
Instructions on using the intronRates package

Miklós Csűrös
e-mail:csuros AT iro.umontreal.ca

April 19, 2007

1 Introduction

The Java package intronRates.jar contains a number of programs and support-
ing Java classes for modeling and analyzing intron evolution. The package im-
plements likelihood methods [Csűrös, Holey, Rogozin “In search of lost introns”,
ISMB, 2007] for analysis of intron data.

The programs may be useful for the phylogenetic analysis of any 0-1 data set
where rates may vary on the branches.

Please send me a note if you use the package. I would send you an e-mail
whenever the package is updated. (I am extending the model to include across-sites
variation, and other features.)

The main change from a previous version (intronLoss.jar) is that likeli-
hoods are computed and optimized much faster, and the option for keeping certain
gain/loss rates constant.

2 File types

The programs work with the following main file types.

〈tree file〉 describes a phylogeny in the Newick format (http://evolution.
genetics.washington.edu/phylip/newicktree.html) used by Phylip
and other programs. It is good to keep it unrooted (with one inner node that
has three descendants) because otherwise the root’s position is not unique
(can “slide” between its two children: it is impossible to determine the branch
length to those two guys). Name the inner nodes, it helps deciphering the
outputs. Tree branch lengths are not important for the optimization (since
they will be optimized too).

1

〈table file〉 A file of aligned 0-1 sequences for intron presence-absence in homol-
ogous positions. Lines starting with # are skipped (supposed to be comments
and such). Data lines have two fields, separated by TABs: taxon name (must
match name in 〈tree file〉) and 0-1 string of intron presence/absence. (This
is the format used by [Rogozin et al “Remarkable interkingdom conserva-
tion of intron positions and massive, lineage-specific intron loss and gain in
eukaryotic evolution”, Current Biology, 13:1512–1517, 2003].)

〈rate file〉 An intermediate text file listing loss and gain rates along branches. This
file is the output of the program calculateConstantRates.

3 Main programs

All programs are implemented in Java for portability. In order to run program X ,
you need to invoke it through the Java engine:

java -cp intronLoss.jar ca.umontreal.iro.evolution.introns.X . . .

If you run out of memory, you may need to use the -Xmx switch as in java -Xmx512M ...
The programs write to the standard output, so you need to redirect or pipe it
through something to save the result. The output typically begins with some infor-
mation on who, when and how produced the text, written in comment lines that
start with #|.

3.1 Program calculateConstantRates

Produces a 〈rate file〉 by fitting the parameters (gain & loss rates, length on each
branch and root’s intron density) to the data to maximize likelihood.

calculateConstantRates [〈switches〉] 〈table file〉 〈tree file〉. Optimize
parameters starting from default initial values.

The following switches are implemented. (d stands for a double-precision
floating-point and i stands for an iunteger).

opt-eps Specifies a stopping rule for the optimization. The optimization stops if
the log-likelihood (natural logarithm) changes by less than this value between
rounds. Syntax: -opt-eps d.

opt-round Specifies a stopping rule for the optimization. The optimization stops
after that many rounds. Syntax: -opt-round i.

2

start-with Specifies that the optimization should start with saved values from a
previous execution of calculateConstantRates. Syntax: -start-with
〈rate file〉.

fixrate Fixes the gain or loss rates on certain branches. Syntax: -fixrate 〈constraints〉,
where 〈constraints〉 comma-separated edgewise constraints. Edgewise con-
straints have the format 〈clade〉:〈rate〉 or 〈clade〉:〈rate〉:〈rate〉, where 〈clade〉
is a taxon name in your Newick file (the bottom node for the branch), and
〈rate〉 has the syntax Ld or Gd fixing Loss or Gain rate at d. Example: java
-cp intronRates.jar ca.umontreal.iro.evolution.introns.calculateConstantRates
-fixrate ’Diptera:G0:L00.01,Ascomycota:G0’ rogozin introns table
tree.tre.

3.2 Program computeConstantPosteriors

Outputs mean values for intron counts and intron gains/losses.

computeConstantPosteriors [〈switches〉] 〈table file〉 〈tree file〉 〈rate file〉
Parameters as in calculateConstantRates but there is no more optimization
performed.

Currently the only implemented swicth is -ambiguous in the same syntax as above.

4 An example session

This session illustrates how to use the programs in conjunction with the data of
Rogozin et al. (2003).

1. Download the data file ftp://ftp.ncbi.nlm.nih.gov/pub/koonin/intron_
evolution/rogozin_introns_table. For simplicity, name it table.txt.
The data is for 7236 homologous intron positions in 684 orthologous gene
sets, across 8 species: D. melanogaster (Dr), A. gambiae (An), C. elegans (Ca),
H. sapiens (Ho), S. ecervisiae (Sa), S. pombe (Sc), A. thaliana (Ar), and P. falci-
parum (Pl). This will be your 〈table file〉.

2. Choose your phylogeny. Here are two possibilities:

(((((Dr, An) Diptera, Ca) Ecdysozoa, Ho) Bilateria,
(Sc, Sa) Ascomycota) Opisthokont, Ar, Pl) Crown;
[tree with ecdysozoan clade (nematoda-arthropods)]

or

3

(((((Dr, An) Diptera, Ho) Coelomata, Ca) Bilateria,
(Sc, Sa) Ascomycota) Opisthokont, Ar, Pl) Crown;
[tree with coelomate clade (vertebrates-arthropods)]

Save your phylogeny in a file called tree.tre, this will be your 〈tree file〉.

3. Optimize the rate parameters.

java -cp intronRates.jar \
ca.umontreal.iro.evolution.introns.calculateConstantRates \
table.txt tree.tre > rates.txt &

The execution should not take more than a minute or so if you have a com-
puter built after 2003. If you want to see what is going on, use instead the
-v true switch and pipe through tee rates.txt. The file rates.txt
lists the probabilities for gain and loss for each node (on the edge that leads
to it), and from the comments you can decypher the actual gain and loss rates
and branch lengths — the rates and lengths are scaled on each edge that the
loss and gain rates add up to 1.

4. Check the posterior counts.

java -cp intronRates.jar \
ca.umontreal.iro.evolution.introns.computeConstantPosteriors \
table.txt tree.tre rates.txt > history.txt

The output gives two estimates for every quantity: one for intron sites in the
data (“current”) and another one that accounts for introns that were com-
pletely lost in the course of evolution (“with missing sites” or “all”). This
latter is the true estimate of the unknwon quantities.

4

