each individual among the BF and EU children. Blue area in middle shows abundance of Actinobacteria, mainly
represented by Bifidobacterium genus, in the five youngest EU and BF children. (E) Relative abundance (percentage of sequences) of Gram-negative and
Gram-positive bacteria in each individual. Different distributions of Gram-negative and Gram-positive in the BF and EU populations reflect differences in the
two most represented phyla, Bacteroidetes and Firmicutes.
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found in adult body habitats establish. Our findings emphasize the
need to design prospective studies tracking the successional de-
velopment of the baby’smicrobiome in different body habitats and
after different modes of delivery, and the effects that any associ-
ated microbial community shifts may have on infant health.

Methods
Subjects. The Amerindian mothers who participated in this study live in small
rural communities of people of a single ethnic group, and theMestizomothers
live in Puerto Ayacucho, the capital of Amazonas State in Venezuela. We did
not perform genetic confirmation of the patient’s ethnicity (because that
would have required special permits), which was based on the patient’s self-
description, and the reported information was consistent with phenotype
and language spoken by the mothers. Mothers were made aware of the
nature of the study, specifically consented to give their personal information,
and gave written informed consent for their and their child’s participation.
The sampling protocol was approved by the Venezuelan Institute of Scientific
Research Institutional Review Board (DIR 0229/10) and samples were man-
aged without identifiers in accordance with protocols approved by the Uni-
versity of Puerto Rico Institutional Review Board (0809-51).

Sample Collection. The newborn’s skin (right and left ventral forearms and
forehead) and oral mucosa swabs were taken within seconds of delivery,
before the umbilical cord was cut (with the exception of the nasopharyngeal
aspirate, which was taken a few minutes later). Rectal swabs were taken
after the babies passed meconium and were collected within 24 h of de-
livery. Swabs were also taken from the mother’s skin (right and left ventral
forearms), oral mucosa, and vagina 1 h before delivery. After collection,
swab samples were immediately placed on dry ice, and then frozen in liquid
N2 within the following 5 h. All mothers had healthy pregnancies and all
babies were born at term, without complications. Babies weighed between
2 and 5.2 kg (the smallest baby was the twin in second order of birth, after
his 3-kg brother). Vaginal deliveries occurred during the morning or after-
noon, and C-sections were performed in the mornings.

DNA Extraction and Purification. Genomic DNA was extracted from the swabs
using the MO BIO PowerSoil DNA Isolation kit with the following mod-
ifications. The cotton tips of frozen swabs were broken off directly into bead
tubes to which 60 μL of Solution C1 had been added. Tubes were incubated at
65 °C for 10 min and then shaken horizontally at maximum speed for 2 min
using the MO BIO vortex adapter. The remaining steps were performed as
directed by the manufacturer. Extracted DNA was stored at −20 °C.

PCR Amplification of the V2 Region of Bacterial 16S rRNA Genes. For each sample,
we amplified 16S rRNA genes using a primer set described by Fierer et al. (24)
that had been optimized for the phylogenetic analysis of pyrosequencing reads
(36). The forward primer (5′-GCC TTG CCA GCC CGC TCA GTC AGA GTT TGA TCC
TGG CTC AG-3′) contained the 454 Life Sciences primer B sequence, the broadly
conserved bacterial primer 27F, and a two-base linker sequence (“TC”). The re-
verse primer (5′-GCC TCC CTC GCG CCA TCA GNN NNN NNN NNN NCA TGC TGC
CTC CCG TAG GAG T-3′) contained the 454 Life Sciences primer A sequence,
a unique 12-nt error-correcting Golay barcode used to tag each PCR product
(designated by NNNNNNNNNNNN), the broad-range bacterial primer 338R, and
a “CA” linker sequence inserted between the barcode and the rRNA primer. PCR
reactions were carried out in triplicate 25-μL reactions with 0.6 μM forward and
reverse primers, 3-μL template DNA, and 1× of HotMasterMix (5 PRIME). All
dilutions were carried out using certified DNA-free PCR water (MO BIO). PCR
reactions were assembled within a PCR hood in which all surfaces and pipettes
had been decontaminated with DNA AWAY (Molecular BioProducts) and UV-
irradiated for 30min. Thermal cycling consistedof initial denaturation at 94 °C for
3 min followed by 35 cycles of denaturation at 94 °C for 45 seconds, annealing at
50°Cfor30seconds,andextensionat72°Cfor90seconds,withafinalextensionof
10min at 72 °C. Replicate ampliconswere pooled and visualized on 1.0%agarose
gels using SYBR Safe DNA gel stain in 0.5× TBE (Invitrogen). Amplicons were
cleaned using the UltraClean-htp 96-well PCR Clean-up kit (MO BIO) according
to the manufacturer’s instructions.
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Fig. 1. Bacterial 16S rRNA gene surveys reveal that the first microbiotas of hu-
man newborns are primarily structured by delivery mode. (A) Communities clus-
tered using principal coordinates analysis of the unweighted UniFrac distance
matrix. PC1 and PC2 are plotted on x- and y-axes. Each point corresponds to
a community colored according to the mother’s body habitat or the newborn’s
deliverymode.Allnewbornbodyhabitatsare shown.Thepercentageofvariation
explained by the plotted principal coordinates is indicated on the axes. Thewhite
arrowindicatesapairof superimposedpoints.Vaginal sampleswerenotobtained
from two of the mothers who delivered by C-section. (B) Average relative abun-
dances of the dominant taxa found in this study in aggregated samples. (C) Rel-
ative abundances of the 20most abundant taxa inmothers’ vaginal communities

and in the babies they delivered vaginally. Sequences were classified to highest
taxonomic level to which they could be confidently assigned.
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need to design prospective studies tracking the successional de-
velopment of the baby’smicrobiome in different body habitats and
after different modes of delivery, and the effects that any associ-
ated microbial community shifts may have on infant health.

Methods
Subjects. The Amerindian mothers who participated in this study live in small
rural communities of people of a single ethnic group, and theMestizomothers
live in Puerto Ayacucho, the capital of Amazonas State in Venezuela. We did
not perform genetic confirmation of the patient’s ethnicity (because that
would have required special permits), which was based on the patient’s self-
description, and the reported information was consistent with phenotype
and language spoken by the mothers. Mothers were made aware of the
nature of the study, specifically consented to give their personal information,
and gave written informed consent for their and their child’s participation.
The sampling protocol was approved by the Venezuelan Institute of Scientific
Research Institutional Review Board (DIR 0229/10) and samples were man-
aged without identifiers in accordance with protocols approved by the Uni-
versity of Puerto Rico Institutional Review Board (0809-51).

Sample Collection. The newborn’s skin (right and left ventral forearms and
forehead) and oral mucosa swabs were taken within seconds of delivery,
before the umbilical cord was cut (with the exception of the nasopharyngeal
aspirate, which was taken a few minutes later). Rectal swabs were taken
after the babies passed meconium and were collected within 24 h of de-
livery. Swabs were also taken from the mother’s skin (right and left ventral
forearms), oral mucosa, and vagina 1 h before delivery. After collection,
swab samples were immediately placed on dry ice, and then frozen in liquid
N2 within the following 5 h. All mothers had healthy pregnancies and all
babies were born at term, without complications. Babies weighed between
2 and 5.2 kg (the smallest baby was the twin in second order of birth, after
his 3-kg brother). Vaginal deliveries occurred during the morning or after-
noon, and C-sections were performed in the mornings.

DNA Extraction and Purification. Genomic DNA was extracted from the swabs
using the MO BIO PowerSoil DNA Isolation kit with the following mod-
ifications. The cotton tips of frozen swabs were broken off directly into bead
tubes to which 60 μL of Solution C1 had been added. Tubes were incubated at
65 °C for 10 min and then shaken horizontally at maximum speed for 2 min
using the MO BIO vortex adapter. The remaining steps were performed as
directed by the manufacturer. Extracted DNA was stored at −20 °C.

PCR Amplification of the V2 Region of Bacterial 16S rRNA Genes. For each sample,
we amplified 16S rRNA genes using a primer set described by Fierer et al. (24)
that had been optimized for the phylogenetic analysis of pyrosequencing reads
(36). The forward primer (5′-GCC TTG CCA GCC CGC TCA GTC AGA GTT TGA TCC
TGG CTC AG-3′) contained the 454 Life Sciences primer B sequence, the broadly
conserved bacterial primer 27F, and a two-base linker sequence (“TC”). The re-
verse primer (5′-GCC TCC CTC GCG CCA TCA GNN NNN NNN NNN NCA TGC TGC
CTC CCG TAG GAG T-3′) contained the 454 Life Sciences primer A sequence,
a unique 12-nt error-correcting Golay barcode used to tag each PCR product
(designated by NNNNNNNNNNNN), the broad-range bacterial primer 338R, and
a “CA” linker sequence inserted between the barcode and the rRNA primer. PCR
reactions were carried out in triplicate 25-μL reactions with 0.6 μM forward and
reverse primers, 3-μL template DNA, and 1× of HotMasterMix (5 PRIME). All
dilutions were carried out using certified DNA-free PCR water (MO BIO). PCR
reactions were assembled within a PCR hood in which all surfaces and pipettes
had been decontaminated with DNA AWAY (Molecular BioProducts) and UV-
irradiated for 30min. Thermal cycling consistedof initial denaturation at 94 °C for
3 min followed by 35 cycles of denaturation at 94 °C for 45 seconds, annealing at
50°Cfor30seconds,andextensionat72°Cfor90seconds,withafinalextensionof
10min at 72 °C. Replicate ampliconswere pooled and visualized on 1.0%agarose
gels using SYBR Safe DNA gel stain in 0.5× TBE (Invitrogen). Amplicons were
cleaned using the UltraClean-htp 96-well PCR Clean-up kit (MO BIO) according
to the manufacturer’s instructions.
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Fig. 1. Bacterial 16S rRNA gene surveys reveal that the first microbiotas of hu-
man newborns are primarily structured by delivery mode. (A) Communities clus-
tered using principal coordinates analysis of the unweighted UniFrac distance
matrix. PC1 and PC2 are plotted on x- and y-axes. Each point corresponds to
a community colored according to the mother’s body habitat or the newborn’s
deliverymode.Allnewbornbodyhabitatsare shown.Thepercentageofvariation
explained by the plotted principal coordinates is indicated on the axes. Thewhite
arrowindicatesapairof superimposedpoints.Vaginal sampleswerenotobtained
from two of the mothers who delivered by C-section. (B) Average relative abun-
dances of the dominant taxa found in this study in aggregated samples. (C) Rel-
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and in the babies they delivered vaginally. Sequences were classified to highest
taxonomic level to which they could be confidently assigned.
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Figure 3 | Acquisition of the microbiome in early life by vertical transmission, 
and factors modifying mother-to-child microbial transmission. Through 
live-birth, mammals have important opportunities for mother-to-child microbial 
transmission through direct surface contact. However, many modern practices can 
reduce organism and gene flow; several examples are illustrated. After initial 
introductions, there is strong selection by hosts for microbes with specific phenotypes, 
consistent with the extensive conservation shown in FIG. 1. Acquisition is modified by 
differences in offspring genetics and epigenetics (with respect to both maternal and 
paternal genes) that inform the competition for host resources by the vertically 
transmitted or environmentally acquired microbes. Ancestral organisms that have 
particular tissue-specific and niche-specific adaptations facilitate tissue tropisms and 
are selected for, thus explaining the conserved niche-specificity compositions.

in humans? Odour is one means to affect mating pref-
erence, and human axillary and oral odours are largely 
influenced by microbial products, especially mercap-
tans63. In general, the greater the force of mating prefer-
ence, the more likely that those populations will become 
sexually isolated64,65; this could affect tribal differentia-
tion and other ethnic differences in humans. We specu-
late that metagenome composition has affected mating 
preference in humans, representing another phenotype 
under strong selective pressure.

Postnatal influences on the microbiota. Over a lifetime, 
each human develops a densely populated microbiome, 
a process that is recapitulated in every individual and in 
every generation. The eruption of teeth is responsible 
for major successions in the oral microbiota66,67, sug-
gesting that succession may be a general property of 
microbiome dynamics in humans. In mice, succession 
clearly occurs in the gastrointestinal tract68. Exposure 
(or not) to environmental microbes is another impor-
tant, but highly variable, reservoir for the resident 
microbiota. Antibiotic use in early life produces major 
shifts in both microbiota characteristics and in host 
developmental phenotypes, in both farm animals69 and 
experimental animals70,71. Whether such precedents are 
applicable to human children is unknown, but it seems 
likely. If so, then both the timing of microbiome suc-
cession and the specific organisms that are present may 
affect development. The concept of time-dependent 

compositional variation affecting host immunological, 
metabolic, cognitive and reproductive development is 
a potentially important and testable hypothesis. We 
further speculate that nature orchestrates microbiome 
development to optimize fecundity, reaching a cli-
max state at or near parturition to maximize success 
for the next generation of hosts. The noted heterozy-
gote advantage for fecundity72 may be an analogue of  
harbouring a genetically diverse microbiota.

Microbiome dynamics in adults. Our knowledge of 
microbiome dynamics, especially age-related changes 
during human adulthood, is limited. The older litera-
ture (predating the use of HTS), clearly shows that the 
postmenopausal vaginal microbiota differs substan-
tially from that during the reproductive period73,74. 
Similarly, in the stomach, the age-related progressive 
development of gastric atrophy (which is enhanced by 
the presence of H. pylori75,76) selects for gastric micro-
biota that are substantially different from those that are 
found in the stomach of younger, H. pylori-negative 
hosts77. Analogous changes may be occurring in other 
body sites as senescence advances. In the gut, the ratio 
of Bacteroidete to Firmicute species changes with age78.

These concepts are particularly relevant to onco-
genesis, which is generally age-related. In the multistep 
Nordling hypothesis of oncogenesis79, 4–6 somatic cell 
mutations are needed for cancer development. We pro-
pose that shifts in age-related microbiota contribute to 
this multistep process. Residential microbes can con-
tribute to somatic mutagenesis by causing genotoxicity 
as a result of inflammation, increased cell proliferation 
and the production of pro-mutagenic metabolites (for 
example, butyrate)80. Genes may have alternative effects 
at different life stages, illustrating the idea of antagonis-
tic pleiotropy81. We hypothesize that specific human 
microbiota and their genes that are beneficial early in 
life may be harmful later in life. The dominant gastric 
bacterium H. pylori provides an example: early in life, 
inflammatory responses in the host improve the control 
of infection82,83 and allergy84, but later in life promote 
atrophy and oncogenesis85. A related hypothesis is that 
co-evolved microbiota are adaptive for the human spe-
cies both by supporting early-in-life host functions and 
by leading to later-in-life host demise86.

Disease links and health implications
Overall, how does the microbiome affect human health? 
Current studies focus on describing the variant microbe 
populations that occur in specific disease states, or the 
temporal microbial changes that are observed over the 
course of a disease. For many conditions, the challenge 
is to discover whether there is a causal link between 
microbiome variation and pathology. Unfortunately, 
limitations in the definitions and stratification of clini-
cal syndromes, including irritable bowel syndrome 
and non-ulcer dyspepsia (NUD), reduce the potential 
of microbiome studies. Below, we review some recent 
investigations into specific diseases (TABLE 1); these 
investigations are preliminary but some observations 
are promising.
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1. il existe des signatures universelles à travers des individus

Similarly, samples from the Malawian and Amerindian children
from Global_gut clustered with children from Burkina Faso from
Italy/Burkina Faso at the opposite end of the same axis (Fig. 2B).
Taxa biplot analysis indicated that this difference was associated
with an enrichment of Prevotellaceae in the adults from agrarian
cultures and Bacteroidaceae in adults from Western cultures (Fig.
2C). This observation is consistent with the independent reports of
enrichment of Prevotella in fecal samples from individuals living in
non-Western societies in two of the studies included in this analysis
(De Filippo et al. 2010; Yatsunenko et al. 2012).

Samples from adults in Western populations cluster by study

In contrast to the striking difference in microbiota across the age
gradient and between Western and non-Western societies, the fe-

cal samples from Western adults clustered
primarily by study (Fig. 3A). Although
study-based clustering dominated many
different data sets, we illustrate this phe-
nomenon here with the following seven
studies of individuals living in the USA or
Sweden (Table 1): (1) a reference pop-
ulation of healthy US adults characterized
by the HMP (using primers targeting the
V3–5 region of bacterial 16S rRNA genes
and the V1–3 region for a subset of the
samples; HMP_V13, HMP_V15); (2) in-
dividuals with IBD and healthy controls
(IBD_twins); (3) three healthy adults
whose microbiota was sampled before,
during, and after two short periods of
voluntary consumption of the antibiotic
ciprofloxacin (Antibiotic_timeseries); (4)
obese and lean mono- and dizygotic twin
pairs and their mothers (Obese_twins); (5)
healthy individuals who were 14–66 yr old
from Global_gut; (6) healthy US in-
dividuals who were 14–66 yr old from
a study comparing microbiota within and
between families (Family_study); and
(7) healthy US adults sampled at four dif-
ferent timepoints (Healthy_whole_body)
(Table 1). The strength of study-driven
clustering was unexpected given that
some of the individual studies had iden-
tified factors that were driving commu-
nity differences, such as antibiotic ad-
ministration (Dethlefsen and Relman
2011). In Figure 3B, which clusters sam-
ples from the study of twins discordant
for IBD only (IBD_twins), several in-
dividuals with ileal Crohn’s disease de-
viate strongly from healthy controls
(Fig. 3B), and yet their deviation from
healthy people sequenced in other
studies is clearly confounded by study
effects (Fig. 3A).

Although many different experi-
mental parameters could have an effect,
these results reinforce the well-known
point that choice of PCR primers used for
amplification of different regions of the

bacterial 16S rRNA gene is important; HMP samples that were
subjected to the same extraction and storage protocols, but am-
plified with different primers cluster separately. Plotting the bac-
terial orders in the same plot, and rotating the plot of the first three
PC axes to maximize study-based clustering (Fig. 3 C,D) showed that
the studies that targeted the V1–3/V2 region of rRNA (Antibiotic_
timeseries, HMP_V13, Healthy_whole_body, Family_study, and
Obese_twins) tended to have an enrichment in Erysipelotrichi and
Verrucomicrobia and a depletion in Actinobacteria and Gamma
proteobacteria compared with studies that targeted the V3–5/V4
region of rRNA (HMP_V35 and Global_gut). Consistent with a de-
pletion of Actinobacteria in the V2 studies, Antibiotic_timeseries,
Obese_twins, Healthy_whole_body, and Family_study used the 27F
forward PCR primer (Table 1), which has previously been shown to
have three primer mismatches and poor amplification of the Bifido-

Figure 1. Unweighted UniFrac PCoA plot illustrating that samples from the human microbiome
cluster primarily by body site. Each point represents a sample from one of the studies detailed in Table 1.
Samples were classified broadly as from the Gut (mostly feces but also colon, ileum, and rectum), va-
gina, oral cavity (e.g., saliva, tongue, cheek), and skin and other (diverse skin sites, hair, nostril, and
urine). Gut samples from individuals older than 21⁄2 yr are colored brown and from individuals ages 0 to 21⁄2
yr are colored across a dark purple (0 yr) to light purple (21⁄2 yr) spectrum. Samples from one infant
sampled repeatedly over the first 21⁄2 yr of life are joined together with a purple line with a decreasingly
dark hue with age. The infant samples are also shown in the inset. The most abundant bacterial families are
superimposed on the same PCoA plot in the lower panel in purple. The size of the sphere representing
a taxon is proportional to the mean relative abundance of the taxon across all samples.
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2. corrélations avec maladiesTable 1 | Examples of associations of human conditions with particular microbiota characteristics

Disease Relevant finding Refs

Psoriasis Increased ratio of Firmicutes to Actinobacteria 88

Reflux oesophagitis Oesophageal microbiota dominated by gram-negative anaerobes; 
gastric microbiota with low or absent Helicobacter pylori

75,133

Obesity Reduced ratio of Bacteroidetes to Firmicutes 17,31

Childhood-onset asthma Absent gastric *�|R[NQTK (especially the cytotoxin-associated gene A 
(cagA) genotype)

96,134

Inflammatory bowel disease (colitis) Larger populations of Enterobacteriaceae 113

Functional bowel diseases Larger populations of Veillonella and Lactobacillus 135

Colorectal carcinoma Larger populations of Fusobacterium spp. 101,102

Cardiovascular disease Gut-microbiota-dependent metabolism of phosphatidylcholine 136

Antecubital fossae
The triangular areas on the 
anterior (flexor) aspects of 
elbow joints.

Popliteal fossae
The shallow depressions  
that are found on the flexor 
aspects of knee joints.

Pilosebaceous units
The anatomic structure around 
each hair shaft that consists  
of the hair shaft and follicle,  
the sebaceous gland and the 
erector pili muscle.

Amphibiont
An organism (for example,  
a microbe) that may have a 
pathogenic or symbiotic 
relationship with another 
organism (for example, its 
host), depending on context. 
This is a more specific term 
than commensal.

The cutaneous microbiome. The cutaneous microbiome 
is an obvious target in specific diseases such as psoriasis, 
a chronic, idiopathic inflammatory dermatological con-
dition87. In studies predating HTS, the use of PCR and 
cloning led to observations that Firmicute species were 
significantly over-represented and that Actinobacteria 
were significantly under-represented in psoriatic lesions 
compared with both unaffected skin in patients with 
psoriasis and in unaffected controls88. Studies to explore 
these findings using HTS are currently underway89. 
Atopic dermatitis, another chronic inflammatory condi-
tion, has increased in incidence approximately threefold 
over the last 30 years in industrialized countries, suggest-
ing a potential role for microbiome alterations. Classic 
atopic dermatitis occurs in skin regions, such as the ante-
cubital fossae and the popliteal fossae, that have similar 
microbial populations89, suggesting a microbiome role. 
Similarly, Propionibacterium acnes has been implicated 
in the common dermatological condition, acne. P. acnes 
thrives in the cutaneous pilosebaceous units, secretes 
enzymes that cause local injury and inflammation, and 
is widely accepted to have a function in acne develop-
ment90. However, investigations are ongoing to examine 
the involvement of other microbes in the development 
of acne. Chronic skin ulcers, which are often secondary 
to venous stasis or diabetes, lead to substantial morbid-
ity. Cutaneous microbiome shifts have been noted in 
these conditions, such as an increased abundance of 
Pseudomonadaceae in patients with chronic ulcers that 
were treated with antibiotics, and an increased abun-
dance of Streptococcaceae in diabetic ulcers91. Such shifts 
may interact with aberrantly expressed host cutaneous 
defence response genes92, thereby increasing disease risk.

The gastric microbiome. The discovery that H. pylori 
was adapted to survive in the acidic gastric environment 
overturned the dogma that the stomach is sterile. In 
H. pylori-negative individuals, gastric microbiota diver-
sity is high; most of the prominent gastric phylotypes 
(Streptococcus, Actinomyces, Prevotella and Gemella) also 
are abundant in the oropharynx of these individuals93;  
this indicates either that many constituents are swal-
lowed from more proximal sites, or that close relatives of 
the oral microbiota colonize more distally. By contrast, 
among H. pylori-positive individuals, H. pylori usually 

accounts for >90% of sequence reads from the gastric 
microbiota93, markedly reducing the overall diversity of 
this microbiota. The ability of H. pylori to dominate the 
gastric microbiota indicates an evolved fitness for that 
specialized niche. H. pylori is a classical amphibiont; the 
presence (or absence) of an H. pylori-dominated gastric 
microbiota is strongly associated with particular diseases 
that show important age-related differences85. Its pres-
ence increases risks for developing peptic ulcer disease, 
gastric mucosa-associated lymphoid tissue (MALT) 
tumours, and gastric adenocarcinomas94. Conversely, 
it is also associated with a decreased risk of reflux 
oesophagitis95 and childhood-onset asthma96, thus dem-
onstrating the complex biological interactions between 
hosts and microbiota.

The colonic microbiota and colorectal cancer. The 
colonic microbiota has been suspected for a long time 
to be involved in the development of colorectal cancers97, 
possibly by synthesizing short-chain fatty acids (SCFAs) 
and other metabolites. SCFAs, in particular butyrate, may 
induce apoptosis, cell cycle arrest and differentiation, 
through WNT signalling98. Microbes may also be geno-
toxic to colonic epithelial cells, as demonstrated by the 
induction of aneuploidy and tetraploidy by Enterococcus 
faecalis99. The colonic microbiota might also promote 
colorectal cancer by eliciting host responses, for exam-
ple, by stimulating exaggerated immune responses,  
potentially through T helper 17 (Th17) cells99.

Further evidence of a link between colonic microbiota 
and colorectal cancer is suggested by the ability of antibi-
otic administration to not only alter the composition of 
the colonic microbiota but also to affect the expression  
of host genes that are involved in cell cycle regulation, 
thus reducing epithelial proliferation100. Early studies 
evaluating specific microbes were limited to identifying 
culture-dependent species, such as Streptococcus bovis, 
but could not adequately assess anaerobic constituents. 
However, members of the anaerobic genus Fusobacterium 
have recently been associated with colorectal cancer: 
whole-genome sequences of Fusobacterium species were 
compared between tumour tissue and matched normal 
colon tissue using both quantitative PCR analysis and 
HTS101,102. Fusobacterium nucleatum is a mucosally 
adherent, pro-inflammatory microbe that was first 
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