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Abstract
We review mathematical and algorithmic problems of reconstructing evo-

lutionary features at ancestors in a known phylogeny. In particular, we re-
visit a generic framework for the problem that was introduced by Sankoff
and Rousseau [“Locating the vertices of a Steiner tree in an arbitrary metric
space,” Mathematical Programming, 9:240–246, 1975].

1 Introduction

If extant organisms descended from a common ancestor through modifi-
cations [13], then their genomes carry clues about the extinct ancestors’
genomes. This simple observation can lead to impressive insights when the
descendants are sufficiently diverse. For example, by Blanchette et al.’s es-
timate [4], more than 95% of an early mammalian genome can be inferred
soundly from whole-genome sequences.

Linus Pauling proposed the reconstruction of ancestral molecular se-
quences as early as 1962 (as recounted in [41]). Pauling presented the idea by
the example of 70 homologous sites in four human hemoglobin peptide chains
(α, β, γ, δ) and three other related sequences available at the time. The align-
ment and the ancestral inference were done manually, using only amino acid
identities. It took another decade to work out general computational proce-
dures to do alignment and reconstruction. Dynamic programming, the key
algorithmic technique for the task, was introduced into molecular biology
by Needleman and Wunsch [40] with cursory mathematical exposition. Sub-
sequent work in the early 70s, including notable foundational contributions
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from David Sankoff, rigorously established the utility of the dynamic pro-
gramming approach in problems related to sequence alignment, phylogeny
and RNA secondary structure [44].

Phylogenetic reconstruction methods matured concomitantly with se-
quence alignment. Edwards and Cavalli-Sforza [17] proposed the idea of “min-
imal evolution” or parsimony [7]: the phylogeny should imply the least evo-
lutionary change leading to the features observed in extant organisms. The
principle, recast into probabilistic terms, leads to likelihood methods in phylo-
genetic inference [22]. Alternative ways of quantifying “evolutionary change”
give rise to a number of parsimony varieties [23]. Efficient algorithms have
been developed for many special cases of parsimony [7, 19, 24, 20, 49, 28, 35].
Sankoff and Rousseau [47] proposed an elegant method for parsimony infer-
ence that is general enough to apply to many specific variants and has been
adapted often in contemporary approaches to ancestral reconstruction.

Here, I aim to revisit the power of the Sankoff-Rousseau algorithm and
explore some modern applications.

2 Ancestral reconstruction by parsimony

We are interested in the problem of using homologous traits in extant organ-
isms to reconstruct the states of the corresponding phylogenetic character at
their ancestors. The corresponding mathematical problem, called here parsi-
mony labeling, is introduced in §2.1. The discussed mathematical abstraction
searches for an assignment of states to the nodes of a known evolutionary tree
which minimizes a penalty imposed on state changes between parents and
children. The penalization represents the “surprise value” associated with an
assumed state change in the evolution of the studied phylogenetic character;
searching for the least surprising evolutionary history is intended to ensure
the reconstruction’s biological plausibility. The most popular mathematical
varieties of parsimony, involving different types of characters and penalties,
are reviewed in §2.2. Sankoff and Rousseau’s generic algorithm is presented
in §2.3, along with its applications in many specific parsimony variants.

2.1 Parsimony labeling

Consider a given phylogeny Ψ =
(
L,V, E

)
over the terminal taxa L, which is

a tree with node set V, leaves L ⊆ V, and edge set E . The tree is rooted at
a designated root node ρ ∈ V: for every node u ∈ V, exactly one path leads
from ρ to u. A node u ∈ V and all its descendants form the subtree rooted
at u, denoted by Ψu.
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Every node u ∈ V is associated with a label ξ[u] ∈ F over some feature
alphabet F . The labels ξ[x] represent the states of a homologous character at
different nodes of the phylogeny. Labels are observed at the terminal nodes,
but not at the other nodes, which represent hypothetical ancestors; see Fig-
ure 1.

ξ[C] ξ[F]

ξ[A] ξ[D] ξ[E]ξ[B]

ξ[K]

ξ[H] ξ[J]

ξ[G] ξ[I]

ancestral node

terminal node (leaf)

Fig. 1 Ancestral inference. Node labels ξ[u] are observed at the leaves and need to be

inferred at ancestral nodes.

We state the problem of ancestral reconstruction in an optimization set-
ting, where the label space is equipped with a cost function d : F×F 7→ [0,∞].
Suppose we are given a fixed leaf labeling Φ : L → F . The goal is to extend it
to a joint labeling ξ : V 7→ F with minimum total cost between parent-edge
labels on the edges. In systematics, the labels are states of a phylogenetic
character at the nodes. The cost function reflects the evolutionary processes
at play. Formally, we are interested in the following optimization problem.

General parsimony labeling problem

Consider a phylogeny Ψ =
(
L,V, E

)
, and a label space F equipped with a cost

function d : F × F 7→ [0,∞]. Find a joint labeling ξ : V 7→ F that extends a
given leaf labeling Φ : L → F and minimizes the total change

f∗ = min
ξ⊃Φ

f(ξ) = min
ξ⊃Φ

∑
uv∈E

d
(
ξ[u], ξ[v]

)
. (1)

Parsimony labeling belongs to a large class of optimization problems re-
lated to Steiner trees [29]. In a Steiner-tree problem, the pair (F , d) forms
a metric space, and the labels describe the placement of tree nodes in that
space. Leaves have a fixed placement and need to be connected by a minimal
tree through additional inner nodes, or so-called Steiner vertices. Classically,
the placement is considered in k-dimensional Euclidean space with F = Rk,
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and d is the ordinary Euclidean distance. General parsimony labeling gives
the optimal placement of Steiner vertices for a fixed topology.

The algorithmic difficulty of parsimony labeling depends primarily on the
assumed cost function d. Finding the most parsimonious tree is NP-hard
under all traditional parsimony variants [14, 16, 15], but computing the score
of a phylogeny is not always difficult.

2.2 A quick tour of parsimony variants

The minimum total change of Equation (1) measures the economy of the
assumed phylogeny, or its parsimony score minξ f(ξ). Systematicists have
been routinely constructing hypothetical phylogenies minimizing the parsi-
mony score over some chosen phylogenetic characters [23]. Provided that the
cost function truly reflects the economy of the implied evolutionary histories,
parsimony is the phylogenetic equivalent of Occam’s razor. Common parsi-
mony variants use fairly simple abstractions about evolutionary processes.
For instance, Dollo parsimony (§2.2.1) and Fitch parsimony (§2.2.1), use cost
functions that penalize every state change the same way. In the following tour,
we briefly discuss classic parsimony variants for directed evolution (§2.2.1),
numerical characters (§2.2.2) and molecular sequences (§2.2.3), along with
some historical notes.

2.2.1 Directed evolution

The earliest formalizations of parsimony [7, 34] framed phylogenetic inference
for situations where evolutionary changes have a known (or assumed) direc-
tionality. In Dollo- and Camin-Sokal parsimony, the directionality constraints
yield simple solutions to ancestral labeling.

Camin and Sokal [7] examine phylogenetic characters with some fixed or-
dering across possible states. The ordering is ensured by cost asymmetry.
If x ≺ y, then 0 ≤ d(x, y) < ∞ and d(y, x) = ∞. The cost function is
additive over successive states: for any three successive labels x ≺ y ≺ z,
d(x, z) = d(x, y) + d(y, z). In [7], this type of scoring is introduced for mor-
phological characters — nine characters such as foot anatomy encoded by
small integers — to establish a phylogeny for ten horse fossils. Ancestral la-
beling is straightforward: set ξ[u] to the minimum label seen at leaves in u’s
subtree.

Dollo’s law [34] applies to rare evolutionary gains (e.g., complex morpho-
logical structures) that subsequent lineages may lose. The principle translates
into a binary labeling problem where only one 0 → 1 transition is allowed
in the entire phylogeny, and the task is to minimize the number of 1 → 0
transitions. As first explained by Farris [20], the optimal labeling is directly
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determined by the principle. The lowest common ancestor w of leaves u with
label ξ[u] = 1 is labeled as ξ[w] = 1. It is either the root node, or the point
of the single gain 0 → 1 in the entire phylogeny. Outside w’s subtree, all
nodes are labeled with 0. Within Ψw, every ancestral node v is labeled by the
maximum of the labels under it: if all its descendants are labeled with 0, so
is ξ[v] = 0; otherwise, ξ[v] = 1.

2.2.2 Numerical labels

Cavalli-Sforza and Edward [9] pose the problem of inferring a phylogeny of
populations from gene allele frequencies. Allele frequencies and many other
interesting characters are best captured by numerical labels as real-valued
continuous variables. When F = R, the absolute and the squared distances
are common choices for parsimony labeling.

Wagner parsimony [32] applies to a numerical label space (discrete or
continuous) and uses the distance d(x, y) = |x − y|. Farris [19] describes
a linear-time algorithm for labeling a binary tree, which was proven to be
correct and adaptable to non-binary trees by Sankoff and Rousseau [47].

Squared parsimony [35] employs the squared distance d(x, y) = (x − y)2

over a continuous label space and gives a linear-time algorithm to compute
the ancestral labeling in linear time. Squared parsimony has an attractive
probabilistic interpretation involving a Brownian motion model [35]. Sup-
pose that changes along each edge follow a Brownian motion, so child labels
have a normal distribution centered around the parent’s label with variance
proportional to the edge length. If edge lengths are the same, then the an-
cestral labeling that maximizes the likelihood also minimizes the parsimony
score with the cost function d′(x, y) = − log

(
1

σ
√

2π
exp
(
− (x−y)2

2σ2

))
, where σ

is the common standard deviation of the child labels. After stripping away
the constant term and common scaling factors, only the remaining squared
distance d(x, y) = (x− y)2 determines the labeling’s optimality.

2.2.3 Molecular sequences

For the purposes of phylogenetic inference and ancestral reconstruction from
molecular sequences, parsimony scoring has to capture the peculiarities of
homologous sequence evolution. One possibility is to consider a fixed multi-
ple alignment and use parsimony with residues at aligned sites. Fitch parsi-
mony [24], which applies to a finite label space such as the four-letter DNA
alphabet, simply minimizes the number of different labels on tree edges. Much
more challenging is parsimony with edit distance, first addressed by David
Sankoff [46, 43], when the label space encompasses all possible sequences,
and the scoring includes insertions and deletions. Parsimony labeling with
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edit distance is NP-hard, since it is equivalent to multiple alignment with a
fixed guide tree, which is known to be NP-hard for any alignment scoring [18].

Originally, Kluge and Farris [32] employed Wagner parsimony to six binary
characters derived from distinguishing body features in twelve frog families.
When labels are binary (F = {0, 1}) in Wagner parsimony, there are only
two possible distances: d(x, y) = 0 if x = y and d(x, y) = 1 if not. Fitch
parsimony [24] generalizes the same scoring principle to any discrete alphabet:

d(x, y) = {x 6= y} =

{
0 if x = y;
1 if x 6= y

Computing the optimal labeling under this distance takes linear time in the
tree size [24, 28]. Fitch parsimony, in contrast to Wagner parsimony, accom-
modates non-numerical phylogenetic characters, including amino acids and
nucleotides. In an early application, Fitch and Farris [25] apply the scoring
method to nucleotides in homologous positions in a multiple alignment in
order to infer the most parsimonious RNA coding sequences from protein
data.

2.3 The Sankoff-Rousseau technique

The crucial insight of [47] is that general parsimony labeling has a recursive
structure that calls for solutions by dynamic programming.

For every node u ∈ V, define the subtree cost fu : F 7→ [0,∞) as the
minimum total change implied by u’s label within its subtree:

fu(x) = min
∑

vw∈Eu;ξ[u]=x

d(ξ[v], ξ[w]),

where Eu are the edges within the subtree Ψu. The minimum is taken across
all ancestral node labelings with the same assignment x at u. By the principle
of optimality, the following recursions hold:

fu(x) =

{
0 if x = Φ[u];

∞ if x 6= Φ[u];
{u ∈ L} (2a)

fu(x) =
∑
uv∈E

min
y∈F

(
d(x, y) + fv(y)

)
{u ∈ V \ L} (2b)

In particular, the parsimony score is retrieved by considering the minimum
total penalty at different root labelings:

f∗ = min
x∈F

fρ(x).
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The recursions of Eq. (2) suggest a general outline for computing the best
ancestral labeling together with its score. First, compute all fu in a post-
fix traversal, visiting parents after child nodes, as shown by the proce-
dure Ancestral below. Second, retrieve the best labeling in in a prefix
traversal that realizes the computed minimum f∗ by standard backtracking,
as shown by the procedure Labeling here.

Ancestral(u) // (computes fu for a node u)

A1 if u ∈ L then fu(x)←
˘
x = Φ[u]

¯
?0 :∞ // (leaf)

A2 else
A3 for uv ∈ E do // (for all children v)

A4 fv ← Ancestral(v)

A5 compute huv(x)← miny∈F
`
d(x, y) + fv(y)

´
A6 set fu(x)←

P
uv∈E huv(x)

A7 return fu

(Line A1 uses {x = Φ[u]}?0 : ∞ to denote the function for a forced labeling
at a terminal node u, from Eq. (2a).) Line A5 computes the stem cost huv(x)
for a child of u, which is the minimal change along the edge and within the
subtree of v, given that u is labeled with x. Line A6 sums the stem cost
functions to construct fu.

Labeling(v) // (computes the best labeling)

L1 if v is the root then ξ[v] = arg minx fv(x)

L2 else
L3 u← parent of v; x← ξ[u]

L4 ξ[v]← arg miny∈F
`
d(x, y) + fv(y)

´
L5 for vw ∈ E do Labeling(w) // (for all children of w, if any)

For a finite label space, the minimum in Line A5 is found by examining all
possible values. At the same time, the best labeling y for each x is saved
for backtracking in Lines L1 and L4. For an infinite space or very large
label space, it is not immediately clear how the minimization can be done
in practice. Luckily, it is possible to track f and h by other means than
tabulation in many important cases.

2.3.1 Few possible labels

The general Sankoff-Rousseau outline immediately yields an algorithm when
labels have only a few possible values. Figure 2 shows an example with
absence-presence labels (F = {0, 1}). The distance metric is defined by the
gain penalty g and loss penalty 1, which apply on every edge uv to labelings
ξ[u] = 0, ξ[v] = 1, and ξ[u] = 1, ξ[v] = 0, respectively.

A computer implementation can tabulate fu(x) for all nodes u and possible
values x. With a table-based implementation, the running time grows linearly
with tree size, but quadratically with possible labels. Note that the tables
accommodate arbitrary cost functions, not only true distance metrics.
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0 1

1 0 01

K

H J

G I
f(0)=2g
f(1)=0

f(0)=0
f(1)=2

f(0)=g
f(1)=1

Φ=110001

f(0)=2g
f(1)=2

0

0 0

1 0

1 1

0

0 0

1

1

1 1

1 0

1 1

0

0 0

1

f=2g f=2

f(0)=g
f(1)=1

Fig. 2 Inference of ancestral labels by parsimony. This example uses a binary character
(presence-absence) with profile Φ, a loss penalty 1 and gain penalty g ≥ 0; i.e., the distance

function over the feature space F = {0, 1} is defined as d(x, x) = 0 and d(0, 1) = g,

d(1, 0) = 1. Depending on the gain penalty g, the optimal solution may imply two losses
(score f = 2) or two gains (f = 2g). The dynamic programming proceeds from the leaves

towards the root, computing the score fu(x) of the optimal reconstruction within each

subtree Ψu, in the order indicated by the arrows.

Theorem 1. For a finite label space of of size r = |F|, and an evolutionary
tree with m edges, algorithms Ancestral and Labeling compute an optimal
labeling in O(mr2) time and O(mr) space.

Proof. A table stores fu(x) for m+ 1 nodes and r possible labels. Line A1 is
executed once for every terminal node. In Line A5, miny∈F is found in a loop
over possible child labelings y in O(r) time. Lines A5 and A6 are executed
for each edge and label x, in O(mr2) total time.

In order to use with backtracking, the minimal y found in Line A5 is saved
for every edge uv and label x, using m×r entries in a table. Line L4 takes O(1)
to retrieve the optimal labels on each edge, and Algorithm Labeling com-
pletes in O(m) time.

2.3.2 Molecular sequences

Sankoff and Rousseau [47] generalize Sankoff’s previously developed method
for the ancestral reconstruction of RNA sequences [46, 43], which is by far
the most challenging case of ancestral parsimony. The recursions for multiple
alignment and ancestral labeling can be combined to find an optimal solu-
tion, but the computation takes an exponentially long time in the number of
nodes [43].
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2.3.3 Squared parsimony

Squared parsimony was first proposed [9, 42] as an appropriate cost function
d(x, y) = (x − y)2 for inference from allele frequencies ξ ∈ [0, 1] observed
in populations. Maddison [35] solved the parsimony labeling problem by di-
rectly employing the method of Sankoff and Rousseau [47]. Theorem 2 below
restates the key result: subtree and stem costs are quadratic functions, for
which the parameters can be computed recursively.

Theorem 2. In the general parsimony problem with F = R and (.x, y) =
(y − x)2, the subtree weight functions are quadratic. In other words, one can
write the subtree cost function at each non-leaf node u as

fu(x) = αu(x− µu)2 + φu, (3)

with some parameters αu, φu, µu ∈ R. The parameters α, µ satisfy the follow-
ing recursions

αu =

{
undefined if u is a leaf;∑
uv∈E βv otherwise;

(4a)

µu =

{
ξ[u] if u is a leaf;P

uv∈E βvµvP
uv∈E βv

otherwise;
(4b)

where βv is defined for all v ∈ V by

βv =

{
1 if v is a leaf;
αv

αv+1 otherwise.
(4c)

By Theorem 2, Ancestral can proceed by storing α and µ at every node.

Theorem 3. For squared parsimony, algorithms Ancestral and Labeling
compute an optimal labeling in O(m) time and O(m) space.

Proof. Lines A5–A6 compute the subtree costs by the recursions of (4)
in O(m) total time. By Eq. (3), Labeling needs to set the root label in
Line L1 as

ξ[ρ] = arg minx αρ(x− µρ)2 + φρ = µρ (5)

since αu > 0 at all nodes. The stem weight function huv(x) for an inner
node v is

huv(x) = min
y

(
(x− y)2 + fv(y)

)
=

αv
αv + 1

(x− µv)2 + φv,

with minimum at

y∗ = arg miny
(
(x− y)2 + fv(y)

)
=
x+ αvµv
αv + 1

. (6)



10 Miklós Csűrös

Therefore, Line L4 sets the child labeling as

ξ[v] =
ξ[u] + αvµv
αv + 1

.

Labeling thus spends O(1) time on each node and finishes in O(m) time.

Squared parsimony can be generalized to k-dimensional features F = Rk.
The optimal parsimony labeling with the squared Euclidean distance between
labels d(x, y) =

∑k
i=1 = (xi − yi)2 can be computed component-wise, since

plugging it into (1) gives

min
ξ⊃Φ

f(ξ) =
k∑
i=1

min
ξi⊃Φi

∑
uv∈E

(
ξi[u]− ξi[v]

)2
︸ ︷︷ ︸
best labeling in coordinate i

. (7)

It suffices to apply the recursions of (4) in each coordinate separately. In
an application where each label represents a distribution over k elements,
it is not immediately clear that the coordinate-wise reconstruction yields
valid ancestral distributions, i.e., that

∑k
i=1 ξi[u] = 1 is assured everywhere.

Fortunately, the optimal labeling formulas of (5) and (6) automatically ensure
that the separate reconstructions always add up to proper distributions [12].

2.3.4 Wagner (linear) parsimony

Wagner parsimony considers the linear cost function d(x, y) = |x − y| over
a numerical label space like F = R. A consequence of the linear cost is
that the subtree costs have a simple recursive structure [19, 47, 49], and the
Sankoff-Rousseau method can be carried out by tracking simple intervals.
An asymmetric linear cost function, examined by [12], leads to a similarly
recursive structure. Namely, asymmetric Wagner parsimony uses a linear cost
function of the form

d(x, y) =

{
λ(y − x) {y ≥ x}
ν(x− y) {x > y},

with gain and loss penalties λ, ν. In asymmetric Wagner parsimony, the sub-
tree cost functions are continuous, convex and piecewise linear. Consequently,
they can be manipulated symbolically as vectors of slopes and breakpoints,
see Figure 3.

Theorem 4. For every non-leaf node u ∈ V \L, there exist k ≥ 1, α0 < α1 <
· · · < αk (slopes), x1 < x2 · · · < xk (breakpoints), and φ0, . . . , φk ∈ R that
define fu in the following manner.
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a0

a1

a2

a3

a4

a5

x

f(x)

x1 x2 x3 x4 x5

y

x3x =x2
+ x =x4

-

-λ ν
h(y)

Fig. 3 Illustration of Theorem 4 about the shape of the cost functions. Left: for asymmet-

ric Wagner parsimony, the subtree cost function f is always piecewise linear with slopes

a0, . . . , ak (k = 5 here). Right: the stem cost function h(y) = minx(d(y, x) + f(x)) is
obtained by “shaving off” the steep extremities of f and replacing them with slopes of

(−λ) and ν, respectively.

fu(x) =



φ0 + α0x if x ≤ x1;
φ1 + α1(x− x1) if x1 < x ≤ x2;
. . .

φk−1 + αk−1(x− xk−1) if xk−1 < x ≤ xk;
φk + αk(x− xk) if xk < x,

(8)

where φ1 = φ0 + α0x1 and φi+1 = φi + αi(xi+1 − xi) for all 0 < i < k.
Moreover, if u has d children, then a0 = −dλ and ak = dν.

Figure 3 illustrates the proof of Theorem 4 from [12]. The Sankoff-
Rousseau algorithm can be implemented by storing the breakpoints for the
slopes between (−λ) and ν. In classical Wagner parsimony, λ = ν = 1, and
the two stored breakpoints define an interval of equivalently optimal labelings
at every node, used in the original algorithm of [19].

Theorem 5. Algorithms Ancestral and Labeling find the optimal label-
ing by asymmetric Wagner parsimony in O(nh log dmax) time for a phylogeny
of height h with n nodes and maximum node degree dmax. For integer-valued
penalties λ, ν with B = λ+ ν, the algorithms label the tree in O(nB) time.

Proof. For general real-valued penalties λ and ν, the breakpoints and the
slopes defining the subtree cost functions are stored by ordered lists. The
symbolic summation of stem costs in Line A6 involves merging ordered lists,
leading to a running-time bound of O(nh log dmax) [12].

For integer-valued penalties, it is enough to store the B = (λ+ν) possible
breakpoints associated with slopes between −λ and ν that can play a role in
an optimal labeling. By storing the breakpoints for fu in an array of length B,
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Line A6 sums the stem costs in O(nB) time across all nodes, and an optimal
labeling is found in O(1) time per node.

Wagner parsimony easily generalizes to the k-dimensional labels F = Rk
with the Manhattan distance d(x, y) =

∑k
i=1 |xi− yi|. Just like with squared

parsimony, the optimal labeling can be decomposed by coordinates.

2.3.5 Multiple reconstructions

The optimal ancestral labeling for Camin-Sokal and Dollo is always unique,
due to the directionality of the parsimony cost function. Squared parsimony,
as well, has a unique optimal solution by Theorem 2. Otherwise, the most
parsimonious labeling of Equation (1) is not necessarily unique. For example,
the two ancestral labelings depicted in Figure 2 are both minimal when gains
and losses are penalized equally (g = 1): they entail either two loss events or
two gain events. Even if multiple solutions are possible, the ancestral labeling
algorithm can resolve the ties at will between ancestral labels that yield the
same minimum subtree costs either at the root (Line L1 in Labeling) or on
the edges (Line L4), following the normal order of the algorithm.

Theorem 4 shows an important property of Wagner parsimony, first rec-
ognized by Farris [19]. Namely, the minimum subtree score for an ancestral
node is attained either at a single label, or within a closed interval where
the cost function has slope 0. The ambiguity of optimal ancestral labelings
can be characterized by computing the set of possible labels (a closed in-
terval, possibly containing a single point) at each ancestral node in linear
time [49]. When multiple ancestral labels are equally optimal, one of two
heuristics are traditionally chosen to resolve ties. The first one, proposed
in [19] and named ACCTRAN (for “accelerated transformation”) by [49],
chooses a reconstruction where label changes are placed closer to the root.
Mathematically, ACCTRAN is the unique optimal reconstruction in which
all subtree scores are minimized; i.e.,

∑
vw∈Tu

d
(
ξ[v], ξ[w]

)
takes its minimum

value in each subtree Tu among all reconstructions ξ with minimum parsi-
mony score [39]. The other heuristic, called DELTRAN (“delayed transfor-
mation”), defers changes away from the root [49]. ACCTRAN is believed to
give biologically more plausible reconstructions by minimizing parallel gains
in different lineages, although closer scrutiny shows that ACCTRAN and
DELTRAN do not always behave as expected [1].

3 Applications and extensions

Many authors built on the Sankoff-Rousseau technique to develop related
efficient algorithms. We sample a few algorithmic extensions in §3.1. A few
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biological applications in §3.2 illustrate the pertinence of parsimony-based
reconstructions in contemporary studies of genome evolution.

3.1 Algorithmic extensions

Tree-additive cost functions

A somewhat inconvenient property of the generic Sankoff-Rousseau algorithm
is that it entails a quadratic dependence on the alphabet size (Theorem 1). Its
simplicity, however, lends itself to efficient parallel implementation [31]. The
quadratic factor can be avoided for certain cost functions with an additive
structure, e.g., if d(x, y) is an ultrametric distance [10].

Parsimony on a phylogenetic network

Kannan and Wheeler [30] address the generalization of the Sankoff-Rousseau
algorithm to a phylogenetic network. Specifically, they consider networks with
some reticulate nodes having two incoming and one outgoing edges. The par-
simony score sums the costs occurred along all the edges, including those
connecting reticulate vertices. The optimal labeling can be computed by enu-
merating all possible joint labelings at reticulate nodes, in O(mrk+2) time
for m edges and k reticulate nodes over a r-letter alphabet.

Gain and loss edges

After constructing an optimal ancestral labeling, it is trivial to collect the
lineages with similar state transitions such as the edges on which some feature
was lost (transition 1→ 0). In a binary labeling problem for absence-presence
data, it is practicable to track such sets of edges by the single traversal
of Ancestor [37]. Specifically, define the sets Luv(x) and Guv(x) for all
edges uv as sets of loss and gain edges, respectively, affecting v’s subtree
when ξ[u] = x in an optimal labeling ξ. For a terminal edge uv, Luv(0) =
Guv(1) = ∅, Luv(1) = {uv} if ξ[v] = 0, and Guv(0) = {uv} if ξ[v] = 1. For all
non-leaf nodes u, let Lu∗(x) =

⋃
uv∈E Luv(x) and Gu∗(x) =

⋃
uv∈E Guv(x).

The following recursions hold, depending on the event on the edge uv

〈
Luv(1), Guv(1)

〉
=

{〈
{uv} ∪ Lv∗(0), Gv∗(0)

〉
(loss on uv)〈

Lv∗(1), Gv∗(1)
〉

(no loss on uv)〈
Luv(0), Guv(0)

〉
=

{〈
Lv∗(1), {uv} ∪Gv∗(1)

〉
(gain on uv)〈

Lv∗(0), Gv∗(0)
〉

(no gain on uv)
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The stem cost for the edge huv counts the edges within the Luv and Guv sets.
Using asymmetric gain-loss costs as in §2.3.4, huv(x) = λ

∣∣Guv(x)
∣∣+ν∣∣Luv(x)

∣∣.
The choices between loss vs. no-loss and gain vs. no-gain are made to minimize
the associated costs.

3.2 Applications

Parsimony’s simple assumptions are appreciated even in contemporary stud-
ies of complex genome features. A case in point is Wagner parsimony that was
recently used to study genome size evolution [6] and short sequence length
polymorphisms [51]. Genome size and tandem repeat copy numbers as well
as the other examples to follow are common in that they are difficult to ad-
dress in probabilistic models, either for technical reasons or simply because
the relevant evolutionary processes are still not understood well enough.

Phylogenetic footprinting

In phylogenetic footprinting, conserved short sequence motifs are discovered
in a sample of unaligned sequences associated with the terminal nodes of
a known phylogeny [5]. It is assumed that the sequences contain common
regulatory signals with some level of conservation. The corresponding an-
cestral reconstruction problem (Substring Parsimony) labels the nodes with
k-letter sequences F = {A, C, G, T}k for a fixed k. Leaves must be labeled by
a word that appears somewhere in the input sequence, and edge costs mea-
sure distance between parent and child labels. The algorithm of Sankoff and
Rousseau can be readily modified to initialize a set of possible labels at the
leaves with 0 cost. [5] propose practical algorithmic improvements for small k,
but Substring Parsimony is NP-hard in general [18].

Gene family evolution

A number of software packages implement asymmetric Wagner parsimony
for the inference of ancestral gene family sizes [11, 8, 2]. Weighted parsimony
has been used to study the frequence of gene loss and gain, and to estimate
ancestral genome sizes [37, 36]. Pioneering large-scale studies on the phy-
logenetic distribution of gene families revealed a surprisingly gene-rich last
universal common ancestor by ancestral reconstruction [33]. Genes tend to
be lost more often than gained in the course of evolution, and asymmetric
gain-loss penalties can capture known discrepancies between the intensities
of the two processes. Selecting the relative costs between loss and gain en-



Ancestral inference by parsimony 15

tails additional considerations such as the plausibility of the reconstructed
ancestral genome size [33].

Han and Hahn [27] use k-dimensional linear parsimony to study gene dupli-
cations and losses concomitantly with transpositions between chromosomes.
Homolog genes for a family are encoded in a k-dimensional integer vector by
the copy numbers on k chromosomes. Homolog families over ten complete
Drosophila reveal patterns of sex-specific gene movement to and from the
X chromosome, overly active functional categories, and other idiosyncrasies
that characterize fly genome evolution.

Splice sites and intron length

Gelfman and coauthors [26] resort to squared parsimony to infer ancestral
intron length from homologous introns in 17 vertebrate genomes. The study
links length constraints to splicing signal strength (the stronger the signal,
the longer the intron can be) and shows that the correlations specifically
pertain to vertebrates. In a related study, Schwartz et al. [48] infer ancestral
splice site signals. Starting with aligned 5’ splice sites and branch sites in
different introns, the nucleotide frequencies in each motif position are com-
piled into probabilistic sequence motifs that label the leaf genomes. Ancestral
nucleotide frequencies are reconstructed separately in each motif position by
squared parsimony. The reconstruction implies that sites were degenerate in
the earliest eukaryotes, hinting at the prevalence of alternative splicing in
deep eukaryotic ancestors.

Gene order

Ancestral reconstruction of gene order was pioneered as a parsimony prob-
lem by Sankoff et al. [45]. In this context, nodes are labeled by gene orders,
which are the permutations defined by the physical order of genes (or other
genetic markers) along the chromosomes. Appropriate cost functions for such
permutations can be defined using an edit distance penalizing various rear-
rangement events, or by counting conserved segments and breakpoints. Other
contributions in this volume address the mathematically rich field of gene
order comparisons in more details (in particular, [38] discusses distances be-
tween gene orders): here, we mention only some recent connections to classic
parsimony variants.

Wang and Tang [50] explored an encoding of adjacencies that are suitable
to submit as phylogenetic characters to parsimony labeling. The reconstruc-
tions need to be corrected to yield valid gene orders (the inferred ancestral
adjacencies may imply a circular chromosome) — the correction is shown to
be NP-hard. Feijão and Meidanis [21] give an edit distance function for which
parsimony labeling is feasible in polynomial time. They show in particular
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that that by simply using adjacencies as binary phylogenetic characters, and
applying Fitch parsimony (with some small algorithmic adjustments), one
recovers a most parsimonious gene order history under the so-called single-
cut-and-join distance. Bérard et al. [3] also use parsimony labeling for infer-
ring ancestral adjacencies; the novelty of their approach is that it incorporates
gene duplications and losses by carrying out Sankoff’s dynamic programming
method simultaneously along two gene phylogenies reconciled with a known
species tree.

4 Conclusion

Parsimony is not as popular as it once was, mostly because today’s large
data sets contain enough statistical signal to employ sophisticated prob-
abilistic models. Nevertheless, parsimony remains a viable choice in many
contemporary applications, where parameter-rich stochastic models are not
available or are impractical. Indeed, different scoring policies are available
for the evolutionary analysis of “unconventional” genome features, including
sequence motifs, copy numbers, genomic lengths and distributions. Surpris-
ingly diverse policies are amenable to exact optimization by dynamic pro-
gramming following the same basic recipe. Along with Felsenstein’s seminal
work on likelihood calculations [22], Sankoff’s parsimony minimization [47]
established fundamental algorithmic techniques for modeling evolutionary
changes, which proved to be versatile enough to tackle new computational
biology challenges for the past forty years.
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