GÉNOMIQUE DE DIVERSITÉ : MÉTAGÉNOMIQUE

Métagénomique * IFT6299 H2014 * UdeM * Miklós Csűrös

Métagénomique

approche classique : isolation d'un seul espèce + clonage + séquençage

métagénomique : extraction d'ADN d'un échantillon environmental (+ amplification) + séquençage

* pour bcp d'organismes (99%), on n'arrive pas avoir une culture au laboratoire
* bcp d'organismes ne fonctionnent que dans une communauté avec d'autres

analyses :

- \star composition taxonomique
- \star composition fonctionnelle
- ✤ métagénomique comparative

Analyse taxonomique

approche classique : filtrage d'une région (primers spécifiques) qui identifie l'espèce + comparaison à une grande base de données sur cette région

ARN ribosomique petite sous-unité (16S chez procaryotes) — régions hypervariables (V1-V9)

Figure 2. Approximately 1.5 kb 16S rRNA gene of *E.coli* showing the nine variable regions that make it an ideal target as a phylogenetic marker gene.

bases de donnés d'ARNs alignés :

- * Ribosomal Database Project (RDP)
- ★ greengenes
- * ARB-SILVA
- + outils spécialisés pour la recherche / alignement rapide

Cox & al. Human Molecular Genetics 22 :R88 (2013)

Analyse taxonomique / binning

séquençage + comparaison à un arbre phylogénétique on veut lier les séquence à des unités taxonomiques (OTU = operational taxonomic unit)

méthodes de classifications : alignement/similarité, composition (k-mers, codons)

Mande & al Briefings in Bioinformatics 13:669 (2012)

Analyse fonctionnelle

Subsystem: Histidine Degradation								٨	
1 H	1 HutH		Histidine ammonia-lyase (EC 4.3.1.3)						A
2 H	2 HutU		Urocanate hydratase (EC 4.2.1.49)						
3 H	3 HutI		Imidazolonepropionase (EC 3.5.2.7)						
4 GluF		Gl	Glutamate formiminotransferase (EC 2.1.2.5)						
5 H	5 HutG		Formiminoglutamase (EC 3.5.3.8)					ĺ	
6 N	6 NfoD N		I-formylglutamate deformylase (EC 3.5.1.68)					ĺ	
7 F	7 ForI			Formiminoglutamic iminohydrolase (EC 3.5.3.13)					_
			Su	ibsystem Spi	readsheet				
Organ	ism	Variant	Su HutH	ibsystem Spi HutU	readsheet HutI	GluF	HutG	NfoD	ForI
Organ Caulobacter cress	ism centus	Variant 1	Su HutH <u>P58082</u>	ibsystem Spi HutU <u>Q9A9MI</u>	readsheet HutI <u>P58079</u>	GluF	HutG	NfoD Q9A9M0	ForI Q9A9L9
Organ Caulobacter cress Pseudomonas put	ism centus tida	Variant 1 1	Su HutH P58082 Q88CZ7	Ibsystem Spi HutU Q9A9MI Q88CZ6	readsheet HutI <u>P58079</u> <u>Q88CZ9</u>	GluF	HutG	NfoD Q9A9M0 Q88D00	ForI Q9A9L9 Q88CZ3
Organ Caulobacter cresc Pseudomonas put Xanthomonas car	ism centus tida mpestris	Variant 1 1 1 1	Su HutH <u>P58082</u> <u>Q88CZ7</u> <u>Q8PAA7</u>	Ibsystem Spi HutU Q9A9MI Q88CZ6 P58988	readsheet HutI <u>P58079</u> <u>Q88CZ9</u> <u>Q8PAA6</u>	GluF	HutG	NfoD Q9A9M0 Q88D00 Q8PAA8	ForI Q9A9L9 Q88CZ3 Q8PAA3
Organ Caulobacter cress Pseudomonas put Xanthomonas can Halobacterium sp	ism centus tida mpestris 2.	Variant 1 1 1 2	Su HutH P58082 Q88CZ7 Q8PAA7 Q9HQD5	bsystem Spr HutU Q9A9MI Q88CZ6 P58988 Q9HQD8	readsheet HutI P58079 Q88CZ9 Q8PAA6 Q9HQD6	GluF	HutG Q9HQD7	NfoD Q9A9M0 Q88D00 Q8PAA8	ForI Q9A9L9 Q88CZ3 Q8PAA3
Organ Caulobacter cresc Pseudomonas put Xanthomonas car Halobacterium sp Deinococcus radi	ism centus tida mpestris p. iodurans	Variant 1 1 2 2	St HutH P58082 Q88CZ7 Q8PAA7 Q9HQD5 Q9RZ06	bsystem Spr HutU Q9A9MI Q88CZ6 P58988 Q9HQD8 Q9RZ02	readsheet HutI P58079 Q88CZ9 Q8PAA6 Q9HQD6 Q9RZ05	GluF	HutG Q9HQD7 Q9RZ04	NfoD Q9A9M0 Q88D00 Q8PAA8	ForI Q9A9L9 Q88CZ3 Q8PAA3
Organ Caulobacter cresc Pseudomonas put Xanthomonas can Halobacterium sp Deinococcus radi Bacillus subtilis	ism centus tida mpestris p. iodurans	Variant 1 1 2 2 2 2	Su HutH P58082 Q88CZ7 Q8PAA7 Q9HQD5 Q9RZ06 P10944	absystem Spi HutU Q9A9MI Q88CZ6 P58988 Q9HQD8 Q9RZ02 P25503	readsheet HutI P58079 Q88CZ9 Q8PAA6 Q9HQD6 Q9RZ05 P42084	GluF	HutG 09HQD7 09RZ04 P42068	NfoD Q9A9M0 Q88D00 Q8PAA8	ForI Q9A9L5 Q88CZ3 Q8PAA3
Organ Caulobacter cresc Pseudomonas pui Xanthomonas can Halobacterium sp Deinococcus radi Bacillus subtilis Bacteroides thetai	ism centus tida mpestris o. iodurans iotaomicron	Variant 1 1 1 2 2 2 3	Su HutH P58082 Q88CZ7 Q8PAA7 Q9HQD5 Q9RZ06 P10944 Q8A4B3	absystem Spi HutU Q9A9MI Q88CZ6 P58988 Q9HQD8 Q9RZ02 P25503 Q8A4A9	readsheet HutI P58079 Q88CZ9 Q8PAA6 Q9HQD6 Q9RZ05 P42084 Q8A4B1	GluF 	HutG 	NfoD Q9A9M0 Q88D00 Q8PAA8	ForI Q9A9L9 Q88CZ3 Q8PAA3

base de données sur procésssus
biologiques
vocabulaire contrôlée
← sous-systèmes (SEED)
(autre BD utile : KEGG)

Overbeek & al. Nucleic Acids Res 33:5691 (2005)

Assemblage metagénomique (IDBA-UD)

problèmes : bcp de séquences hétérogènes ; couverture variable à travers des génomes

de Bruijn :

petit $k \rightarrow$ trop de branchements (ambiguïté) ; grand $k \rightarrow$ trop d'erreurs, moins de contigs

IDBA-UD : travailler avec $k, k + 1, k + 2 \dots$ (\Rightarrow fusion / désambiguation de chemins)

Fig. 3. Example of resolving repeats by iteration from k to k+1. The repeat region is a single *k*-mer, *uvw* and *u'vw'* appear in the genome. After the iteration, repeat *v* is resolved

Peng & al. Bioinformatics 28 :1420 (2012)

Outils

De Filippo Briefings in Bioinformatics 13:696 (2012)

Comparaisons

UniFrac : % de l'arbre qui est unique (mesure la distance entre la compoisition taxonomique de deux échantillons)

Lozupone & Knight Applied and Environmental Microbiology 71 :8228 (2005)

Ecosystèmes

temporal)

metabolomics

Raes & Bork Nat Rev Microbiol 6 :1 (2008)

Microbiome humain

10 fois plus de cellules, 100 fois plus de gènes que l'humain

Cho & Blaser Nat Rev Genet 13:260 (2012); Collison & al Briefings in Bioinformatics 13:751 (2012)

prédiction de gènes : modèles pour séquences partielles, groupage par similarité

Qin, Li & al. Nature 464 :59 (2010)

Analyse comparatif

Segata & al Molecular Systems Biology 9:666 (2013)

Diète

enfants de la ville de Florence, Italie et du village du Boulpon, Burkina Faso \rightarrow diète riche en fibre \rightarrow présence de bactéries qui consument les polysaccharides

De Filippo & al. PNAS 107 :14691 (2010)

Développement de notre microbiome

Mother's body habitat or Baby's delivery mode

Dominguez-Bello & al. PNAS 107 :11971 (2010); Cho & Blaser Nat Rev Genet 13 :260 (2012)

Quelques leçons

1. il existe des signatures universelles à travers des individus

2. corrélations avec maladies

Disease	Relevant finding
Psoriasis	Increased ratio of Firmicutes to Actinobacteria
Reflux oesophagitis	Oesophageal microbiota dominated by gram-negative anaerobes; gastric microbiota with low or absent <i>Helicobacter pylori</i>
Obesity	Reduced ratio of Bacteroidetes to Firmicutes
Childhood-onset asthma	Absent gastric H. pylori (especially the cytotoxin-associated gene A (cagA) genotype)
Inflammatory bowel disease (colitis)	Larger populations of Enterobacteriaceae
Functional bowel diseases	Larger populations of Veillonella and Lactobacillus
Colorectal carcinoma	Larger populations of Fusobacterium spp.
Cardiovascular disease	Gut-microbiota-dependent metabolism of phosphatidylcholine

Lozupone & al. Genome Res 23 :1704 (2013); Cho & Blaser Nat Rev Genet 13 :260 (2012)