Performing local similarity searches

with variable length seeds

Miklos Cs(iros

Département d’informatique et de recherche opérationnelle
Université de Montréal

Miklos Csiros _ _
Similarity searches with variable length seeds

Seed-and-extend
Comparison of molecular sequences S,T € >*

Goal: find local alignments, i.e.,
S[:..5'] and T'[4..5'] with high similarity score

Dynamic programming (Smith-Waterman) O(|S| - |T'|) too slow

Seed-and-extend heuristics

(BLAST, Fasta, SSAHA, SENSEI, BLAT, BLASTZ, PatternHunter, ...

Hash function h: >¢ — >k
k-mer: £ = kand h(u) = u

Hit at (i,) if h(S[i..i + £ — 1]) = h(T[j..j + £ — 1])

Miklos Csiros _ _
Similarity searches with variable length seeds

Spaced seed
Spaced seed: ordered set 8§ = {s1,...,si}:s; € {1,...,¢}
Corresponding hash function: h(uw) = u[s1] - u[so] - - - u[sg]
Gives higher sensitivity than a k-mer
Number of hits: |Z|’< M where N =1|S|—¢+1land M =|T|—¢+1

In order to find more similarities, you need to decrease k:
exponential increase in running time

Miklos Csiros _ _
Similarity searches with variable length seeds

Hash table

Table: key occurrence in S for each key

hash table (k=3) Sequence: ACCGTCCGTA
GTC

‘—"

Miklos Cslirds _ _
Similarity searches with variable length seeds

General seed-and-extend algorithm

List of positions in which key u occurs: Occ(u)

1.

fori=1,...,|5S|—f+4+1do

set key «— h(S[i..i + ¢ — 1])

add i to the list Occ(key)

e This is where we will

. end for modify the hash table

set key — h(T[j..7 + ¢ — 1])

process the hits (7, 7) : i € Occ(key)

end for

Miklos Csl(iros

Similarity searches with variable length seeds

Modifying the hash table

merging occurrence lists (oblivious to second stage)

hash table occurrence lists After merging occurrence lists
T
e __________J R R T

Miklos Csiros _ _
Similarity searches with variable length seeds

Not all keys are created equal

Repeated sequences, frequent signals, low complexity regions

11-mer distribution on human chr 19

TTTTTTTTTTT 3093
AAAAAAAAAAA 2733
TGTGTGIGIGT 692
GIGTGTGIGIG625
\ CTTTTTTTTTT 622

100k
10k <

ACACACACACA 606

\ ACTGGAGAGAA 576
\ GGTTTCTCTCC573

% AAAAAAAAAAG 572
"\'zs_' GGAGAGAAACC 566

1k

100

o random string
10 —— Poisson

T TTTTT I T
100 1000
key occurrences

100k

10k <

1k

100

10

o random string
—— Poisson

CATACCTATTT 712
CAGGCAACACT 648
GTICTCTTATGG555
TTTTTTTTTTT 517
TATCAAAGAGA 510
AAGCCTTTTTT 502
TCGATTTCACA 471
AGGCACGATAA 464
AAAAAAAAAAA 459
GIGAGTTGAAC 455

1 10 100

key occurrences

Miklos Csiros _ _
Similarity searches with variable length seeds

Seed tree

[only conceptual]: hash keys put in a trie

S = AACACGATCAGA seed: {I1,3,4}
A 1,2,7 c 3,459 G 6 T 8
T 1,2,7 cA | > cc |3 ce |49 GT |6 TA |8
D e el i el e
IAC-A] 1,7 Iil 2 CAT | 5 cce |3 cea |49 GTC |6 TAG |8
e e & e e

Miklos Csiros _ _
Similarity searches with variable length seeds

Pruning the tree

Pruning: select a node v whose children are all leaves
remove the children — merge their occurrence lists:
Occ(v) = UyesOcc(v - o)

Def. n(v) = |Occ(v)|, number of times key v occurs in .S

[v]

Predicted number of hits for key v: hits(v) = n(v)M [[;—1 g,[; -
where ¢, is the frequency of character o in T’

Increase in number of hits after pruning:

[v]

hitsT (v) = hits(v) — 3 hits(v-0) = M(1 qvm) S (1—g0)n(v-0).
1=1

oES oE2

Miklos Csliros _ _
Similarity searches with variable length seeds 9

Predict the effect of pruning

Want to prune as many nodes as possible, as each pruning increases the
sensitivity, while keeping the increase in hits low

Lemma. If ¢ < 1/2 for all o € =, then hitsT(v) > hitsT (v - z) for all
x € 2.

= can greedily select nodes for pruning using hits"‘(v) alone, there is no
need for keeping track of whether the children are all leaves

Procedure:

1. Calculate hitsT (v) for every non-leaf node v

2. Keep selecting v with minimum hits™ (v) and prune at v until a threshold
on total hit increase is surpassed

Miklos Csiros _ _
Similarity searches with variable length seeds 10

First phase: estimation

Calculate n(u) and hitsT (w) level-by-level, upwards in the tree

Want greedy selection — use binning: put w in BinList[b(hitsT (u))], where
b: R+— {0,1,..., B} is a monotone binning function
(avoids the need for sorting)

Miklos Csliros _ _
Similarity searches with variable length seeds 11

Second phase: merging occurrence lists
(We keep merging occurrence lists = pruning the seed tree)
Merge occurrence lists by going through each bin, from BinList[0] to BinList[B]
Keep track of total increase in hits

Stop when number of hits increases by a factor of R where R is an input
parameter

Miklos Csiros _ _
Similarity searches with variable length seeds 12

Optimizing the order of sampled positions
Spaced seed: ordered set 8§ = {s1,...,S,}
If pruning at level (k — 1): as if hashing with spaced seed {s1,...,s1t_1}
Define the seed chain 83,8, _1,...,80 by 8 =8 and 8§;_1 = 8 — {st}

Problem : Given an unordered set of positions, find the “best” seed chain
— select §;_1 based on &; so that it maximizes sensitivity

[Sensitivity calculated as in Nicodeme et al. (1999) or Buhler et al. (2003)]

Example: best ordering of PatternHunter’s seed:
2,3,8,10,13,14,5,1,16,17,18

Miklos Csiros _ _
Similarity searches with variable length seeds 13

Memory requirements

. k_
Number of non-leaf nodes in the seed tree: ||ZZ|‘_11

Every node is identified by an integer

- |=F-1
Storing n(u): =1 integers

k
Binning by hitsT: (B+1)+ |__11

PN -
= integers

About 11 Mbytes for k = 11 and |X| = 4

Miklos Csiros _ _
Similarity searches with variable length seeds

14

Running time

Takes O(k|S| 4 k|=|F) in worst-case (all nodes pruned), and

O(|S| + k|=|*=2) in practice

Table | Pruning | Extensions
H. influenzae-E. coli, (18,12)-seed R = 0 2S Os 8s
H. influenzae—-E. coli, (18,12)-seed R = 3.5 2S Os 15s
H. influenzae-E. coli, (18,11)-seed R = 3.5 2S 3s 31s
S. cerevisiae-S. pombe, (18,12)-seed R =0 13s Os 3m 31s
S. cerevisiae-S. pombe, (18,12)-seed R = 3.5 14s 21s 6m 27s
S. cerevisiae-S. pombe, (18,11)-seed R = 3.5 12s 13s 32m 24s
Human chrX-rat chrX, (20,13)-seed R = 0O 82s Os 31m
Human chrX-rat chrX, (20,13)-seed R = 3.5 76s | 6m 34s 78m
Human chrX-rat chrX, (18,12)-seed R = 3.5 119s 105s 4h 21m

Miklos Csiros _ _
Similarity searches with variable length seeds

15

Yeasts

S. cerevisiae vs. S. pombe

hits +
J;»"
+ -
A
4e8 - +-
i/,
4
:‘_/
—
388* ’_|.
+-
4 -
/+’
+
B +-
2e8 e
o+
+

.t o. O oS- L <

+ e 0- O
le8 T{" > -5 -0—0 ©

I i
o- 00 °
o6 -0 °

Miklos Csiros _ _
Similarity searches with variable length seeds 16

Yeasts 2

HSP=High-Scoring Segment Pair, a high-scoring gapless alignment

- S. cerevisiae vs. S. pombe

HSP; B LA
+—F
16k - tree over (18,11)-seed+ L
L O (18,10)-seed
_ o
+ + T O
15k - (16,10)-seed
M <
_ &000
14k & tree over (18,12)-seed
<><>
\ \ ‘ ‘ |
100 200 300 400
million hits

Miklos Csiros _ _
Similarity searches with variable length seeds

17

