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Abstract

Shared genealogies introduce allele dependencies in diploid genotypes, as alleles
within an individual or between different individuals will likely match when they orig-
inate from a recent common ancestor. The genotype distribution is thus a mixture
of distributions proper to different modes corresponding to combinatorially distinct
patterns of identity by descent (IBD). In the absence of known pedigrees, the ge-
netic relatedness between two individuals is described by the nine-element distribution
comprising the probabilities for different identity modes, called (Jacquard’s) identity
coefficients. At a locus with two possible alleles, identity coefficients are not identifiable
from the joint genotypes because different coefficients can generate the same genotype
distribution.

We analyze precisely how different identity modes combine into identical genotype
distributions at diallelic loci. The analysis yields an exhaustive characterization of
statistical measures over joint genotype distributions that are stable; i.e., that stay the
same for equivalent identity coefficients. Importantly, we show that stable relatedness
statistics include the kinship coefficient (probability that a random pair of alleles are
identical by descent between individuals) and a number of inbreeding-related measures,
which can thus be estimated from genotype distributions at independent biallelic loci
despite the non-identifiability of the IBD distribution. We provide simple moment-
based estimators for this purpose, and analyze their behavior on various data sets,
including horses from various breeds, and human population samples from the 1000
Genomes project.
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Non-random mating histories, selection, finite population sizes, and many other causes

create dependencies between alleles in a diploid population. Because of joint genealogies,

alleles may match within or across genotypes for being unmodified copies of a common an-

cestral state. Such alleles are said to be identical by descent (Malécot, 1969; Jacquard,

1974). Combinatorially distinct partitionings of identical-by-descent (IBD) alleles are called

identity modes (Jacquard, 1974). Two diploid individuals’ joint pedigree defines the possi-

ble inheritance histories for four alleles, which combine into a nine-element distribution over

the identity modes. Every identity mode generates its own probability distribution over the

joint genotypes at a locus, and the observable genotypic distribution is the mixture of the

mode-specific distributions. The probabilities of the identity modes, or identity coefficients,

characterize thus the individuals’ genetic relatedness succinctly.

[Figure 1 about here.]

The identity coefficients can be computed for any known pairwise genealogy (Cock-

erham, 1971; Lange, 1997). Hypothetical pedigrees can be thus assessed by comparing

implied genotype distributions with empirical ones (Thompson, 1975; Milligan, 2003).

But can identity coefficients be directly inferred from genotype distributions without ge-

nealogies? The answer depends on the number of alleles. There are 9 identity modes for a

pair of diploid individuals (Figure 1), which define 8 independent identity coefficients (the

ninth one is implied since the coefficients sum to one). At loci with only two alleles, nine

genotype pairs are possible, but because of redundancy, there are not enough many dif-

ferent genotype pairs to make certain inference possible: more than one set of coefficients

generate the same joint genotype distribution. Genotype distributions at loci with three or

more alleles, however, convey enough information in principle to identify a single set of iden-

tity coefficients that produce it. Among molecular markers, multiallelic microsatellite loci

provide in consequence high discriminatory power for a detailed characterization of genetic
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relatedness, but diallelic single-nucleotide and insertion-deletion have restricted utility Weir

et al. (2006). Here, we scrutinize the inherent ambiguity of relatedness in diallelic genotypes.

Specifically, our aim is to find what aspects of coancestry result in non-identifiability and to

characterize statistical measures of the identity mode distribution that can be consistently

estimated from joint genotype frequencies.
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THEORY AND RESULTS

Identity coefficients and biallelic genotype distributions

Identity by descent (Malécot, 1969) encapsulates the dependence between diploid geno-

types due to shared parentage. Two alleles are identical by descent (IBD), if they originate

from a common ancestral allele without modification. Equivalence relations for four alleles

of two diploid genotypes take one of nine combinatorially distinct forms (Harris, 1964;

Jacquard, 1974; Lange, 1997), or identity modes, as illustrated in Figure 1.

The individuals’ joint pedigree determines the possible identity modes and their associ-

ated frequencies, specified by the vector of coefficients ∆i : i = 1, . . . , 9 using the notation

of Jacquard (1974). For instance, children of the same parents from non-overlapping lin-

eages inherit two IBD alleles with probability ∆7 = 1
4
, one IBD set from either parent with

probability ∆8 = 1
2
, and four independent alleles with probability ∆9 = 1

4
.

Suppose that the locus has two alleles, and alleles 1 and 0 (minor and major) occur with

frequencies p and q, respectively. Every mode generates its own conditional distribution

of joint genotypes. In mode 8, the individuals are 0/1 heterozygotes simultaneously with

probability pq2 + p2q since either the IBD alleles are the mutants, or two mutant alleles

are chosen independently. In contrast, if all four alleles are sampled independently (identity

mode 9) then the joint genotype 0/1 : 0/1 occurs with probability 4p2q2, accounting for

two minor and two major alleles in 4 possible orderings. Table 1 lists the complete set of

genotypic probabilities.

[Table 1 about here.]

Denote the distribution of joint genotypes by

f = (f0000, f1111, f1101, f0111, f0101, f1100, f0011, f0100, f0001).
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Table 1 corresponds to the system of equations

f0000 = q∆1 + q2
(
∆2 + ∆3 + ∆5 + ∆7

)
+ q3

(
∆8 + ∆4 + ∆6

)
+ q4∆9

f1111 = p∆1 + p2
(
∆2 + ∆3 + ∆5 + ∆7

)
+ p3

(
∆4 + ∆6 + ∆8

)
+ p4∆9

f1101 = pq
(
∆3 + p(∆8 + 2∆4 + 2p∆9)

)
f0111 = pq

(
∆5 + p(∆8 + 2∆6 + 2p∆9)

)
f0101 = pq

(
2∆7 + q∆8 + 4pq∆9

)
f1100 = pq

(
∆2 + q∆4 + p∆6 + pq∆9

)
f0011 = pq

(
∆2 + q∆6 + p∆4 + pq∆9

)
f0100 = pq

(
∆5 + q∆8 + 2q∆6 + 2q2∆9

)
f0001 = pq

(
∆3 + q∆8 + 2q∆4 + 2q2∆9

)
,

(1)

or, in matrix form,

f = F ·∆, (2)

and Table 1 gives the transpose of F.

The matrix F projects the vector of identity coefficients ∆ to the vector of genotype

probabilities f . Consequently, identity coefficients can be inferred from the biallelic genotype

distribution if and only if the matrix F is invertible. The matrix rows, are however, linearly

dependent.

Claim 1. When p+ q = 1, dependencies between genotype probabilities include the following

two.

f1101 + 2f1100 + f0100 = f0111 + 2f0011 + f0001; (3)

p = f1111 +
3

4

(
f1101 + f0111

)
+

1

2

(
f0101 + f1100 + f0011

)
+

1

4

(
f0100 + f0001

)
. (4)
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Theorem 2 below characterizes the set of identity coefficients that lead to the same

distribution over joint biallelic genotypes.

Theorem 2. Suppose that p+ q = 1. If ∆i : i = 1, . . . , 9 satisfy (2) then so do the following

coefficients, for all choices of ξ, η ∈ R.

∆′1 = ∆1 − ηpq ∆′2 = ∆2 + ξ − ηpq

∆′3 = ∆3 + 2ηpq ∆′4 = ∆4 − ξ

∆′5 = ∆5 + 2ηpq ∆′6 = ∆6 − ξ

∆′7 = ∆7 − ξ + η(1− 2pq)

∆′8 = ∆8 + 2ξ − 2η ∆′9 = ∆9 + η.

(5)

Starting from an arbitrary particular coefficient set ∆i, Equation (5) generates all vector

solutions to (2).

[Figure 2 about here.]

The constraints ∆′i ≥ 0 demarcate the region yielding proper distributions over identity

modes; see Eq. (16) in Methods. Roughly, the coordinates η and ξ quantify the uncertainty

about inbreeding and overall IBD level, respectively. Figure 2 illustrates the quadrilateral

solution area for the example of Queen Victoria (of the United Kingdom) and Prince Albert

who, in addition to be first cousins, shared multiple ancestors within seven generations.

Identifiable relatedness parameters

Despite multiple solutions, some aspects of the identity coefficients can be ascertained from

the genotype distribution. In particular, if a linear combination stays the same for all sets of

identity coefficients from (5), then it is computable from the biallelic genotype distribution.

Theorem 3 formalizes our argument.
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Definition 1. A function of the identity distribution θ(∆) is called a linear relatedness

parameter if and only if it can be written as a linear combination

θ(∆) =
9∑
i=1

ai∆i, (6)

where ai are constants. In particular, ai may not depend on the allele frequency p.

Theorem 3. A linear relatedness parameter θ is identifiable from the joint genotype distri-

bution only if

a2 + 2a8 = a4 + a6 + a7;

a7 + a9 = 2a8; and

2a3 + 2a5 = a1 + a2 + 2a7.

(7)

Theorem 4. The following linear relatedness parameters are identifiable from the biallelic

genotype distribution.

θ0 =
9∑
i=1

∆i (=1) (8a)

θ1 = ∆1 +
1

2

(
∆3 + ∆5 + ∆7

)
+

1

4
∆8 (kinship coefficient) (8b)

θ2A = ∆1 + ∆2 + ∆3 + ∆4 (A’s inbreeding) (8c)

θ2B = ∆1 + ∆2 + ∆5 + ∆6 (B’s inbreeding) (8d)

θ3 = ∆1 + ∆2 + ∆3 + ∆5 + ∆7

+
1

2

(
∆4 + ∆6 + ∆8)

(triple coancestry) (8e)

θ4 =
1

2

(
∆4 −∆6

)
(independent inbreeding difference) (8f)

All other identifiable parameters are linear combinations of θi in Equations (8).

Theorem 3 shows that, in general, the identity coefficients ∆i are not identifiable sepa-

rately. In particular, probabilities for various inbred modes (∆3,∆4,∆5,∆6) are not identi-
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fiable, only their differences (∆4 −∆6 = 2θ4 and ∆3 −∆5 = θ2A − θ2B − 2θ4).

The identifiable parameters of Theorem 4 include the usual measures of inbreeding (θ2∗)

and coancestry (θ1) generalized to inbred parents (Harris, 1964), as well as the trivial∑
i ∆i. Note that the matrix structure automatically guarantees

∑
i ∆i = 1 when f0000 +

f1111 + . . .+ f0001 = 1 since the all-1 row vector e =
(

1 1 · · · 1

)
is a left eigenvector:

1 = e · f = e · F ·∆ = e ·∆.

The parameter θ3 is the probability that there is at least one pair of IBD alleles among three

randomly selected ones. A simpler three-allele parameter is

θ3:3 = ∆1 +
1

2

(
∆3 + ∆5) = θ1 − 1

2
θ3 +

1

4

(
θ2A + θ2B

)
, (9)

or inbred coancestry, which is the probability that three randomly chosen alleles are simulta-

neously identical by descent. By Theorem 3, θ3:3 is identifiable, and (9) shows how to write

it as a linear combination of identifiable parameters from Theorem 4.

Linear relatedness parameters can be written either as linear combinations of identity

coefficients or as linear combinations of genotypic probabilities in the linear algebraic frame-

work of Equation (1). For the “archetypical” parameters of Theorem 4, we consider the

following expressions.

τ1A =
f1101 + f0100

2
+
f0101

4
+ f1100 τ1B =

f0111 + f0001

2
+
f0101

4
+ f0011

τ1 =
τ1A + τ1B

2

τ2A =
f0111 + f0101 + f0100

2
τ2B =

f1101 + f0101 + f0001

2

τ3 =

(
f0100 − f0111

)
+
(
f0001 − f1101

)
4

τ4 =
f1100 − f0011

2

(10)
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So,

θ1 = 1− τ1A

p− p2
= 1− τ1B

p− p2
= 1− τ1

p− p2

θ2A = 1− τ2A

p− p2
θ2B = 1− τ2B

p− p2

θ3 = 1− τ3
p− 3p2 + 2p3

θ4 =
τ4

p− 3p2 + 2p3
.

(11)

Due to the linear dependencies, multiple equivalent formulas exist that relate the genotype

distribution and any specific parameter. For instance, the intermediate quantities τ1A, τ1B

and τ1, which weigh genotypic probabilities differently, are equal by Equation (3).

Moment-based relatedness estimators for independent sites

Suppose that minor allele frequencies pi : i = 1, . . . , n are known for n independent biallelic

loci with identical IBD mode distributions. Pairwise genotypes are observed across the n

positions, and counted as n0000, n1111, n1101, . . . , n0001. The connection between the genotype

counts and the identity coefficients can be expressed in terms of the moments of the minor-

allele frequency distribution by averaging Equation (1) across the loci. Write the moments

for the minor allele frequency (MAF) distribution as

µ =
1

n

n∑
i=1

pi µ2 =
1

n

n∑
i=1

p2
i µ3 =

1

n

n∑
i=1

p3
i µ4 =

1

n

n∑
i=1

p4
i .

By averaging Equation (1), expected genotype frequencies En0000, En1111, . . . can be re-

lated to the common identity coefficients by a matrix expressed in terms of MAF moments

(see Eq. (17) in Methods). In order to develop estimators for identifiable relatedness pa-

rameters using genotype counts and MAF moments, we adopt the formulas of (10) and (11).

The estimators assume that independent MAF moment estimates are available. First, set a
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scaling parameter

n̂ = n1111 +
3

4

(
n1101 + n0111

)
+

1

2

(
n0101 + n1100 + n0011

)
+

1

4

(
n0100 + n0001

)
.

By (4), En̂ = µn. The formulas avoid n0000 by normalizing the counts with n̂, and by

scaling the moments analogously with µ. (The exclusion of n0000 is aimed to reduce ascer-

tainment bias caused by experiment design, site selection and genotyping errors that affect

that particular tally the most.) The normalized genotype frequencies are calculated as

f̂1111 =
n1111

n̂
f̂1101 =

n1101

n̂
f̂0111 =

n0111

n̂
f̂0101 =

n0101

n̂

f̂1100 =
n1100

n̂
f̂0011 =

n0011

n̂
f̂0100 =

n0100

n̂
f̂0001 =

n0001

n̂

(12)

The normalized genotype frequencies are plugged into Equation (10) for the normalized

statistics

τ̂1 =
f̂1101 + f̂0111 + f̂0101 + f̂0100 + f̂0001

4
+
f̂1100 + f̂0011

2

τ̂2A =
f̂0111 + f̂0101 + f̂0100

2
τ̂2B =

f̂1101 + f̂0101 + f̂0001

2

τ̂3 =

(
f̂0100 − f̂0111

)
+
(
f̂0001 − f̂1101

)
4

τ̂4 =
f̂1100 − f̂0011

2
(13)

Finally, the identity distribution parameters are estimated by

θ̂1 = 1− τ̂1
1− µ′2

θ̂2A = 1− τ̂2A

1− µ′2
θ̂2B = 1− τ̂2B

1− µ′2
θ̂3 = 1− τ̂3

1− 3µ′2 + 2µ′3
θ̂4 =

τ̂4
1− 3µ′2 + 2µ′3

(14)

with the scaled moments µ′2 = µ2

µ
and µ′3 = µ3

µ
.
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Kinship inference in simulated data

The formulas of (14) employ the joint genotype counts with known or estimated MAF mo-

ments. In addition to statistical deviations of the estimated genotype frequencies, the for-

mulas’ performance is thus also affected by errors in MAF moment estimation. We assessed

the power of the estimator for kinship coefficient (see τ̂1 and θ̂1 in Eqs. (13) and (14)) using

simulated assays involving n genotyped loci for two individuals, for which MAF moments

are estimated separate from a panel of N separate unrelated individuals. In one simulation

step, we picked n random SNPs from the 1000 Genomes project and used their minor allele

frequencies to generate simulated genotypes. Within each step, we simulated both the MAF

estimation and the kinship inference. For MAF estimation, we generated 2N independent

random alleles (representing N diploid individuals) at every locus with its allele frequency

distribution. The moments for the estimated MAFs were employed with the kinship formula

of (14), using simulated joint genotypes for a set of four example pedigrees. In particular,

we compared the estimated kinship coefficients θ̂1 for unrelated individuals, first and second

cousins, as well as a more complex pedigree of first cousins sharing multiple deeper ancestors

(royal cousins).

[Figure 3 about here.]

Figure 3 shows the simulation results for sample sizes N = 10, N = 100 and N = 1000.

The plots illustrate that despite the bias of MAF moment estimation at N = 10, the different

levels of relatedness (unrelated, second and first cousins) are well separated from 10–20

thousand sites. More accurate MAF moment estimation with N = 100 and N = 1000

results in slightly increased requirements for the necessary number of loci (n ≥ 50000),

plausibly due to the higher sensitivity which entails the inclusion of rarer SNPs. Fine aspects

of relatedness, however, are more difficult to ascertain, as can be seen by the imperfect

separation of estimated kinship coefficients for royal and common first cousins even with n ≥
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200000 loci.

Moment-based relatedness estimators on stratified populations

Our framework assumes that MAF moments are the same for the two individuals. Employing

the estimators of (14) with inappropriately estimated moments leads to a bias affecting the

estimation of relatedness parameters. Figure 4 examines pairwise relatedness estimation

assuming different MAF moments. (See additional plots in Supporting Information.) The

data set consists of genotypes for 54 individuals belonging to 6 populations from the 1000

Genomes project (The 1000 Genomes Project Consortium, 2010).

[Figure 4 about here.]

The estimated kinship coefficients do not necessarily represent the true relationship be-

tween a pair of individuals. For example, both LWK (Luhya from Kenya) and CHS (Han

from Southern China) pairs have seemingly high kinship coefficients (on par with siblings

and cousins), when the generic MAF distribution is used. Appropriate allele frequencies al-

leviate the bias: LWK kinship coefficients cluster around 0 when the African MAF moments

are used, and so do CHS kinship coefficients when the Asian allele frequency distribution

is applied. The figure also makes it apparent that the bias affects all pairs from the same

subpopulation in a similar way, so that related individuals do stand out against the base

level of unrelated pairs.

[Figure 5 about here.]

In a second set of experiments, we used 733 horses of 32 breeds genotyped with the

Equine SNP50 Beadchip (Illumina) from Petersen et al. (2013b). The comparisons of

different breeds reveal known relationships, including the clustering by recognized breed

groups (Petersen et al., 2013a). As it is in the case with human data, using a single
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MAF distribution for all pairwise comparisons reveals the population structure by the high

relatedness values attributed to horses of the same breeds; see Figure 5. The absolute values

of estimated kinship coefficients are misleading due to the bias of using a common MAF

moment estimate.

After computing deme-specific MAF moments, relatedness parameters center around 0

as expected: see Figure 6. (See additional plots in Supporting Information.) The figure also

illustrates some aspects of genetic diversity within the breeds discussed by Petersen et al.

(2013a). Breeds with high diversity and large population size (including Mongolian, Paint

and Tuva) exhibit small deviations in their relatedness parameters. Low within-breed diver-

sity and inbreeding in other breeds such as Clydesdale, Exmoor, Mangalarga Paulista, Shire,

and Thoroughbred are reflected in the larger support of the distributions. For these breeds,

frequent positive values of inbred ancestry (θ̂3:3) hint at selection for preferred lineages and

foundational effects (the British populations decreased significantly during World War II).

[Figure 6 about here.]
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METHODS AND DATA

A linear algebraic framework for genotypic probabilities and iden-

tity coefficients

Proof of Claim 1. The equalities can be seen by inspecting the rows of F, but considering

allele counts gives a more straightforward proof. Consider the expected number ω of minor

(’1’) alleles in the random joint genotype. Since it is the expectation for the sum of four

indicator variables, Eω = 4p. Alternatively, by summing over the possible joint genotypes,

Eω = 4f1111 + 3
(
f1101 + f0111

)
+ 2

(
f0101 + f1100 + f0011

)
+
(
f0100 + f0001

)
, and Equation (4)

follows after dividing by 4. Now consider the expected number of minor alleles in the A’s

and B’s genotype separately. Clearly, both equal 2p. Counting by joint genotypes:

2
(
f1111 + f1101 + f1100

)
+
(
f0111 + f0101 + f0100

)
︸ ︷︷ ︸

expected count in A

= 2
(
f1111 + f0111 + f0011

)
+
(
f1101 + f0101 + f0001

)
︸ ︷︷ ︸

expected count in B

.

After elimination of common terms, Equation (3) follows.
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Proof of Theorem 2. The null space of F is spanned by the vectors

z1 =



0

1

0

−1

0

−1

−1

2

0



z2 =



0

0

0

0

0

0

1

−2

1



+ pq



−1

−1

2

0

2

0

−2

0

0



= z
(1)
2 + pqz

(2)
2 (15)

It is straightforward to verify that Fz1 = Fz2 = 0, the null vector. Hence,

F ·
(
∆ + ξz1 + ηz2

)
= F ·∆ = f

for all choices of ξ, η. The rank of the 9× 9 matrix F is 7 (established by Gaussian elimina-

tion), and therefore no other solutions exist.

Span of equivalent solutions: Values of (ξ, η) for which Eq. (5) produces a proper

distribution are precisely those where ∆′i ≥ 0 for all i:

η ≤ ∆1

pq
η ≤ ∆2

pq
+

ξ

pq
η ≤ ∆8

2
+ ξ

η ≥ −∆3

2pq
η ≥ −∆5

2pq
η ≥ − ∆7

1− 2pq
+

ξ

1− 2pq
η ≥ −∆9

ξ ≤ ∆4 ξ ≤ ∆6

(16)

Proof of Theorem 3. In order to be identifiable, θ(∆) must remain the same for all distri-

butions satisfying (2). The vector of coefficients (ai : i = 1, . . . , 9) then has to be orthogonal
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to the null space of F. The identities of (7) express the orthogonality with the vectors z1,

z
(1)
2 and z

(2)
2 : the latter two are used separately since orthogonality must be maintained for

all p.

Proof of Theorem 4. By Theorem 3, identifiable parameters satisfy three independent linear

equations. The theorem lists a maximal set of 6 linearly independent parameters.

Estimating relatedness from independent sites

By (1), the average genotype frequencies are

f0000 =
En0000

n
= (1− µ)∆1

+(1− 2µ+ µ2)
(
∆2 + ∆3 + ∆5 + ∆7

)
+(1− 3µ+ 3µ2 − µ3)

(
∆8 + ∆4 + ∆6

)
+(1− 4µ+ 6µ2 − 4µ3 + µ4)∆9

f1111 =
En1111

n
= µ∆1 + µ2

(
∆2 + ∆3 + ∆5 + ∆7

)
+ µ3

(
∆4 + ∆6 + ∆8

)
+ µ4∆9

f1101 =
En1101

n
= (µ− µ2)∆3 + (µ2 − µ3)(∆8 + 2∆4) + 2(µ3 − µ4)∆9

f0111 =
En0111

n
= (µ− µ2)∆5 + (µ2 − µ3)(∆8 + 2∆6) + 2(µ3 − µ4)∆9

f0101 =
En0101

n
= 2(µ− µ2)∆7 + (µ− 2µ2 + µ3)∆8 + 4(µ2 − 2µ3 + µ4)∆9

f1100 =
En1100

n
= (µ− µ2)∆2 + (µ− 2µ2 + µ3)∆4 + (µ2 − µ3)∆6 + (µ2 − 2µ3 + µ4)∆9

f0011 =
En0011

n
= (µ− µ2)∆2 + (µ− 2µ2 + µ3)∆6 + (µ2 − µ3)∆4 + (µ2 − 2µ3 + µ4)∆9

f0100 =
En0100

n
= (µ− µ2)∆5 + (µ− 2µ2 + µ3)(∆8 + 2∆6) + 2(µ− 3µ2 + 3µ3 − µ4)∆9

f0001 =
En0001

n
= (µ− µ2)∆3 + (µ− 2µ2 + µ3)(∆8 + 2∆4) + 2(µ− 3µ2 + 3µ3 − µ4)∆9,

(17)

where ∆i : i = 1, . . . , 9 are the common identity coefficients across the loci.
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Data sets

1000 Genomes: Data on human genome variants was downloaded from the May 2011 re-

lease of SNP calls along chromosome 12 in the 1000 Genomes project The 1000 Genomes

Project Consortium (2010) at ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/

20110521/. Inferred (“cryptic”) blood relationships were annotated alongside the data. We

selected the following samples to study the behavior of estimators.

Population N Samples

ASW (African ancestry in Southwest

US)

7 NA19713, NA19818, NA19819, NA19982, NA19985,

NA20359, NA20363

CEU (Utah residents with Northern

and Western European ancestry)

5 NA06984, NA06989, NA12340, NA12341, NA12342

CHS (Han Chinese South) 14 HG00404, HG00406, HG00407, HG00418, HG00419,

HG00427, HG00500, HG00512, HG00524, HG00656,

HG00657, HG00671, HG00672, HG00702

LWK (Luhya in Webuye, Kenya) 13 NA19312, NA19313, NA19331, NA19334, NA19350,

NA19351, NA19380, NA19381, NA19382, NA19384,

NA19385, NA19390, NA19391

MXL (Mexican ancestry in Los Ange-

les)

6 NA19660, NA19661, NA19663, NA19664, NA19684,

NA19685

TSI (Tuscans from Italy) 9 NA20502, NA20503, NA20504, NA20505, NA20506,

NA20507, NA20508, NA20509, NA20510

Horses: Horse SNP data of Petersen et al. (2013b) was downloaded from http://www.

animalgenome.org/repository/pub/UMN2012.1130/. The data set consists of 733 horse

genomes belonging to 32 breeds: Akhal Teke (AH), Andalusian (AND), Arabian (ARR),

Belgian (BEL), Caspian Pony (CS), Clydesdale (CL), Exmoor (EX), Fell Pony (FELL),

Finnhorse (FINN), Franches-Montagnes (FM), French Trotter (FT), Hanoverian (HAN), Ice-

landic (ICE), Mangalarga Paulista (MNGP), Miniature (MINI), Mongolian (MON), Morgan
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(MOR), New Forest Pony (NF), North Swedish Horse (NSWE), Norwegian Fjord (NORF),

Paint (PT), Percheron (PR), Peruvian Paso (PERU), Ouerto Rican Paso Fino (RP), Quarter

Horse (QH), Saddlebred (SB), Shetland (SHET), Shire (SH), Standardbred (STBD), Swiss

Warmblood (SZWB), Thoroughbred (TB) and Tuva (Tu).

Simulated data: The following procedure was used to generate genotype data for simu-

lated inference. In one simulation run, parametrized by the number of desired loci n, sample

size for MAF estimation N , a minimum allele frequency p0 = 1/N and a set of identity

coefficients ∆i, n loci with MAF > p0 were selected uniformly along chromosome 12 from

the 1000 Genomes project. At each selected locus, a “true” minor allele frequency p was set

by perturbing the annotated MAF value (adding a uniformly distributed offset −p0 ≤ δ ≤ p0

to the annotated value). The estimated MAF p̂ for the locus was computed assuming 2N

independent alleles, i.e., p̂ =
B2N,p

2N
where B2N,p is a binomial random variable with param-

eters 2N and p. Only those loci with 0 < p̂ < 1
2

were retained for use in the relatedness

formulas. After computing p̂ at a locus, joint genotypes were generated for two individuals

with the given identity coefficients and the “true” MAF p. The simulation procedure was

repeated independently for every n, N , and relation 10 times (see Figure 3).

Joint parentage for royal cousins: We traced back the well-documented ancestry (see

Supporting Information for the annotated family tree) of Queen Victoria and Prince-Consort

Albert to founders within 200 years, going back up to 7 generations using peerage.com as

well as the English and German editions of Wikipedia. Identity coefficients were computed

from the joint pedigree using the program idcoefs of Abney (2009).
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DISCUSSION

Identity coefficients (Harris, 1964; Jacquard, 1974) encapsulate the dependencies be-

tween the alleles of two diploid individuals that determine the joint genotype distribution.

If the individuals are not inbred, only three of the coefficients may be positive (∆7,∆8,∆9),

corresponding to Cotterman’s k-gene coefficients (Thompson, 1975) for the individuals shar-

ing k = 0, 1, or 2 alleles between them. The three coefficients can be retrieved from sampled

genotypes using well-established methods relying on likelihood maximization (Thompson,

1975; Milligan, 2003) or allele frequency moments (Ritland, 1996; Lynch and Ritland,

1999).

In general, it may be of interest to estimate all nine identity coefficients simultaneously. In

particular, all nine IBD modes may occur if the individuals have inbred coancestries (Harris,

1964), or come from a structured population (Wang, 2011). Biallelic genotypes, however,

do not convey enough information about the generic IBD structure, since different identity

coefficients can generate the same joint genotype distribution. Theorem 2 scrutinizes the

inherent ambiguity about the identity coefficients, describing the linear subspace in which

all solutions are found. One particular source of the ambiguity (corresponding to the null

vector z1 in (15)) is that symmetric mixtures of simultaneous inbreeding and coancestry

(modes ∆7-∆4-∆6 vs. ∆2-∆8-∆8) have identical effects in the genotype distribution. Impor-

tantly, these equivalent solutions varying only the ξ coordinate remain equivalent for any

minor-allele frequency. The uncertainties about the identity coefficients are within the same

magnitude as the inbreeding levels when both individuals are inbred (∆4,∆6 > 0) and also

share ancestors (∆8 > 0). Indeed, the real-life example of Figure 2 shows that the subtle

details of coancestry can be irretrievable from the genotype distribution.

Consistent estimation is thus impossible since even as the number of independent sampled

loci n goes to infinity and genotype frequencies concentrate around their true probabilities,

20



the identity coefficients stay ambiguous regardless of the estimation method used. The

decomposition of the solution space (Theorem 3) shows the aspects of the IBD structure

that can instead be inferred from biallelic genotypes. Specifically, Theorem 4 lists five non-

trivial relatedness parameters, deconvolving the IBD structure to the maximum degree that

is attainable. Principal aspects of genetic relatedness, quantified by the coefficients of kinship

and inbreeding, are identifiable. Other identifiable attributes are the probabilities for three-

allele joint IBD and the asymmetry of inbreeding modes with and without simultaneous

coancestry. In contrast, parameters that do not weigh the identity coefficients properly

(Eq. (7)) are not identifiable from the biallelic genotypes. Ill-defined relatedness parameters

include the probabilities of separate identity modes (e.g., the probability ∆1 of fourwise

IBD), the fraternity coefficient (∆1 + ∆7) and other generalizations of Cotterman’s k-gene

coefficients.

If allele frequencies are known in advance, relatedness parameters can be readily inferred

from the genotype distribution using simple linear estimators (Eq. (14)). The formulas can

even accommodate small biases of the MAF moment estimation due to sparse population

sampling (Figure 3). More problematic is the discovery of genetic relatedness in structured

populations (Anderson and Weir, 2007; Astle and Balding, 2009; Wang, 2011). For

instance, if there is a clear subpopulation structure, the model’s assumption that non-IBD

alleles are identically distributed does not hold. The imposition of a common MAF distri-

bution thus entails a different bias specific to each subpopulation (Figures 4 and 5–6).

Our non-identifiability results assumes the classic model of independent loci. In practice,

genetic linkage can be powerfully exploited to infer pairwise relatedness. Identity modes

change along a chromosome due to ancestral crossover events, partitioning the genomes

into IBD segments Browning and Browning (2012) formed by consecutive loci sharing

the same combined inheritance history. The segmentation can be explored with mapped

markers that are spaced densely enough to display linkage. IBD modes along a chromosome
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are conveniently captured by states of a hidden Markov model (Thompson, 2008), which can

simultaneously incorporate pedigrees (Kyriazopoulou-Panagiotopoulou et al., 2011)

and linkage disequilibrium (Han and Abney, 2011) in its state transition rates.

In the case of human genomes, the limits of inferring relatedness are dominantly de-

termined by linkage and finite genome size, and not identifiability (Skare et al., 2009).

The mean length of a segment with the same particular history involving m meioses de-

creases linearly with m. In human whole genome sequences, IBD segments of length 0.4 cM

can be demarcated (Su et al., 2012) with confidence by high-coverage sequencing. The

detection of shared ancestry is thus constrained by the fact that descendants inherit a com-

mon ancestor’s allele simultaneously with exponentially small probability in the number

of meioses separating them (2−m+1). As Browning and Browning (2012) point out,

fifth cousins (m = 12) simultaneously inherit 1/2048 of their genome on expectation from

the shared great-great-great-great grandfather or great-great-great-great grandmother each,

which amounts to about 1.5 cM in an entire human genome, while the average IBD segment

length is 8.3 cM. Then, by Markov’s inequality, there is at least one IBD segment between

the two cousins’ genomes with probability at most 2×1.5
8.3

= 0.35 . . . . Identity modes with

more than two IBD alleles (∆1,∆2,∆3,∆5,∆7) usually involve even more distant ancestries

and are, thus, almost certainly undetectable (Thompson, 2008). For example, if both indi-

viduals are children of fourth cousins (as the royal cousins here), the simultaneous inbreeding

mode ∆2 appears in segments of average length 4.2 cM, covering 1/220 of their genome (about

0.003 cM); so, no such segments are seen in at least 99.93% of the cases.

The ambiguity of identity coefficients (outlined by Theorem 2) complements well-known

results on equivalent pedigrees (Donnelly, 1983; Skare et al., 2009). In the absence of

linkage information, when, for instance, background relatedness is investigated in an inbred

population based on a few genotyped loci in many individuals (Anderson and Weir,

2007; Wang, 2011), the non-identifiable mode combinations represent the theoretical limits
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of dissecting the IBD structure. By our results , only two more distribution parameters can

be inferred in addition to the usual two-gene coefficients for coancestry and inbreeding: one

for three-gene IBD, and another measuring asymmetry in inbreeding modes.
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The matrix in Eq. (5) is
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0BBBBBBBBBB@

a a� b a� b a� b� c a� b a� b� c a� b a� b� c a� b� c� d
0 0 b 2c 0 0 0 c 2d
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0 b 0 c 0 b� c 0 0 c� d
0 0 0 0 b 2b� 2c 0 b� c 2b� 4c + 2d
0 0 b 2b� 2c 0 0 0 b� c 2b� 4c + 2d

1CCCCCCCCCCA
(6)

with
a = µ, b = µ� µ2, c = µ2 � µ3, d = µ3 � µ4.

1.3 Coancestry is not identifiable

The matrix Equation (5) links nine parameters (�j) tp eight estimable quantities
(f̄xyzu), and the Jacquard coefficients are thus undetermined. The constraint

P
j �j =

1 does not restrict the solution space because it is already encoded in the joint geno-
type distribution: let

u =
�
1 3
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1
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By Equation (6),
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a a a a a a a a a
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Using the Exome Variant Server’s data, we can get an idea of the magnitude for

µ, µ2, µ3, µ4. Table 1 shows that second- and even higher-order moments cannot
be ignored in the formulas, as the contribution from frequent SNPs keep them high.
Table 1 estimates that µ2 ⇡ 0.26µ, µ3 ⇡ 0.09µ and µ4 ⇡ 0.4µ.
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Figure 1. Identity modes for a diploid genotype pair. Identity by descent is marked by thick red lines.
Alleles x, y, . . . observed in the genotypes may be equal. Probabilities for different modes are denoted
by the identity coefficients ∆i.

27



0.0001

0.002

η≤61/(pq)

η≤(62+j)/(pq)

η≥(-67+j)/(1-2pq)

ξ≤64

true j

d

Identity coefficient ×2−20 decimal value ambiguity range
min max

∆1 34 3.24 · 10−5 0 1.78 · 10−4

∆2 1 9.54 · 10−7 0 7.58 · 10−4

∆3 324 3.09 · 10−4 1.85 · 10−5 3.74 · 10−4

∆4 665 6.34 · 10−4 0 7.80 · 10−4

∆5 3140 2.99 · 10−3 2.70 · 10−3 3.06 · 10−3

∆6 9113 8.69 · 10−3 8.06 · 10−3 8.84 · 10−4

∆7 5087 4.85 · 10−3 0 5.94 · 10−3

∆8 278698 0.266 0.263 0.276
∆9 751514 0.717 0.711 0.718

Relatedness parameter
θ1 (kinship) 73984 0.071

θ2A (Victoria’s inbreeding) 1024 9.77 · 10−3

θ2B (Albert’s inbreeding) 12288 0.0117
θ3 (triple coancestry) 152824 0.146
θ3:3 (inbred ancestry) 1766 1.68 · 10−3

θ4 (independent inbreeding difference) -8448 −8.06 · 10−3

Figure 2. Null space identity coefficients. The intersection of the constraints from Equation (16)
defines the convex polygonal area within which (ξ, η) values plugged into Eq. (5) yield valid identity
mode distributions that generate the same genotypic distribution. The example is based on the joint
parentage of Queen Victoria and her spouse Prince Albert, for which the relevant parameters are listed
below the plot. The illustration assumes pq = 0.02746 . . . reflecting typical allele frequency moments
in humans (from the 1000 Genomes project). Extremal values of possible ∆i listed under “ambiguity
range” are attained in the corners of the shaded area.
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Figure 3. Estimated kinship coefficients in simulations. The Y axis shows the estimated kinship
coefficient θ̂1 of Eq. (14) from random genotypes for unrelated individuals (θ1 = 0), or simulated along
simple pedigrees of first (θ1 = 1

16) and second cousins (θ1 = 1
32), as well as a complex pedigree (“royal

cousins” with θ1 = 289
4096 = 1

16 + 33
4096). Every point plots θ̂1 for simulated genotype data across n loci

(along the X axis), with random MAF values (based on randomly picked sites from the 1000 Genomes
project). For every data set of random loci, empirical minor allele frequencies are calculated
assuming N genotyped diploid individuals. The formulas θ̂1 are employed with MAF moments
estimated from these empirical frequencies. The procedure is repeated 10 times for every n and N ;
the solid lines connect the medians of the ten replicates.
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Figure 4. Distribution of estimated kinship coefficients in pairs between 54 samples from the 1000
Genomes project. The three histograms illustrate the distribution of the coefficients when estimated
using the allele frequency moments of all samples (AF), African samples (AFR AF) and Asian samples
(ASN AF). On every plot, estimated pairwise coefficients are binned by rounding to the nearest
multiple of 1

128 . Bins are shown along the X axis, and bin sizes (how many pairs have θ̂1 falling into
the bin) plotted along the Y axis. Numbers above the truncated bars show the true bin size. Every
disk corresponds to a pairwise coefficient, colored by the subpopulations the two individuals belong to.
Marked disks denote known relationships. Checkmarks indicate that a subpopulation was used to
calculate allele frequencies.

30



PT

QH

HAN

TB

SZWB

FT

STBD

MOR

SB

ARR

AH

CS

AND

MNGP

RP

PERU

FM

PR

BEL

FELL

SH

CL

NF

EX

Tu

MON

FINN

NSWE

NORF

ICE

MINI

SHET

PT QH HAN
TB SZWB

FT STBD
MOR

SB ARR
AH CS AND

MNGP
RP PERU

FM PR BEL
FELL

SH CL NF EX Tu MON
FINN

NSWE
NORF

ICE MINI
SHET
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Figure 5. Estimated kinship and inbred ancestry coefficients between 733 horses. Rows and columns
correspond to individual horses in the same order from left to right and bottom to top. Horses belong
to one of 32 breeds (see Methods for the breed codes). Cells are colored by kinship coefficients above
the diagonal and by inbred ancestry below, following the color scale shown above the heatmap. MAF
moments were estimated from combining all the breeds in the data set.
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Figure 6. Kinship and inbred ancestry coefficients within selected horse breeds. Cells are colored by
inferred relatedness parameters as in Figure 5, but MAF moments are estimated separately for each
breed here. Cells along the diagonal show the kinship coefficient of each horse with itself (= 1/2 if not
inbred). The histograms above and below the heatmaps plot the distributions for the relatedness
parameters. (The histograms bin θ̂1 and θ̂3:3 by rounding to the nearest multiple of 1

32 and 1
128 ,

respectively. The histograms’ Y axis uses the transformation y = 1− e−m to project the bin size m
onto a unit interval.)
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Table 1. Distribution of biallelic genotypes by identity mode

Mode 0/0:0/0 1/1:1/1 1/1:0/1 0/1:1/1 0/1:0/1 1/1:0/0 0/0:1/1 0/1:0/0 0/0:0/1
1 q p 0 0 0 0 0 0 0
2 q2 p2 0 0 0 pq pq 0 0
3 q2 p2 pq 0 0 0 0 0 pq
4 q3 p3 2p2q 0 0 pq2 p2q 0 2pq2

5 q2 p2 0 pq 0 0 0 pq 0
6 q3 p3 0 2p2q 0 p2q pq2 2pq2 0
7 q2 p2 0 0 2pq 0 0 0 0
8 q3 p3 p2q p2q pq(p+ q) 0 0 pq2 pq2

9 q4 p4 2p3q 2p3q 4p2q2 p2q2 p2q2 2pq3 2pq3
Genotypic probabilities for every mode are given by assuming that alleles are chosen independently for each
IBD group, with probability p for allele 1 (minor allele) and with probability q for allele 0 (major allele).
Genotypes are unordered (1/0 and 0/1 are considered equivalent).
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