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1 Introduction

The Java package ca.umontreal.iro.evolution.introns.intronLoss.jar
contains a number of programs and supporting Java classes for modeling and ana-
lyzing intron evolution. The package implements the likelihood method of Csűrös
(2005), the formulas of Scott Roy and Walter Gilbert (2005a, 2005b), and the Dollo
parsimony (Farris 1977) method employed by Rogozin et al. (2003). Briefly, in the
approach of Csűrös (2005), a probabilistic model is assumed in which every branch
has a gain rate, loss rate, and length. These parameters are estimated from data on
intron presence-absence in homologous positions. In addition, a number of all-0
“silent” sites are assumed: positions in which no introns are observed at the terminal
taxa but may be sites for intron gain. The number of such sites is estimated by the
programs or chosen by the user.

The programs may be useful for the phylogenetic analysis of any 0-1 data set
where rates may vary on the branches. In that case it may or may not make sense to
estimate the number of all-0 columns. (If 1-0 encodes presence-absence, you may
have to, but if they encode, say, purines and pyrimidines, then there is no need of
course.)

Please send me a note if you use the package. I am extending the model to
include across-sites variation, and other features.

2 File types

The programs work with the following main file types.

〈tree file〉 describes a phylogeny in the Newick format (http://evolution.
genetics.washington.edu/phylip/newicktree.html) used by Phylip
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and other programs. It is good to keep it unrooted (with one inner node that
has three descendants) because otherwise the root’s position is not unique
(can “slide” between its two children: it is impossible to determine the branch
length to those two guys). Name the inner nodes, it helps deciphering the
outputs (and is necessary for computing the Roy-Gilbert formulas). Tree
branch lengths are not important for the optimization (since they will be
optimized too).

〈table file〉 A file of aligned 0-1 sequences for intron presence-absence in homol-
ogous positions. Lines starting with # are skipped (supposed to be comments
and such). Data lines have two fields, separated by TABs: taxon name (must
match name in 〈tree file〉) and 0-1 string of intron presence/absence. (This is
the format used by Rogozin et al. (2003).)

〈rate file〉 Gives, in a depth-first traversal, the gain and loss probabilities along each
edge (from which gain and loss rates are computed), and then the intron
presence probability at the root. Lines starting with # are ignored (supposed
to be comments). This file is the output of the program calculateRates
but can be edited manually.

3 Main programs

All programs are implemented in Java for portability. In order to run program X ,
you need to invoke it through the Java engine:

java -cp intronLoss.jar ca.umontreal.iro.evolution.introns.X . . .

The programs write to the standard output, so you need to redirect or pipe it
through something to save the result. The output typically begins with some infor-
mation on who, when and how produced the text, written in comment lines that
start with #|.

3.1 Program calculateRates

Produces a 〈rate file〉 by fitting the parameters (gain & loss rates, length on each
branch, root’s intron density, and number of all-0 sites) to the data to maximize
likelihood.

(a) calculateRates [〈switches〉] 〈table file〉 〈tree file〉. Optimize parameters
starting from default initial values.
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(b) calculateRates [〈switches〉] 〈table file〉 〈tree file〉 〈rate file〉. Optimize
parameters with the starting values in the rate file (useful if restarting opti-
mization).

(c) calculateRates [〈switches〉] 〈table file〉 〈tree file〉 〈nzeros〉. Optimize pa-
rameters assuming the given number of additional all-0 columns. If 〈nzeros〉
starts with the character 0 and is other than 0 itself, then it is also optimized
from the given starting value: calculateRates TBL TREE 035000.

(d) calculateRates [〈switches〉] 〈table file〉 〈tree file〉 〈rate file〉 〈nzeros〉. (b)+(c)
together, but the number of all-0 columns is not optimized for even if
〈nzeros〉 starts with 0.

The parameter optimization is not very sophisticated: one parameter is optimized
at a time, using Brent’s method of line optimization (Press et al. 1997). The
optimization first estimates the rates using the default number of unobserved intron
sites. This may go through many hundreds of rate optimization rounds. After that,
the number of unobserved intron sites (“zeros”) are guessed, in a few rounds per
estimated number of zeros, but many guesses may be evaluated (few thousand for
the Rogozin data set). To learn about the switches that affect the optimization
process, launch calculateRates -h.

3.2 Program calculateNodePosteriors

Outputs mean values for intron counts at the tree nodes in the likelihood model.

calculateNodePosteriors [〈switches〉] 〈table file〉 〈tree file〉 〈rate file〉 [〈nzeros〉].
Parameters as in calculateRates but there is no more optimization performed.

3.3 Program calculateEdgePosteriors

Outputs mean values for intron losses/gains on edges in the likelihood model.

calculateEdgePosteriors [〈switches〉] 〈table file〉 〈tree file〉 〈rate file〉 [〈nzeros〉].
Parameters as in calculateRates but there is no more optimization performed.
The output is a table with columns named n00 (number of intron sites that
stayed unused), 01 (number of introns gained), 10 (number of introns lost),
11 (number of introns inherited). The numbers are for the edge that leads to
each row’s node.

3.4 Program simulateEvolution

Simulates intron evolution in the model.
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simulateEvolution [〈switches〉] 〈tree file〉 〈rate file〉 n. Produces a ran-
dom 〈table file〉 with n non-zero columns by simulating intron evolution
along the tree.

In comment lines starting with ##count, the true numbers are also listed for each
node: introns present at the node, introns gained on the edge leading to the node,
and introns lost on the edge leading to the node.

3.5 Program RoyGilbert

Computes the Roy-Gilbert formulas for intron gain and loss on an edge or intron
presence at a node.

(a) RoyGilbert 〈table file〉 〈tree file〉 s1 s2. Computes gain and loss values for
an outer edge leading to taxon s1. The sibling clade is s2. This formula first
appears in Roy and Gilbert (2005a).

(b) RoyGilbert 〈table file〉 〈tree file〉 s1 s2 s3. Computes gain and loss values
on an inner edge leading from the MRCA of s1, s2, s3 to the MRCA of
s1, s2. This formula first appears in Roy and Gilbert (2005b).

3.6 Program DolloParsimony

DolloParsimony 〈table file〉 〈tree file〉. Computes intron counts, gains and
losses using Dollo parsimony Farris (1977), i.e., with the assumption that each
intron arose only once in the course of evolution. The format of the output
is the same as that of simulateEvolution: in comment lines starting with
##count, the numbers are listed for each node: introns present at the node,
introns gained on the edge leading to the node, and introns lost on the edge
leading to the node.

3.7 Debug messages

All the programs respond to the switch -v which allows (-v true) or disables
(-v false) detailed debug messages. Debug messages are disabled by default. Usu-
ally, the message has the form #**X.aBC... where X identifies the Java class and
aBC identifies the method, by initials of its name in the Java source code. For in-
stance, #**RG.aOI messages are output by the method allOtherIntrons() in
the class RoyGilbert. You can filter the messages through various pipes. Without
filtering, don’t be surprised to get an output of tens of thousand lines, taking up
10-20 Mbytes. Filtering out the messages, the output is very small. (Maybe a few
hundred lines.) Or don’t use the -v true switch.
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4 An example session

This session illustrates how to use the programs in conjunction with the data of
Rogozin et al. (2003).

1. Download the data file ftp://ftp.ncbi.nlm.nih.gov/pub/koonin/intron
evolution/rogozin introns table. For simplicity, name it table.txt.
The data is for 7236 homologous intron positions in 684 orthologous gene
sets, across 8 species: D. melanogaster (Dr), A. gambiae (An), C. elegans (Ca),
H. sapiens (Ho), S. ecervisiae (Sa), S. pombe (Sc), A. thaliana (Ar), and P. falci-
parum (Pl). This will be your 〈table file〉.

2. Choose your phylogeny. Here are two possibilities:

(((((Dr, An) "Diptera", Ca) "Ecdysozoa", Ho) "Bilateria",
(Sc, Sa) "Ascomycota") "Opisthokont", Ar, Pl) "Crown";
[ tree with ecdysozoan clade (nematoda-arthropods)]

or

(((((Dr, An) "Diptera", Ho) "Coelomata", Ca) "Bilateria",
(Sc, Sa) "Ascomycota") "Opisthokont", Ar, Pl) "Crown";
[ tree with coelomate clade (vertebrates-arthropods)]

Save your phylogeny in a file called tree.tre, this will be your 〈tree file〉.

3. Optimize the rate parameters.

java -cp intronLoss.jar \
ca.umontreal.iro.evolution.introns.calculateRates \
table.txt tree.tre 00 > rates.txt &

The execution will take some time (depending on optimization parameters
and your computer’s speed, a couple of minutes or a couple of hours). If
you want to see what is going on, use instead the -v true switch and pipe
through tee rates.txt. The file rates.txt lists the probabilities for gain
and loss for each node (on the edge that leads to it), and from the comments
you can decypher the actual gain and loss rates and branch lengths — the rates
and lengths are scaled on each edge that the loss and gain rates add up to 1.
You should also find a comment line that starts with #z that tells you what
the probability is for an all-0 column, and how many all-0 columns should
be added to your data to correspond to that value. This will be your n in the
posterior computations. Let’s suppose you have n = 10000.
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4. Check the posterior counts.

java -cp intronLoss.jar \
ca.umontreal.iro.evolution.introns.calculateNodePosteriors
table.txt tree.tre rates.txt 10000 > nodes-data.txt

java -cp intronLoss.jar \
ca.umontreal.iro.evolution.introns.calculateEdgePosteriors \
table.txt tree.tre rates.txt 10000 > edges-data.txt

5. Compare with Dollo parsimony estimates.

java -cp intronLoss.jar \
ca.umontreal.iro.evolution.introns.DolloParsimony \
table.txt tree.tre > dollo-data.txt

6. Compare with Roy-Gilert estimates.

java -cp intronLoss.jar \
ca.umontreal.iro.evolution.introns.RoyGilbert \
table.txt tree.tre Ecdysozoa Ho Ascomycota

You need to do this for every edge, choosing appropriate clades in the anal-
ysis.

7. Do a couple of rounds using simulated data to assess accuracy.

java -cp intronLoss.jar \
ca.umontreal.iro.evolution.introns.simulateEvolution \
tree.tre rates.txt 7236 > table-rnd.txt

java -cp intronLoss.jar \
ca.umontreal.iro.evolution.introns.calculateRates \
table-rnd.txt tree.tre 00 > rates-rnd.txt

...
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