
Performing local similarity searches

with variable length seeds

Miklós Csűrös

Département d’informatique et de recherche opérationnelle
Université de Montréal

Miklós Csűrös
Similarity searches with variable length seeds 1

Seed-and-extend

Comparison of molecular sequences S, T ∈ Σ∗

Goal: find local alignments, i.e.,
S[i..i′] and T [j..j′] with high similarity score

Dynamic programming (Smith-Waterman) O(|S| · |T |) too slow

Seed-and-extend heuristics
(BLAST, Fasta, SSAHA, SENSEI, BLAT, BLASTZ, PatternHunter, . . .)

Hash function h : Σ` 7→ Σk

k-mer: ` = k and h(u) = u

Hit at (i, j) if h(S[i..i + `− 1]) = h(T [j..j + `− 1])

Miklós Csűrös
Similarity searches with variable length seeds 2

Spaced seed

Spaced seed: ordered set S = {s1, . . . , sk}; si ∈ {1, . . . , `}

Corresponding hash function: h(u) = u[s1] · u[s2] · · ·u[sk]

Gives higher sensitivity than a k-mer

Number of hits: NM
|Σ|k where N = |S| − ` + 1 and M = |T | − ` + 1

In order to find more similarities, you need to decrease k:
exponential increase in running time

Miklós Csűrös
Similarity searches with variable length seeds 3

Hash table

Table: key occurrence in S for each key

1

2

3

4

5

6

7

8

Sequence:hash table (k=3) ACCGTCCGTA

AAA

...

ACC

...

CCG

...

CGT

...

GTA

GTC

...

TCC

...

TTT

occurrence lists

GTC

Miklós Csűrös
Similarity searches with variable length seeds 4

General seed-and-extend algorithm

List of positions in which key u occurs: Occ(u)

This is where we will
modify the hash table

Miklós Csűrös
Similarity searches with variable length seeds 5

Modifying the hash table

merging occurrence lists (oblivious to second stage)

hash table occurrence lists After merging occurrence lists

Miklós Csűrös
Similarity searches with variable length seeds 6

Not all keys are created equal

Repeated sequences, frequent signals, low complexity regions

100101 1000
key occurrences

10k

1k

10

100

1

100k

random string
Poisson

TTTTTTTTTTT 3093
AAAAAAAAAAA 2733
TGTGTGTGTGT 692
GTGTGTGTGTG 625
CTTTTTTTTTT 622
ACACACACACA 606
ACTGGAGAGAA 576
GGTTTCTCTCC 573
AAAAAAAAAAG 572
GGAGAGAAACC 566

11-mer distribution on human chr 19

1 10 100
key occurrences

10k

1k

10

100

1

100k

random string
Poisson

CATACCTATTT 712
CAGGCAACACT 648
GTCTCTTATGG 555
TTTTTTTTTTT 517
TATCAAAGAGA 510
AAGCCTTTTTT 502
TCGATTTCACA 471
AGGCACGATAA 464
AAAAAAAAAAA 459
GTGAGTTGAAC 455

PH-seed key distribution on human chr 19

Miklós Csűrös
Similarity searches with variable length seeds 7

Seed tree

[only conceptual]: hash keys put in a trie

S = AACACGATCAGA seed: {1,3,4}

GTC TAG

GT TA

G T

ACA 1,7

A 1,2,7

AC 1,2,7

ACC 2 CCG 3 CGA 4,9CAT 5

CA 5 CC 3 CG 4,9

C 3,4,5,9

6

6

6

8

8

8

1,2,3,4,5,6,7,8,9

Miklós Csűrös
Similarity searches with variable length seeds 8

Pruning the tree

Pruning: select a node v whose children are all leaves
remove the children → merge their occurrence lists:
Occ(v) = ∪σ∈ΣOcc(v · σ)

Def. n(v) = |Occ(v)|, number of times key v occurs in S

Predicted number of hits for key v: hits(v) = n(v)M
∏|v|

i=1 qv[i] ,

where qσ is the frequency of character σ in T

Increase in number of hits after pruning:

hits+(v) = hits(v)−
∑

σ∈Σ

hits(v ·σ) = M

(|v|∏
i=1

qv[i]

) ∑
σ∈Σ

(1−qσ)n(v ·σ).

Miklós Csűrös
Similarity searches with variable length seeds 9

Predict the effect of pruning

Want to prune as many nodes as possible, as each pruning increases the
sensitivity, while keeping the increase in hits low

Lemma . If qσ ≤ 1/2 for all σ ∈ Σ, then hits+(v) ≥ hits+(v · x) for all
x ∈ Σ.

⇒ can greedily select nodes for pruning using hits+(v) alone, there is no
need for keeping track of whether the children are all leaves

Procedure:
1. Calculate hits+(v) for every non-leaf node v

2. Keep selecting v with minimum hits+(v) and prune at v until a threshold
on total hit increase is surpassed

Miklós Csűrös
Similarity searches with variable length seeds 10

First phase: estimation

Calculate n(u) and hits+(u) level-by-level, upwards in the tree

Want greedy selection — use binning: put u in BinList[b(hits+(u))], where
b : R 7→ {0,1, . . . , B} is a monotone binning function
(avoids the need for sorting)

Miklós Csűrös
Similarity searches with variable length seeds 11

Second phase: merging occurrence lists

(We keep merging occurrence lists = pruning the seed tree)

Merge occurrence lists by going through each bin, from BinList[0] to BinList[B]

Keep track of total increase in hits

Stop when number of hits increases by a factor of R where R is an input
parameter

Miklós Csűrös
Similarity searches with variable length seeds 12

Optimizing the order of sampled positions

Spaced seed: ordered set S = {s1, . . . , sk}

If pruning at level (k − 1): as if hashing with spaced seed {s1, . . . , sk−1}

Define the seed chain Sk, Sk−1, . . . , S0 by Sk = S and St−1 = St − {st}

Problem : Given an unordered set of positions, find the “best” seed chain
— select St−1 based on St so that it maximizes sensitivity

[Sensitivity calculated as in Nicodème et al. (1999) or Buhler et al. (2003)]

Example: best ordering of PatternHunter’s seed:
2,3,8,10,13,14,5,1,16,17,18

Miklós Csűrös
Similarity searches with variable length seeds 13

Memory requirements

Number of non-leaf nodes in the seed tree: |Σ|
k−1

|Σ|−1

Every node is identified by an integer

Storing n(u): |Σ|
k−1

|Σ|−1 integers

Binning by hits+: (B+1)+|Σ|
k−1

|Σ|−1 integers

About 11 Mbytes for k = 11 and |Σ| = 4

Miklós Csűrös
Similarity searches with variable length seeds 14

Running time

Takes O(k|S|+ k|Σ|k) in worst-case (all nodes pruned), and
O(|S|+ k|Σ|k−2) in practice

Table Pruning Extensions
H. influenzae–E. coli, (18,12)-seed R = 0 2s 0s 8s
H. influenzae–E. coli, (18,12)-seed R = 3.5 2s 9s 15s
H. influenzae–E. coli, (18,11)-seed R = 3.5 2s 3s 31s
S. cerevisiae–S. pombe, (18,12)-seed R = 0 13s 0s 3m 31s
S. cerevisiae–S. pombe, (18,12)-seed R = 3.5 14s 21s 6m 27s
S. cerevisiae–S. pombe, (18,11)-seed R = 3.5 12s 13s 32m 24s
Human chrX–rat chrX, (20,13)-seed R = 0 82s 0s 31m
Human chrX–rat chrX, (20,13)-seed R = 3.5 76s 6m 34s 78m
Human chrX–rat chrX, (18,12)-seed R = 3.5 119s 105s 4h 21m

Miklós Csűrös
Similarity searches with variable length seeds 15

Yeasts

1 2 3 4
R

3e8

2e8

1e8

4e8

hits

(18,12)-seed

(18,11)-seed

(18,10)-seed

S. cerevisiae vs. S. pombe

Miklós Csűrös
Similarity searches with variable length seeds 16

Yeasts 2

HSP=High-Scoring Segment Pair, a high-scoring gapless alignment

300200100 400
million hits

15k

14k

16k

HSPs

(18,10)-seed

(16,10)-seed

tree over (18,11)-seed

tree over (18,12)-seed

S. cerevisiae vs. S. pombe

Miklós Csűrös
Similarity searches with variable length seeds 17

