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CLONE-ARRAY POOLED SHOTGUN MAPPING AND
SEQUENCING:

DESIGN AND ANALYSIS OF EXPERIMENTS

MIKLÓS CSŰRÖS AND ALEKSANDAR MILOSAVLJEVIC

Abstract. This paper studies methods for sequencing and map-
ping that rely solely on BAC pooling and shotgun sequencing.
First, we scrutinize and improve the recently proposed Clone-Array
Pooled Shotgun Sequencing (CAPSS) method, which delivers a
clone-linked assembly of a whole genome sequence. Secondly, we
introduce a novel physical mapping method, called Clone-Array
Pooled Shotgun Mapping (CAPS-MAP), which computes the physi-
cal ordering of BACs in a random library. Both CAPSS and CAPS-
MAP are based on constructing subclone libraries from pooled ge-
nomic clones.

After pointing out some shortcomings of the original CAPSS
proposal, we propose algorithmic and experimental improvements
that make CAPSS a viable option for sequencing a set of BACs. We
provide the first probabilistic model of CAPSS sequencing progress.
The model leads to theoretical results supporting previous, less
formal arguments on the practicality of CAPSS. We demonstrate
the usefulness of CAPS-MAP for clone overlap detection with a
probabilistic analysis. Our analysis indicates that CAPS-MAP is
well-suited for detecting BAC overlaps in a highly redundant li-
brary, relying on a low amount of shotgun sequence information.
Consequently, it is a practical method for computing the physical
ordering of clones in a random library, without requiring addi-
tional clone fingerprinting. Since CAPS-MAP requires only ran-
dom shotgun sequence reads, it can be seamlessly incorporated into
a sequencing project with almost no experimental overhead.

Keywords: sequencing, physical mapping, pooled shotgun se-
quencing.

1. Introduction

A new BAC-based sequencing strategy, called Clone-Array Pooled
Shotgun Sequencing (CAPSS), was proposed recently (Cai et al. 2001).
CAPSS assembles the complete sequences of individual BACs using a
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small number of shotgun libraries compared to clone-by-clone sequenc-
ing strategies. In a clone-by-clone approach, clones are sequenced in-
dependently: DNA is extracted from each clone and used for subclone
library preparations. In this way one subclone library is constructed
for every clone. The clone’s initial sequence is assembled after collect-
ing a sufficient number of sequence reads from the subclone library. In
a CAPSS approach, DNA from clones are pooled together, and sub-
clone libraries are prepared from the pools. A CAPSS experiment is
designed so that the number of subclone libraries is much smaller than
the number of clones, yet the pooling design enables the assembly of in-
dividual clone sequences. In what follows, we refer to random shotgun
sequence reads collected from a subclone library that was constructed
using pooled BACs as pooled shotgun fragments. For the computational
aspects of sequence assembly, pooled shotgun fragments are random
subsequences originating from a set of clone sequences.

The CAPSS proposal (Cai et al. 2001) relies on a simple rectangular
pooling design defined by an array layout of BACs (Figure 1). The
pools correspond to the rows and columns. An array layout reduces
the number of shotgun library preparations to the square root of the
number of BACs when compared to clone-by-clone sequencing. This re-
duction can be important given the fact that for a mammalian genome,
even a minimally overlapping tiling path contains between twenty and
thirty thousand clones (IHGSC 2001).

This paper has two goals. First, after pointing out some shortcom-
ings of the original CAPSS proposal, we propose algorithmic and exper-
imental improvements that make CAPSS a viable option for sequencing
a set of BACs. We provide the first probabilistic model of CAPSS se-
quencing progress. The model leads to theoretical results supporting
previous, less formal arguments on the practicality of CAPSS. The
paper’s second goal is to introduce the Clone-Array Pooled Shotgun
Mapping (CAPS-MAP) method to detect clone overlaps in a random
BAC library. The information on clone overlaps is used to compute the
physical ordering of clones in the library, without requiring additional
clone fingerprinting. CAPS-MAP operates in the same experimental
framework as CAPSS. It needs only shotgun sequence reads, which
makes it a cost-effective method that can be seamlessly integrated into
a sequencing project with very little experimental overhead. We demon-
strate the usefulness of CAPS-MAP for clone overlap detection with a
probabilistic analysis.
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Figure 1. CAPSS strategy for arrayed BACs. DNA ex-
tracted from each clone is pooled together with other clones
in the same row and column. Subclone libraries are pre-
pared from the pools, and random reads are collected from
the sublibraries. Reads are assembled into contigs. If a con-
tig contains reads from a row and a column pool’s sublibrary,
the contig is assigned to the BAC at the intersection of the
row and the column.

2. Transversal designs

It was proposed by Cai et al. (2001) that CAPSS be used in hybrid
projects, combining whole-genome shotgun (WGS) (Weber and Myers
1997) and pooled shotgun fragments. The idea is that the pooled shot-
gun fragments can provide the localization information for the whole-
genome shotgun fragments so that the latter can be used for a clone-
linked sequence assembly. After fragments are assembled into contigs,
the contigs need to be mapped to individual BACs. There are at least
two algorithmic approaches to assigning the contigs to BACs in a hy-
brid CAPSS project. The first one, which we call clone-based contig
mapping, was suggested by Cai et al. (2001), and consists of assembling
contigs for each BAC individually. For each BAC, WGS fragments are
combined with the fragments from the pools that the BAC is included
in, i.e., from the BAC’s row and column pools in the original CAPSS
design. Each assembled contig that contains fragments from two of the
BAC’s pools is assigned to the BAC. Another possibility, which we call
collective contig mapping, is to combine all whole-genome and pooled
shotgun fragments together, and to assign a BAC to each resulting
contig according to the pools that the fragments originate from. In
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collective contig mapping, contigs may be simultaneously mapped to
more than one clone.

What are the difficulties in contig mapping? We mention here three
main problems: false negatives, ambiguities, and false mapping. A
false negative refers to a situation where a BAC is not sampled in
a pool it is included in, due to the low number of pooled shotgun
fragments. A false negative for a simple rectangular design means that
no contigs can be mapped to the BAC. Ambiguities and false mappings
are caused by overlapping clones, or more generally, by clones that
share identical sequences. The mapping of a contig is ambiguous if it
is not possible to decide which clones the contig should be assigned to,
in cases where two or more clone sets are equally likely choices for the
mapping. For instance, if a contig contains pooled fragments from two
row pools and two column pools, then there are four BAC candidates
for the mapping, at the four intersections of the rows and columns. If
they are numbered by B11, B12, B22, and B21 in a clockwise direction,
then the clone pairs (B11, B22) and (B12, B21) are equally likely choices.
False mapping occurs when an insufficient number of pooled shotgun
sequence reads are collected, and a contig that covers overlapping BACs
gets assigned to the wrong clone or clone set. With the example of
the four BACs in two rows and two columns, a false negative would
occur if a contig were to contain fragments from only one row pool and
column pool, and if, accordingly, we were to conclude that the contig
should be mapped to, say, clone B11, when in reality it belonged to an
overlap between B12 and B21. False mapping is more detrimental than
ambiguity since it is not detected during contig mapping. In a clone-
based mapping approach, contigs that cover clone overlaps are shorter,
and get falsely mapped more often. With the example of the four
clones, contigs covering the overlap might be assigned to each of the
four clones, whereas a collective mapping approach would classify them
as ambiguous. In view of the more harmful effects of clone overlaps in
the clone-based mapping approach, collective contig mapping is the
preferable method.

One strategy used to overcome the problems of ambiguity, false neg-
atives, and false mapping involves transversal pooling designs (Csűrös
and Milosavljevic 2002; Du and Hwang 2000). Using a transversal
double-array design, the same set of BACs is independently arrayed
and pooled twice. Each of the two resulting arrays contains the same
set of BACs, albeit in a different two-dimensional arrangement. Thus,
each BAC ends up being sampled in four pools: two column-pools and
two row-pools. One of the arrays contains an arbitrary arrangement of
BACs, while the other is “reshuffled” relative to the first.
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More generally, a transversal pooling design with n = 2d pool sets
can be used to arrange clones on d reshuffled arrays. For a transversal
design with n pool sets, every clone is included in n pools, and any
subset with at least 2 of those pools uniquely identifies the clone.

The number of arrays in a transversal design may be adjusted to
allow unambiguous and correct contig mapping for any redundancy in
a BAC library. Specifically, it can be shown (Csűrös and Milosavljevic
2002; Du and Hwang 2000) that a d-array transversal design can ac-
curately resolve BACs at up to (2d − 1)X redundancy. We previously
described and analyzed transversal designs in the context of pooled
shotgun experiments (Csűrös and Milosavljevic 2002) and compared
their performance to other designs. Even though our analysis was per-
formed for the Pooled Genomic Indexing (PGI) method in the context
of comparative physical mapping, the results are generally valid for
CAPSS and CAPS-MAP as well. Specifically, our results indicate that
transversal designs reduce the frequency of false negatives and false
mappings when compared to a simple rectangular design. Furthermore,
when compared to other more complicated designs, they achieve an op-
timal balance between the number of shotgun library preparations and
the frequency of contig mapping problems. Transversal designs also en-
joy a practical advantage over more complicated combinatorial designs,
in that they are readily implemented using existing automated clone
arraying technologies.

When a transversal design is used, collective contig mapping can be
implemented very efficiently, based on an algorithm that runs in O(N +
M) time for mapping M contigs onto N BACs. Without going into
details, the main idea of the algorithm is to first build in O(N) time
a hash table that maps pool pairs to BACs. Based on the property of
transversal designs that two pools identify a clone, this table contains
all pool pairs that identify a unique clone. For each contig, it takes O(1)
time using the hash table to either identify the most likely clone set to
which the contig can be mapped, or to declare the contig ambiguous.

3. Pooled shotgun fragments for sequencing

In this section we analyze CAPSS sequencing progress in a hybrid
project that uses whole-genome and pooled shotgun fragments. Pooled
shotgun fragments are collected using a transversal design with n pool
sets, i.e., n/2 arrays. In order to derive a probabilistic model for such
experiments, we introduce the following notations along with some stan-
dard simplifying assumptions. Assume that every clone has the same
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length L (100–200 thousand base pairs in practice), and that each shot-
gun fragment has the same length ` (500 bp in practice). Let a be
the coverage by pooled shotgun fragments, i.e., if Fp pooled shotgun se-

quence reads are collected, then a = Fp`

NL
where N is the total number of

clones. Let w denote the coverage by whole genome shotgun fragments,
i.e., if Fw WGS sequence reads are collected, then w = Fw`

G
where G

is the genome length. Notice that w = 0 is possible. The WGS and
pooled fragments are combined and compared to each other to find over-
laps between them. Overlapping fragments form islands. Islands with
two or more fragments are called contigs. An overlap between two frag-
ments is detected if it is at least of length ϑ` where 0 < ϑ ≤ 1. Statistics
for islands, contigs, and gaps between islands are well known (Lander
and Waterman 1988; Wendl and Waterston 2002). We are interested
in statistics for clone-linked contigs, those that are assigned to BACs
using the pooling information.

Here we consider the simplest case of assembling the sequence of a
single clone that does not overlap with any other clone. Such a clone
is covered by a total coverage of (a + w). Although we concentrate
on sequencing a particular clone, the transversal design allows the se-
quencing of overlapping clone regions by combining fragments from
many (or even all) pools in a collective contig mapping method. Re-
gions of overlapping clones have higher coverage since they are covered
by more pooled fragments than a single clone. The sequencing of over-
lapping regions progresses thus faster than what is suggested by the
statistics for a single clone. We examine the case of assigning contigs
to overlapping BACs in §4. Two fragments from different pools suf-
fice to assign a contig to a single BAC. In a practical setting, it may
be advantageous to require more stringent criteria in order to avoid
false mappings. The following theorem can be readily adapted for such
criteria, albeit resulting in bulkier formulas.

Theorem 1. Let σ = 1 − ϑ where ϑ is the fraction of length two
fragments must share in order for the overlap to be detected. Consider
a BAC that does not overlap with other clones. Define c = w + a, the

total coverage. Let X1 =
w+ a

n

c
, X2 = w

c
, and Yi = 1 − (1 − e−cσ)Xi

for i = 1, 2.

(i) The expected number of clone-linked contigs covering the clone
equals

(1)
L

`
ce−cσplink,
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where

(2) plink =

1− e−cσ

(
nX1

Y1
− (n− 1)X2

Y2

)
if w > 0;

1−e−aσ

1+ 1
n−1

e−aσ if w = 0.

(ii) The expected number of fragments in a clone-linked contig is

(3) Flink =


ecσ

plink

(
1− e−2cσ

(
nX1

Y 2
1
− (n− 1)X2

Y 2
2

))
if w > 0;

eaσ +
1− 1

n−1

1+ e−aσ

n−1

if w = 0.

(iii) Define

Fnolink =
nX1

Y 2
1
− (n− 1)X2

Y 2
2

nX1

Y1
− (n− 1)X2

Y2

,(4)

and

λCBC =
ecσ − 1

c
+ ϑ.(5)

The expected length of a clone-linked contig can be written as
`λlink where λlink is bounded as

(6)
λCBC −

(
Fnolinkσ + ϑ

)
(1− plink)

plink

≤ λlink ≤ λCBC.

Furthermore, when µ = a/c is kept constant, Fnolink increases
monotonically with c and

(7) lim
c→∞

Fnolink =

{
µ−1 (3n2−3n+1)−µ(2n2−3n+1)

(2n2−3n+1)−µ(n2−2n+1)
if w > 0;

n
n−1

if w = 0.

Proof. The proof relies on a Poisson process model, following the tech-
nique of Waterman (1995). We model the location of the shotgun frag-
ments as a Poisson process with rate c. Define µ = a/c, the fraction of
pooled shotgun fragments. Every fragment is either a WGS fragment
with probability (1 − µ), or comes from each one of the clone’s pools
with probability µ/n. First we state the well-known facts (Lander and
Waterman 1988; Waterman 1995) about apparent islands, whether or
not they are linked to a clone. The event E that a given fragment is the
right-hand end of an apparent island has probability J = PE = e−cσ.
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Figure 2. CAPSS (Theorem 1): clone-linked contig statis-
tics. The values are calculated from Theorem 1 for two-array
transversal designs and different pooled coverage levels a.
Overlaps between fragments are detected with ϑ = 0.1. The
number of contigs on the right-hand side is given in multiples
of L/`. The abscissa is the total coverage c.

62 4
c=a+w

0.999

0.99

0.9

0

0.9999

n=2, w=0

upper bound

n=4, w=0

n=4, w=2a

n=8, w=0

n=4, w=a

fraction of sequenced bases

62 4
c=w+a

1

10

100

w=0

no pooling

w=2a

w=10a

w=a

a=1X

N50 read contig length

a b

Figure 3. CAPSS (Theorem 1): sequencing progress. The
left-hand side plots the fraction of bases covered by clone-
linked contigs as a function of total coverage (c = a + w)
for different designs. Notice that the improvement from two
arrays to four arrays (n = 4 vs. n = 8) is marginal. The right-
hand side plots the N50 values for different designs with two
arrays, as multiples of `. All values were calculated with frag-
ment overlap detection ϑ = 0.1. The N50 plot was obtained
from simulation: each point is an average of 200 measure-
ments.

For the k-th read, define Mk as the number of fragments from its right-
hand end until the first gap towards the left. The probability that an
island has j fragments in it equals

P
{

Mk = j
∣∣∣ E} = (1− J)j−1J.
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An island can be mapped to a clone if it contains fragments from at
least two pools. The probability of mapping the island ending at the
k-th read (event Dk) depends on the number of fragments in the island.
Using inclusion-exclusion:

(8) P
{

Dk

∣∣∣Mk = j
}

= 1−
∑
pools

P
{

fragments from only one pool+WGS
∣∣∣Mk = j

}
+ (n− 1)P

{
only WGS reads

∣∣∣Mk = j
}

= 1− n
(
1− n− 1

n
µ
)j

+ (n− 1)(1− µ)j.

By Equation (8), the number of fragments in a clone-linked island is
distributed by the probabilities

(9) P
{

Dk, Mk = j
∣∣∣ E} = P

{
Dk

∣∣∣Mk = j, E
}

P
{

Mk = j
∣∣∣ E}

=

(
1− n

(
1− n− 1

n
µ
)j

+ (n− 1)(1− µ)j

)
(1− J)j−1J

= P0(j)− nP (n)
µ (j) + (n− 1)P (∞)

µ (j).

with

P0(j) = (1− J)j−1J ;(10a)

P (n)
µ (j) =

(
(1− J)

(
1− n− 1

n
µ
))j−1

J
(
1− n− 1

n
µ
)
;(10b)

P (∞)
µ (j) =

(
(1− J)(1− µ)

)j−1

J(1− µ).(10c)

Now, for all 0 < z ≤ 1,

(11)
∞∑

j=1

(1− z)j−1 =
1

z
;

∞∑
j=1

j(1− z)j−1 =
1

z2
.

Using Equation (11),

P
{

Dk

∣∣∣ E} =
∞∑

j=1

P
{

Dk, Mk = j
∣∣∣ E}

= 1−
nJ(1− n−1

n
µ)

1− (1− J)
(
1− n−1

n
µ
) +

(n− 1)J(1− µ)

1− (1− J)(1− µ)
.
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In Equation (2), plink = P
{

Dk

∣∣∣ E}. Equation (1) follows from the fact

that the expected number of fragments covering the clone equals cL/`.
By definition of the conditional probability,

P
{

Mk = j
∣∣∣ Dk, E

}
=

P
{

Dk, Mk = j
∣∣∣ E}

P
{

Dk

∣∣∣ E} =
P0(j)− nP

(n)
µ (j) + (n− 1)P

(∞)
µ (j)

plink

,

where the values can be plugged in from Equations (2) and (10). By
Equation (11),
(12)

E
[
Mk

∣∣∣ Dk, E
]

=
p−1

link

J

(
1−

nJ2
(
1− n

n−1
µ
)

(
1− (1− J)(1− n−1

n
µ)
)2 +

(n− 1)J2(1− µ)(
1− (1− J)(1− µ)

)2

)
,

which corresponds to (ii) with Flink = E
[
Mk

∣∣∣ Dk, E
]
. It is interesting

to notice that when µ = 1, in Equation (12),

2

J(σ)
≥ E

[
Mk

∣∣∣ Dk, E
]

>
1

J(σ)
,

and that E
[
Mk

∣∣∣ Dk, E
]
J−1(σ) decreases when the coverage c increases.

By Equation (2),
(13)

P
{

Dk

∣∣∣ E} = 1−plink = 1−J
1−

(
1− J

)(
1− n−1

n
µ
)
(1− µ)(

1−
(
1− J

)(
1− n−1

n
µ
))(

1−
(
1− J

)(
1− µ

)) .

The expected number of fragments in an island that is not mapped to
a clone equals

E
[
Mk

∣∣∣ Dk, E
]

=
E
[
Mk

∣∣∣ E]− E
[
Mk

∣∣∣ Dk, E
]
P
{

Dk

∣∣∣ E}
P
{

Dk

∣∣∣ E} .

Using E
[
Mk

∣∣∣ E
]

= J−1 and Equations (12), (2), and (13), we get

Equation (4) with the notation Fnolink = E
[
Mk

∣∣∣ Dk, E
]
.

Let `λk be the length of the island ending with the k-th fragment.

The length of a non-linked island can be bounded as `E
[
λnolink

∣∣∣ Dk, E
]

with

1 ≤ E
[
λnolink

∣∣∣ Dk, E
]
≤ E

[
Mk

∣∣∣ Dk, E
]
σ + ϑ.
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The bounds of Equation (6) follow from

E
[
λk

∣∣∣ Dk, E
]

=
E
[
λk

∣∣∣ E]− E
[
λk

∣∣∣ Dk, E
]
P
{

Dk

∣∣∣ E}
P
{

Dk

∣∣∣ E} ,

where E
[
λk

∣∣∣ E] = λCBC = J−1−1
c

+ ϑ (Waterman 1995). �

Figures 2 and 3 compare different experimental designs based on
Theorem 1 and simulations. Figure 2 plots the island statistics from the
theorem. It illustrates that for lower coverages (about c < 4), the ratio
of pooled shotgun fragments makes a large difference in the sequencing.
This difference is mainly shown in the number of clone-linked contigs,
as the contig sizes do not differ much. At large coverage levels, when
sequencing is nearly completed, the impact of pooled fragments is less,
i.e., WGS sequence reads can make up for a lower pooled coverage.

Figure 3a shows that while more arrays increase the sequencing suc-
cess, the improvements are very small after the second array. Notice
that if the clones are selected from a minimally overlapping tiling path,
then no part of the genome is covered by more than two BACs, and
thus two arrays suffice for the unambiguous mapping of all contigs that
cover clone overlaps. Figure 3b plots the N50 values. The N50 contig
length is the value l such that half of the sequenced nucleotides belong
to contigs of length at least l. The statistics for all designs converge to
those of a non-pooled sequencing project as the coverage increases. In
other words, the negative effects of pooling diminish and the project
progresses just as without pooling: for example, at total coverage 4–5X,
99% of the clone is sequenced.

The value λCBC in the theorem is the expected island length in a
non-pooled sequencing project. By Equation (7), and the fact that
limc→∞ plink = 1, we have limc→∞ λlink = λCBC when the ratio of pooled
shotgun fragments is kept constant. This limit result is not surprising
given that every island can be assigned to a clone with near certainty
when the sequence read coverage is large.

4. Pooled shotgun fragments for overlap detection

The key observation for this section is that a transversal design makes
it possible to map a contig unambiguously to more than one BAC at
once. Now, a contig that is mapped to two clones simultaneously can
be viewed as evidence that the two clones overlap. Taking the idea
further, an entire set of BACs can be tested for overlaps in this manner,
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which leads us to the Clone-Array Pooled Shotgun Mapping (CAPS-
MAP) method that is described as follows. A redundant collection of
random BACs covering a large genome is grouped into subsets of size q2.
Pooled shotgun sequence reads are collected from each clone group
using a transversal design with d arrays of size q× q. Partitioning into
subsets may be dictated by the practical concerns of chemistry, biology
and robotic automation. For array sizes that are multiples of 8 or 12
or both (yielding standard dimensions of a 96-well microtiter plate),
such as q = 24, or q = 48, there exist known (Colbourn and Dinitz
1996) transversal designs. A pooling design with a few (d = 2, 3, 4)
arrays suffice to compute the physical ordering of BACs in the library,
depending on the library’s redundancy and the array sizes. In addition
to the pooled shotgun fragments, WGS fragments are used to increase
read contig lengths. The fragments are compared to each other to find
the overlaps between them, and overlapping fragments are assembled
into contigs. Contigs that map unambiguously to more than one clone
are taken as evidence that the clones overlap. Figure 4 shows how
overlaps between clones in different clones can be detected. Figure 5
shows how overlaps between clones in the same clone group can be
detected even in the presence of false negative errors. The clone overlap
information can then be used to compute the physical ordering of the
BACs in the library, and to select a minimal tiling path for complete
sequencing, just as if the overlaps were detected using a fingerprinting
scheme (Marra et al. 1997). The following theorem considers the case
of detecting an overlap between two clones in different clone groups.
Similar analyses can be carried out for more general cases with more
overlapping clones, or clones in the same clone group, resulting in more
cumbersome formulas.

Theorem 2. Let two clones from different clone groups share an over-
lap. Define c2 = 2a+w, the total sequence read coverage for the overlap.
Define

β1 =
w + (1 + 1

n
)a

c2

β2 =
w + a

c2

β3 =
w + 2a

n

c2

β4 =
w + a

n

c2

β5 =
w

c2

;

γi = 1− (1− e−c2σ)βi for i = 1, . . . , 5.

(i) An apparent island in the overlap consisting of j > 0 fragments
is mapped to the two clones simultaneously with probability 1−
q(j) where

(14) q(j) = 2nβj
1−2(n−1)βj

2−n2βj
3+2n(n−1)βj

4−(n−1)2βj
5 < 2nβj

1.



CAPSS AND CAPS-MAP 13

contig indicating 

clone overlap

pools containing the same clone

Figure 4. CAPS-MAP detects overlaps between clones by
identifying situations where a read contig maps simultane-
ously to two clones. This figure illustrates a transversal pool-
ing design for array pairs containing identical sets of BACs.
The transversal design guarantees that the intersection of
any two pools out of four possible for each BAC (two row
and two column pools) uniquely identifies the BAC.

contig indicating clone overlap

Figure 5. Overlaps between clones on the same ar-
ray can also be detected by a transversal design, even
in the presence of false negatives, i.e., situations where
a particular BAC is not represented in a particular pool.
Specifically, overlap between the two BACs illustrated in
the figure is detected despite the fact that each BAC is
sampled in only three pools.
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(ii) An apparent island covering the overlap is mapped to the two
clones simultaneously with probability

(15)

p2 = 1−e−c2σ

(
2n

β1

γ1

−2(n−1)
β2

γ2

−n2β3

γ3

+2n(n−1)
β4

γ4

− (n−1)2β5

γ5

)
.

Proof. The overlap is detected if it is covered by an island that can be
simultaneously mapped to the two clones. We model the location of the
shotgun fragments as a Poisson process with rate c2. Define µ2 = 2a

c2
,

the fraction of pooled fragments covering the overlap. Every fragment
is either a WGS fragment with probability (1−µ2), or comes from each
one of the two clones’ pools with probability µ2/(2n). The event E2

that a given fragment is the right-hand end of an apparent island has
probability J2 = PE2 = e−c2σ. For the k-th fragment, define Mk as the
number of fragments from its right-hand end until the first gap towards
the left. The probability that an island has j fragments in it equals

P
{

Mk = j
∣∣∣ E2

}
=
(
1− J2

)j−1

J2.

The probability of mapping the island that ends at the k-th fragment
(event Dk) depends on the number of fragments in the island. We
calculate the probability of event Dk in separate cases. Let p0,0(j)
denote the event that the island consists of WGS fragments only given
that it has j reads. Then

(16a) p0,0(j) = (1− µ2)
j.

Let p0,∗(j) denote the event that the island consists of pooled fragments
for one clone only and WGS fragments, given that it has j fragments:

(16b) p0,∗(j) =
(
1− µ2

2

)j

.

Let p1,0(j) denote the event that the island consists of pooled fragments
from a fixed pool and WGS fragments, given that it has j fragments:

(16c) p1,0(j) =
(
1−

n− 1
2

n
µ2

)j

− p0,0(j).

Let p1,1(j) denote the event that the island consists of pooled fragments
from a fixed pool for one clone, from another fixed pool for the other
clone, and WGS fragments, given that it has j fragments:

(16d) p1,1(j) =
(
1− n− 1

n
µ2

)j

− 2p1,0(j)− p0,0(j).

Let p1,+(j) denote the event that the island consists of pooled fragments
from a fixed pool for one clone, at least one pooled fragment for the
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other clone, and WGS fragments:

(16e) p1,+(j) =
(
1− n− 1

2n
µ2

)j

− p0,∗(j)− p1,0(j).

Using inclusion-exclusion,

P
{

Dk

∣∣∣ E2, Mk = j
}

=
(
2p0,∗(j)− p0,0(j)

)
+ 2np1,+(j)− n2p1,1(j).

By Equations (16a–16e),

(17) P
{

Dk

∣∣∣ E2, Mk = j
}

= 2n
(
1− n− 1

2n
µ2

)j

− 2(n− 1)
(
1− µ2

2

)j

− n2
(
1− n− 1

n
µ2

)j

+ 2n(n− 1)
(
1−

n− 1
2

n
µ2

)j

− (n− 1)2(1− µ2)
j,

which corresponds to Equation (14) with q(j) = P
{

Dk

∣∣∣ E2, Mk = j
}

.

Using the same technique as before

1− p2 = P
{

Dk

∣∣∣ E2

}
=

∞∑
j=1

P
{

Dk

∣∣∣ E2, Mk = j
}

P
{

Mk = j
∣∣∣ E2

}
,

leading to Equation (15).
Recall that q(j) is the probability of failing to map a contig of j reads

to the two clones simultaneously. In order to show that the inequality
in Equation (14) holds, we prove that

(18) q(j) < 2nβj − (2n− 1)βj
3 < 2nβj

1.

Notice that β5 < β4 < β3 < β2 < β1 and thus q(j) ; 2nβj
1. Since β4 =

(β3 + β5)/2, it follows from the convexity of xj that

(19) 2βj
4 ≤ βj

3 + βj
5.

(Alternatively, notice that the same inequality follows from p1,1(j) ≥ 0
in Equation (16d).) We proceed by rearranging the equality of Equa-
tion (14):

2nβj
1−(2n−1)βj

3−q(j) = 2(n−1)βj
2+(n−1)2βj

3−2n(n−1)βj
4+(n−1)2βj

5

= (n− 1)2
(
βj

3 + βj
5 − 2βj

4

)
︸ ︷︷ ︸

> 0 by Eq. (19)

+2(n− 1)
(
βj

2 − βj
4

)
︸ ︷︷ ︸

> 0 since β2 > β4

,

which proves Equation (18). �

It is difficult to derive useful closed formulas for the probability of
overlap detection. For example, based on Equation (15), the number of
contigs in the overlap that are simultaneously mapped to the clones can
be modeled as a Poisson random variable with expected value c2e

−c2σp2.
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For practical values of c2, this model seriously underestimates the prob-
ability of overlap detection. The problem is similar to the one of using
Lander-Waterman statistics (Lander and Waterman 1988) at high cov-
erages (see Wendl and Waterston (2002) for a discussion). For a more
suitable model, let G be the number of gaps entirely contained in the
overlap, and number the islands from 0 to G. Let j0, j2, . . . , jG denote
the number of fragments in the islands. The probability that none of
the islands can be mapped simultaneously to the two clones can be
calculated as pnomap(j0, . . . , jG) =

∏G
i=0 q(ji). Notice that G and the ji

are random variables. We are interested in the expected value

(20) pnomap = Epnomap(j0, . . . , jG).

In order to get a good assessment of CAPS-MAP performance, we
found that it is best to use a Monte-Carlo estimation of this expected
value; see Figure 6. Alternatively, by the inequality of Equation (14),

pnomap < E
[
βR

1 (2n)G+1
]

where R is the number of fragments in the

overlap, and thus R =
∑G

i=0 ji. Following an approach similar to that
of Wendl and Waterston (2002), which models the underlying cover-
age process more carefully, we can derive bounds (see Appendix) that
are useful for large values of c2 (e.g., c2 = 7), but at lower coverages,
this approach also underestimates the overlap detection probabilities
significantly.

Based on Figure 6, the probability of detecting an overlap increases
exponentially toward 1 with the overlap length. The same exponen-
tial behavior is characteristic of clone anchoring methods for overlap
detection (Arratia et al. 1991). Consequently, clone contig statistics
for CAPS-MAP can be calculated using a clone anchoring model with
an appropriate anchoring process intensity. Clone contig statistics can
also be estimated using a fingerprinting model (Lander and Waterman
1988) by noticing that clone overlaps above a certain length are de-
tected with near certainty. Figure 6 indicates that using 1X pooled
shotgun coverage and 2–5X WGS coverage, BAC overlaps of more than
20000 bp are detected almost certainly. While CAPS-MAP uses only
the fact that a contig is mapped to multiple BACs, and not the ac-
tual contig sequence, the sequence information is used in the ensuing
sequencing phase, and thus CAPS-MAP represents very little overhead
in a whole-genome sequencing project.

It is worth pointing out here that CAPS-MAP detects very short, or
even negative clone overlaps with non-negligible probability. A short
region of the genome that is not covered by BACs in the library can be
bridged by WGS fragments. The bridging WGS fragments may form a
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Figure 6. Clone overlap detection. The graph shows the
probability of not detecting an overlap between two clones,
as a function of the overlap size. The plots were calculated by
a Monte-Carlo method using Theorem 2. All plots use ϑ =
0.1 for shotgun fragment overlap detection, and ` = 500 for
shotgun fragment length.

contig with pooled fragments from the two BACs at the gap’s ends that
can be mapped to the two clones simultaneously. This unique feature
of CAPS-MAP among clone overlap detection methods does not inter-
fere with the calculation of the physical ordering of BACs. At the same
time, it does decrease the necessary BAC library size for sequencing the
genome completely. After the clones are selected for complete sequenc-
ing, the already collected WGS fragments are included in the genome
sequence assembly. Consequently, negative overlaps detected by CAPS-
MAP are already covered by shotgun fragments in the sequencing phase,
and pose no additional requirements for shotgun sequence collection.

5. Discussion

Our analyses presented here indicate the theoretical feasibility of the
CAPS-MAP method and provide guidance for the design of genome-
scale CAPS-MAP experiments. In particular, our analysis indicates
that transversal pooling designs can accommodate high levels of clone
redundancy and perform well even at low levels of shotgun sequence
coverage of clone pools. Moreover, transversal designs also perform
well in cases where BACs are not equally represented in the pools, thus
making certain BACs “invisible” in certain pools.
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Practical biological and technical considerations may set a limit to
the array size. In case of large genomes, the limitations may imply that
the set of BACs is partitioned and that pooling is applied separately to
individual subsets. This results lower clone redundancy within individ-
ual arrays and a larger number of pools. The analysis presented here
allows for the partitioning of clones. It also allows for the possibility
of including whole-genome shotgun sequence reads. Thus, our analysis
covers a realistic and practical scenario of the CAPS-MAP method’s
application. Pooling methods are ideally suited for hybrid sequenc-
ing strategies that combine BAC-based and whole-genome sequencing
methods. The whole-genome sequencing strategy (Weber and Myers
1997) was originally proposed to bypass the need for physical mapping.
However, the absence of BAC localization information hampers assem-
bly and finishing of the highly-repetitive mammalian genomes such
as that of humans, naturally leading to a hybrid strategy involving
a combination of BAC-based and whole-genome sequencing. In addi-
tion to having been used to assemble the initial draft of the human
genome (Venter et al. 2001), such hybrid strategies are currently being
pursued in the context of sequencing the mouse and rat genomes. The
overhead cost of CAPS-MAP in a hybrid whole-genome project is very
small, since the collected shotgun reads can be reused in the sequencing
phase.

The product of applying CAPS-MAP is a set of BAC contigs. The
contigs themselves are not anchored to particular chromosomes. Thus,
a sparse set of sequence markers such as mapped STS sequences would
be necessary to anchor the islands onto chromosomes and thereby com-
plete the physical mapping.

Alternatively, individual BACs can be comparatively mapped onto
sequenced genomes of related species using the recently described Pooled
Genomic Indexing (PGI) method (Csűrös and Milosavljevic 2002). The
advantage of PGI is that it uses the same pooling and shotgun sequenc-
ing information generated for the purpose of CAPS-MAP. Thus, PGI
can be applied concurrently and without any additional experimental
effort to obtain comparative physical maps.

One practically appealing aspect of these pooling methods is that
they can be introduced with minimal alterations of existing clone-by-
clone sequencing pipelines, such as the one at the Human Genome
Sequencing Center at Baylor College of Medicine. Another appealing
aspect is the ease of adjusting experimental parameters, such as the
depth of shotgun sequencing of pools and the number of arrays in
the course of a whole-genome experiment. The possibility of making
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adjustments translates into a significantly better control over the final
outcome of a whole-genome project.

CAPS-MAP, CAPSS, and PGI rely on essentially the same experi-
mental data. One difference is that CAPSS in principle requires higher
pool coverage than the one required for mapping by CAPS-MAP or
comparative mapping by PGI. Another difference is that CAPSS may
optionally be performed on a subset (tiling path) of BACs selected
based on a map obtained by CAPS-MAP, by PGI, or by other meth-
ods, whereas CAPS-MAP arrays must contain highly redundant collec-
tions of BACs in order to guarantee a high number of clone overlaps.
Despite these differences all three pooled shotgun methods reduce the
experimental “instruction set” for both mapping and sequencing to
just pooling and shotgun sequencing, thus allowing more streamlined,
specialized, and controlled data production.
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Appendix

Here we expand our discussion on the probability of overlap detec-
tion in CAPS-MAP. In particular, we derive formulas that show the
exponential decay of the probability of not detecting an overlap when
the coverage c2 is not too small. We start with the bound

(21) pnomap < E
[
βR

1 (2n)G+1
]

Define

Gr(z) = E
[
zG
∣∣∣ R],

the probability generating function for the distribution of the number
of gaps conditioned on the number of fragments. Define the events Ai

for i = 1, . . . , r − 1: Ai denotes the event that the i-th fragment is
followed by a gap, conditioned on the event {R = r}. For arbitrary g,
and set of indexes i1 < i2 < · · · < ig,

P
{

Ai1Ai2 · · ·Aig

}
= (1− gδ)r

+,

where δ = σ`
ΘL

, and (x)+ = max{0, x} (Ewens and Grant 2001; Wendl
and Waterston 2002). Let

S0 = 1

Sg =
∑

i1<···<ig

P
{

Ai1Ai2 · · ·Aig

}
=

(
r − 1

g

)
(1− gδ)r

+.

Using inclusion-exclusion,

P
{

G = g
∣∣∣ R = r

}
=

r−1∑
j=g

(
j

g

)
(−1)j−gSj.

Hence,

Gr(z) =
r−1∑
g=0

zg

r−1∑
j=g

(
j

g

)
(−1)j−gSj

=
r−1∑
j=0

Sj

j∑
g=0

(−1)j−g

(
j

g

)
zg

=
r−1∑
j=0

Sj(z − 1)j.
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Substituting the Sj values:

(22) Gr(z) =
r−1∑
j=0

(
r − 1

j

)
(1− jδ)r

+(z − 1)j,

a result interesting on its own.
Returning to Equation (21), we have

(23) pnomap < E
[
2nβR

1

R−1∑
j=0

(
R− 1

j

)
(1− jδ)R

+(2n− 1)j

]
,

where R is a Poisson random variable with mean

λ =
c2ΘL

`

For every r ≥ 0, (1− jδ)r
+ ≤ e−jrδ, hence

r−1∑
j=0

(
r − 1

j

)
(1− jδ)r

+(2n− 1)j ≤
(
1 + (2n− 1)e−rδ

)r−1

.

Consequently, by Equation (23),

pnomap < E
[
2nβR

1

(
1 + (2n− 1)e−Rδ

)R−1
]
.

Recall that the random value we take the expectation of is an upper
bound on pnomap(j0, . . . , jG), and thus if it is larger than one, it is useless.
Let

f(r) = min
{

1, 2nβr
1

(
1 + (2n− 1)e−rδ

)r−1}
.

So we have in fact the bound

(24) pnomap < Ef(R).

In order to achieve exponential decay in the bound, we would like to
have

β1

(
1 + (2n− 1)e−r0δ

)
< 1

for some r0 < λ. Rearranging the inequality, we have

(25) (2n− 1)
n(a + w) + a

(n− 1)a
< e(2a+w)σ,

which is satisfied when a and w are not too small (see Figure 7).
There are several possible ways to exploit the fact that the exponen-

tial component of f(r) becomes for r less than the expected value λ.
The main idea is that when evaluating Ef(R) =

∑
f(r)P{R = r} in

Equation (24), either the probability of R = r is small, or the value
of f(r) is small. Let 0 < k < λ be a threshold (that we specify later),
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Figure 7. Values of the pooled shotgun coverage a and
WGS coverage w, for which the clone overlap detection
bound applies, are above the graphs (see Equation (25))

.

and let α = k/λ. To proceed with Equation (24), we condition on the
event {R ≤ αλ}. We use the bound

(26) P{R ≤ αλ} <
e−λ(1−α)2/2

(1− α)
√

2παλ
.

By definition,

P{R ≤ αλ} ≤
k∑

r=0

λr

r!
e−λ < e−λ λk

k!

k∑
r=0

(k

λ

)r

< e−λ λk

k!
(1− α)−1 < e−λ(1−α+α ln α) 1

(1− α)
√

2παλ
,

where we used a Stirling approximation: k! > (k/e)k/
√

2πk. Using a
Taylor series expansion,

1− α + α ln α =
1

2
(1− α)2 +

1

6
(1− α)3 +

1

12
(1− α)4 . . .

and thus 1− α + α ln α > 1
2
(1− α)2 for 0 < α < 1, and Equation (26)

follows.
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Figure 8. Balanced α values for our exponential bound.

Now,

Ef(R) = E
[
f(R)

∣∣∣ R ≤ αλ
]
P{R ≤ αλ}+ E

[
f(R)

∣∣∣ R > αλ
]
P{R > αλ}

≤ P{R ≤ αλ}+ E
[
f(R)

∣∣∣ R > αλ
]

<
e−λ(1−α)2/2

(1− α)
√

2παλ
+

2ne−λ
∑∞

r=0

(
β1(1+(2n−1)e−αδλ)

)r

r!

1 + (2n− 1)e−αδλ

=
exp
(
−λ(1− α)2/2

)
(1− α)

√
2παλ

+

2n exp

(
−λ
(
1− β1(1 + (2n− 1)e−αc2σ)

))
1 + (2n− 1)e−αc2σ

,

where we used δλ = c2σ. Figure 8 shows values of α for different a, w
pairs that balance the exponents in the two terms.

After choosing a balancing α value for a given (a, w) pair, we obtain

Ef(R) < X1 exp(−X2σL),

where X1 and X2 are constants that do not depend on σ. The bound
becomes small (< 10−8) for larger c2 values (e.g., c2 = 7), but even then,
it is not very tight. Based on simulation results, the tightness is lost
with the inequality of Equation (21), and not in the following steps. For
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example, we evaluated the bounds of Equations (23) and (24) numeri-
cally. While they are fairly close to each other, and to the exponential
bound using α, they already bound the expected value of Equation (20)
rather loosely in many cases. Furthermore, even for (a, w) pairs for
which we cannot establish exponential decay using the inequality of
Equation (21), the overlap detection probability may get very close to
one. For instance, a two-array design with a = 0.5 and w = 2 falls
below the curve of Figure 7, yet can be employed efficiently in CAPS-
MAP as shown in Figure 6. Therefore, we prefer using a Monte-Carlo
evaluation of Equation (20) to predict the experimental performance
of CAPS-MAP.
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