
Rapid homology search with two-stage extension and daughter
seeds

Miklós Csűrös1 and Bin Ma2

1 Department of Computer Science and Operations Research
Université de Montréal

C.P. 6128, succ. Centre-Ville, Montréal, Qué., Canada, H3C 3J7
csuros@iro.umontreal.ca

2 Department of Computer Science
University of Western Ontario

London, Ont., Canada, N6A 5B7
bma@csd.uwo.ca

Abstract. Using a seed to rapidly “hit” possible homologies for further examination is a common
practice to speed up homology search in molecular sequences. It has been shown that a collection of
higher weight seeds have better sensitivity than a single lower weight seed at the same speed. However,
huge memory requirements diminish the advantages of high weight seeds. This paper describes a two-
stage extension method, which simulates high weight seeds with modest memory requirements. The
paper also proposes the use of so-called daughter seeds, which is an extension of the previously studied
vector seed idea. Daughter seeds, especially when combined with the two-stage extension, provide
the flexibility to maximize the independence between the seeds, which is a well-known criterion for
maximizing sensitivity. Some other practical techniques to reduce memory usage are also discussed in
the paper.

1 Introduction

An important task in the analysis of molecular sequences is the search for local alignments, formed by pairs of
substrings from two sequences, which score high according to some string similarity metric. Local alignments
are the “unit operations” in comparative genomics [1], where sequence conservation and lack of it are used
to reason about evolutionary relationships and biological function. For instance, even alignments between
different species’ genomes [2] rely on anchors, which are local alignments between the genomes that restrict
the search space for whole-genome alignments.

The importance of the local alignment problem led to a large body of research, starting in the early
1980s with the algorithm of Smith and Waterman [3], later improved by Gotoh [4]. The Smith-Waterman-
Gotoh algorithm uses dynamic programming to find all local alignments scoring above a fixed threshold in
O(|S| · |T |) time for two sequences S and T over a finite alphabet Σ. For genomic sequences, Σ is the DNA
alphabet of size four. While the speed of a full sensitivity search can be improved by a logarithmic factor [5],
a full-scale search that involves sequences with several million letters cannot be carried out in a reasonable
time frame. For large alignment problems, other solutions are needed that may sacrifice some sensitivity for
speed, i.e., that may miss some local alignments but run reasonably fast. Heuristic search programs such as
FASTA [6] and BLAST [7] were introduced at the end of the 1980s. They rely on the so-called hit-and-extend
heuristic, which can be implemented using hashing and lookup tables, introduced in this context by Wilbur
and Lipman [8]. The majority of modern local alignment programs [9–13] exploit some variant of this idea.
Some more recent alternatives are based on suffix trees [14, 15].

This paper concentrates on hit-and-extend methods. Hit-and-extend methods rely on a hash function
h : Σ` → {0, . . . ,H−1}. Local alignments are found by first identifying hits, which are pairs of positions (i, j)
where h(S[i..i + ` − 1]) = h(T [j..j + ` − 1]). The most obvious choice for hashing is to use the identity
function, when hits are defined by identical substrings of length `, called `-mers. In fact, this strategy is
used by BLAST. All the hits can be found efficiently by using a lookup table that stores the occurrence

lists Occ(g) = {i : h(S[i..i + ` − 1]) = g} for every key g. Subsequently, hits are detected and extended
by consulting the occurrence list for h(T [j..j + ` − 1]) in each position j. Figure 1 outlines this concept.
This strategy is often called “seeding” and the hash function or its representation is called as a seed. The
sensitivity of a seed measures its ability to hit a homology, and the specificity of a seed characterizes its
ability to filter out a random region.

Algorithm Hit-and-extend
Input sequences S, T ;
hash function h : Σ` → {0, . . . , H − 1}

H1 for i = 1, . . . , |S| − ` + 1 do
H2 set g ← h(S[i..i + `− 1])
H3 add i to the list Occ(g)
H4 for j = 1, . . . , |T | − `− 1 do
H5 set g ← h(T [j..j + `− 1])
H6 process the hits (i, j) : i ∈ Occ(g)

Algorithm X-drop
Input sequences S, T ; start (i, j); allowed drop X

X1 set s← 0;max← 0
X2 while s > max−X and i ≤ |S| and j ≤ |T | do
X3 if S[i] = T [j] then s← s + 1 else s← s− 1
X4 if s > max then set max← s
X5 set i← i + 1; j ← j + 1
X6 report max

Fig. 1. Basic hit-and-extend procedure. Algorithm Hit-and-extend outlines the method. Hits are extended in
Line H6 by exploring the dynamic programming table around the hits. X-drop is a popular extension algorithm,
used in BLAST [7, 9] and many other alignment programs. The extension is shown only in the forward direction. An
analogous extension process is carried out in the reverse direction where i and j decrease by 1 in every step.

It was recently discovered [12] that spaced seeds provide very good sensitivity and specificity. A spaced
seed is defined by a set S = {s1, . . . , sk} ⊆ {1, . . . , `}. In practice, a spaced seed is often denoted by the char-
acteristic vector for the set, defined as the length-` binary string in which the bits at the positions specified
by the seed have value 1. The corresponding hash function concatenates the characters in positions specified
by the seed, and encodes the resulting string u[s1] ·u[s2] · · ·u[sk] by an integer in the range {0, . . . , |Σ|k−1}.
Such a seed is called an (`, k)-seed, and has weight k. The initial discovery led to a number of results on
selecting spaced seeds [16–18] in various statistical or empirical alignment models. Additional references with
a thorough discussion are offered in [19]. Spaced seeds or similar indexing constructs have been studied also
in the contexts of lossless filtration [20, 21] and sequencing by hybridization [22].

There exist several generalizations of spaced seeds, which include multiple seeds [13, 23], and vector
seeds [10, 24]. Multiple seeds are a set of carefully selected spaced seeds S1, . . . , SM . The set of hits for such
a set is the union of the hits found by every single seed. A vector seed is defined by a vector of non-negative
weights (w1, . . . , w`) and a threshold t: there is a hit at (i, j) if t ≤

∑`
δ=1 wδI{S[i + δ − 1] = T [j + δ − 1]},

where I{C} is 1 if and only if condition C is true, otherwise it is 0. (The slightly more general definition
of [24] allows for a scoring matrix.) A vector seed can be viewed as a well-structured set of multiple seeds.

The time complexity increase of using multiple seeds can be offset by using higher-weighted seeds. It was
shown that higher-weighted multiple seeds and vector seeds may offer superior sensitivity [13, 24] to that of
a single seed at the same specificity. However, they can hardly reach their theoretical potential due to their
memory requirements. In case of multiple seeds [13], a lookup table is constructed for every seed. Vector seeds
rely on a hash table for the spaced seed defined by the positions with non-zero weights. As a consequence,
memory usage is exponential in the number of positive weights. Vector seeds with widely varying weighting
schemes proved prohibitive due to their demands on memory.

We first propose in Section 2 a novel two-stage extension procedure that improves the efficiency of hit-
and-extend methods. Rather than being a trivial heuristic, extensive optimization is needed to maximize the
sensitivity of the two-stage extension. The concept of daughter seeds is introduced in Section 3. Daughter
seeds allow us to attain or surpass the sensitivity and speed of multiple and vector seeds, and pose only
modest demands on memory. We discuss the advantages of combining two-stage extension and the daughter
seeds. Section 4 explores some practical techniques of space reduction, which include an implementation of 11-
mer based hashing with 1.5 bytes per base pair for the purposes of comparing mammalian-sized genomes.
Section 5 concludes the paper.

2

2 Two-stage extension

2.1 Average complexity of the classic hit-and-extend method

In this study, we restrict our attention to gapless local alignments. The presented techniques are, however,
relevant also for gapped alignments, as most programs perform gapped extension only if a high-scoring
gapless alignment is found. For simplicity, we consider the alignment scoring policy that rewards an identity
with +1 and penalizes a mismatch with −1. Thus, without loss of generality, each local alignment between
S[i..i + n − 1] and T [j..j + n − 1] can be represented by a 0-1 string R of length n, where R[k] = 1 if and
only if S[i + k− 1] matches T [i + k− 1]. Let n′ be the number of ones in R. Then the score of the alignment
is (2n′ − n). The similarity of the local alignment is then ratio n′/n.

If S[i..i + n − 1] and T [j..j + n − 1] are random unrelated sequences, then the similarity is expected
to be β =

∑
a∈Σ p(a)q(a), where p(a) and q(a) are the background frequencies for the letter a in the two

sequences. For DNA sequences with alphabet size 4, β = 1
4 if the letter occurrences are uniform random in

at least one of S and T . For simplicity, we mostly focus on such a model of random sequences. Nonetheless,
the analyses can be easily extended to arbitrary background frequencies.

A heuristic local alignment method can be assessed by evaluating its specificity and sensitivity. Specificity
is measured by the average running time on random unrelated sequences. Sensitivity is measured by the
probability of detecting a homology under a probabilistic model of homologies.

Since the introduction of spaced seeds, there has been much work on finding variants of hit conditions and
hash functions to gain better sensitivity and specificity. In this section we scrutinize the extension instead.
The usual method is to extend a hit in each of the two directions along the diagonal until the score drops
by a specified amount. In each direction, the position where the maximum score is reached is recorded and
gives the extent of the local alignment. Figure 1 shows the X-drop extension procedure in one direction.

If we ignore the boundary effects of S and T , the average running time of a hit-and-extend method for
random sequences is f × t× |S| × |T |, where f is the probability of a hit at a fixed position pair (i, j), and
t is the average time spent on a hit extension. The probability f is called the false positive rate in [24]. In
what follows, we analyze t more closely for the X-drop algorithm of Fig. 1. In Line X3, the score decreases
with an expected value of (1− 2β) in each step. Therefore the extension will stop after around X/(1− 2β)
steps. The following lemma formalizes this argument.

Lemma 1. Suppose that β < 1/2 holds for the match probability, and X-drop is invoked with a positive
integer X. Let n = min{|S|, |T |}. If τ denotes the number of times the loop body X3–X5 is executed, then

lim
n→∞

Eτ =
X − β

(
1−

(
β

1−β

)X
)

1− 2β
=

X −
∑X

t=1

(
β

1−β

)t

1− 2β
. (1)

Proof. Let Y1, Y2, . . . be the series of ±1-valued random variables that track the changes of the score s in
Line X3 so that s =

∑t
δ=1 Yδ after t comparisons. Formally, Yδ = 1 if S[i + δ − 1] = T [j + δ − 1], otherwise

Yδ = −1, and let s(t) =
∑t

δ=1 Yδ. Clearly, {Yδ} are independent and identically distributed (iid) random
variables with expected value EY = −(1 − 2β), and s(δ) form a simple random walk. The number τ is a
stopping time for Y1, Y2, . . . and thus Wald’s Equation applies [25]:

Es(τ) = (EY)(Eτ). (2)

We need therefore to determine Es(τ), the expected final value of the score s when the condition fails
in Line X2. The key idea is to consider ladder points [26] which are the places where max is updated
in Line X4. Specifically, the ladder points τ0 = 0, τ1, τ2, . . . are defined in the following manner. For ev-
ery m > 0, τm = min{t : s(t) = m}, with the convention that if s(t) never reaches m, then τm = ∞.
Let L be the maximum value of s(t) before the score drops by X for the first time: L = min{m : s(t) =
m − X for some τm < t < τm+1}. The stopping time is τ = min{t : τL < t, s(t) = L − X}. Consequently,
s(τ) = L −X and the value max = L is returned at the end of the extension. We need to compute EL to
obtain Eτ through Eq. (2). Consider the probability P{L > 0}. It equals the probability that the random

3

walk s(t) attains the value 1 before −X. By standard results on random walks [25], this probability equals
ρ = α−X−1

α−X−1−1
with α = β

1−β . Since {Yδ} are independent, the distribution of L is a (shifted) geometric
distribution, and thus P{L = m} = (1− ρ)ρm for all m ∈ N. Hence, EL = ρ

1−ρ = α
1−α (1− αX). By Eq. (2),

Eτ =
X − EL

1− 2β
=

X − α
1−α (1− αX)
1− 2β

,

and Eq. (1) follows by plugging in the value of α. ut

Corollary 1. If the alphabet is of size 4 and one of the sequences is uniform random, then β = 1
4 , and the

expected number of comparisons at a hit is 4X − 2 + o(1).

Proof. Substituting 1
4 for β in Lemma 1, Eτ = 2X − 1 + 3−X . Noticing that the extension is done in both

directions, the corollary is proved. ut

With a typical choice X = 16, a hit extension entails approximately 62 character comparisons on average.

2.2 Two-stage hit extension

We propose the following two-stage extension process. Let S = {s1, . . . , sk} be an (`, k)-seed, and let S′ =
{s′1, . . . , s′m} be a set of positive integers with S ∩ S′ = ∅. Furthermore, let 0 < t ≤ m be a threshold.
The triple (S, S′, t) defines a relaxed seed employed in the following manner. Hits are found as if the spaced
seed S were used. When a hit is found, the positions of S′ are tested, and the full extension is performed
if at least t matches are found. In particular, let (i, j) be a hit position. Full extension is performed only if
S[i + s′ − 1] = T [j + s′ − 1] for at least t of s′ ∈ S′. A relaxed seed may significantly increase the specificity,
which can be seen in Theorem 1. As we will see in Table 1, the sensitivity of a relaxed seed varies very much
for different choices of S′ even with the same size and threshold. Therefore, the optimization of the positions
in S′ should be done together with S.

Theorem 1. Suppose that the two-stage extension method is employed with |S′| = m. Let b(m, t) =
∑m

i=t

(
m
i

)
(1
4)i(3

4)m−i.
The average number of character comparisons performed during a bi-directional hit extension is C =

(
m +

b(m, t)(4X − 2)
)

+ o(1).

Proof. The preliminary test on S′ compares m pairs of characters. A full extension is performed with proba-
bility b(m, t) ≤ 1. A full extension performs an average of (2X−1+3−X) comparisons in each of the forward
and backward directions. ut

Seed Sens.(64) Sens.(100) C T

111001001001010111 0.618 0.838 62 4
111010010100110111 0.451 0.685 62 1
1111111111 0.391 0.578 62 4

Seed & threshold Sens.(64) Sens.(100) C T

111xx1xx1x01010111x 3 0.555 0.791 14.50 0.94
x1110x10x10x1010111 2 0.550 0.787 20.22 1.30
111001001001010111xxxx 2 0.528 0.777 20.22 1.30

Table 1. Comparison of some relaxed and spaced seeds. Relaxed seeds are encoded by 0–1–x strings: position i has 1
if it is in S, and it has x if it is in S′. Sensitivity values are calculated at a 70% similarity level for homology regions
of lengths 64 and 100. Column C shows the expected number of comparisons in hit extension, when X = 16, and
column T lists the expected time spent on finding and extending hits, defined as C times the false positive rate. T
is normalized for weight-11 seeds. The two spaced seeds on the left are the most sensitive weight-10 and weight-11
seeds. (Notice that they are much better than a 10-mer.) The table on the right-hand side lists some relaxed seeds.
It illustrates that the placement of relaxed positions has a non-negligible effect on sensitivity.

Sensitivity is assessed in the following manner. Let R be a binary representation of a homology region
with a given similarity. In order to have a hit with the spaced seed S, R has to contain a substring u such

4

that ∀s ∈ S : u[s] = 1. In order to have a hit with the relaxed seed (S, S′, t), R has to contain a substring u
such that ∀s ∈ S : u[s] = 1 and

∑m
j=1 u[s′j] ≥ t. The sensitivity is defined to be the hit probability under

a specific probabilistic model for homologies. The first such model was introduced in [12]: it imposes that
local alignments are created by independent equiprobable substitutions. Here we consider similarity patterns
drawn uniformly from the set of length-n binary strings in which there is a 1 in exactly k positions. Computing
the sensitivity of spaced seeds in a similar model was considered by Kucherov et al. [27]. Theirs and earlier
algorithms for computing the sensitivity of spaced seeds [16, 18] can be readily adapted to relaxed seeds.
As an alternative, one can convert a relaxed seed to an equivalent set of multiple seeds and compute the
sensitivity by employing the algorithm in [13] that calculates the sensitivity of an arbitrary set of seeds.

Table 1 compares relaxed and spaced seeds. It turns out that the sensitivity of a (k− 1)-weight seed can
be approached while the running time stays close to that of a weight-k spaced seed. It is noteworthy that the
last two seeds, x1110x10x10x1010111 and 111001001001010111xxxx have the same S, same size |S′| and
same threshold t. At the same time, they have very different sensitivities. The example demonstrates that
the two-stage extension is not a trivial extension heuristic. Indeed, it can be fully profited of only after a
meticulous optimization step, in which the threshold and the relaxed positions are selected. This observation
is epitomized by the extreme case of a relaxed seed (S, S′, t) where t = |S′|. This relaxed seed is equivalent
to the spaced seed S ∪ S′, and the necessity to optimize the spaced seed is well-known [12].

2.3 Implementation and memory usage

The data structure for the basic algorithm of Fig. 1 has to support the operation Add(g, i) that records the
position i as one belonging to Occ(g), and the operation reportAll(g) that returns the list Occ(g) as a set.
For a spaced seed with weight k, a rather straightforward implementation was introduced in [12]. An integer
array, head, of length 4k was used to record the first occurrence of each hash value. Then another integer
array, next, of length |S| is used to retrieve all the other occurrences. next[i] records the next occurrence of
the same hash value as position i. The two arrays head and next form a hash table that requires memory for
(4k + |S|) integers. In a direct manner, a relaxed seed (S, S′, t) can be implemented by relying on the hash
table for the spaced seed S.

3 Daughter seeds

The vector seed idea [24] is very effective for improving sensitivity. Every vector seed corresponds to a
particular set of ordinary spaced seeds defined as follows. Let (w1, . . . , w`) be the weights and t be the
threshold of the vector seed. Let P = {δ : wδ > 0} be the set of positively weighted positions, and K = |P|.
The vector seed is equivalent to the set of seeds {S1, . . . , SM} where Si are the subsets of P in which
t ≤

∑
δ∈Si

wδ. For convenience, we call P the parent seed, and the multiple seeds produced from the parent
seed are called daughter seeds. When all vector weights are 0 or 1, daughter seeds are generated from the
parent by removing up to (K − t) elements from the parent’s set of sampled positions. In fact, an equivalent
set can be created by removing exactly that many positions.

Our relaxed seeds also define sets of daughter seeds: a relaxed seed (S, S′, t) is equivalent to the family of
(k + t)-element subsets of the parent seed S∪ S′, in which only t elements of S′ are present. The vector seed
is different from the multiple seeds introduced in [13], which selects seeds from the complete seed space by
a greedy algorithm. The advantage of multiple seeds over the vector seed is that the selected seeds are not
dependent on each other. As a result, more local alignments may be hit by a constant number of seeds. On the
other hand, multiple seeds require one hash table for each seed, which increases the memory requirements,
and therefore only a few number of seeds can be used in practice. The vector seed only requires one hash
table for the parent seed. As pointed out in [24], memory will still be a problem when there are more than 14
positive weights.

In what follows, we examine daughter seed sets without constraints on which positions may vary, otherwise
imposed by vector seeds and relaxed seeds. We show that daughter seeds can have superior sensitivity to

5

those of spaced seeds and vector seeds with comparable specificity, while using a reasonable amount of
memory (one hash table for the parent seed).

The problem of selecting an optimal set of daughter seeds is likely to be intractable, based on NP-
hardness results of selecting multiple seeds [13] or even one optimal seed (M. Li and B. Ma, manuscript in
preparation). Computing the false positive rate involves some further complications. Let S1, . . . , SM ⊆ P be
a set of daughter seeds. In order to obtain the false positive rate, one needs to count subsets of {1, . . . , `}
that are supersets of at least one of the seeds, where ` is the common seed length (i.e., ` = max∪M

i=1Si).
Since neither the sensitivity nor the specificity changes when we add a new daughter seed D ⊃ Si, we can
safely assume that the daughter set is complete in the sense that if D ⊆ P is included, then so are all its
supersets D′ with D ⊆ D′ ⊆ P.

In order to select complete daughter sets, we used the same greedy algorithm as in Li et al. [13], adding
daughters one by one. Let f be the false positive rate of the parent seed and K = |P|. Suppose now that one
daughter seed S1 is selected by removing one element of P. Obviously, the false positive rate of that single
daughter seed increases the false positive rate by 3f . By adding another daughter seed S2 of the same weight,
the total false positive rate becomes 7f . Now, consider the choice between adding additional three (K − 1)-
size daughter seeds, or the (K−2)-daughter seed S1∩S2. Both choices increase the false positive rate by 9f ,
and thus the question is which one increases the sensitivity more. Intuitively, adding three (K − 1)-sized
daughter seeds is a better choice, and we observed that behavior in experiments. We thus considered selecting
complete daughter sets by first including the parent, then daughter seeds of weight (K − 1) until all of them
are included, then daughter seeds of weight (K−2) until all of them are included, and so on, down to weight-
K ′ daughters among which not all are selected necessarily. In practice, good daughter seed sets are found
with K = 13 or K = 14, and K ′ ≥ K − 2, and thus selecting a quasi-optimal set is feasible. If the number
of weight K ′ daughters is M ′, then the false positive rate of such a set is

(
3K−K′

M ′ +
∑K−K′+1

i=0

(
K
i

)
3i

)
f .

Table 2 shows some daughter seeds. The table illustrates that daughter seeds have better sensitivity than
spaced seeds, or practically implementable vector seeds with comparable false positive rates.

Name Parent weight Daughters Sensitivity False positive rate

MD-3-13 13 3× wt12 0.473 ∗ 0.625
MD-5-13 13 5× wt12 0.593 ∗ 1.0
MD-11-14 14 2× wt12 + 9× wt13 0.729 ∗ 0.95

VS-12-13 13 13× wt12 0.835 2.5
MD-16-14 14 13× wt12 + 3× wt13 0.841 ∗ 2.5

MD-11-13 13 3× wt11 + 8× wt12 0.884 ∗ 4.19
MD-25-14 14 23× wt12 + 2× wt13 0.902 ∗ 3.91

VS-11-12 12 12× wt11 0.927 9.25
MD-14-13 13 12× wt11 + 2× wt12 0.941 ∗ 9.25

Table 2. Daughter seeds. Sensitivity values are given for length-64 regions at 70% similarity level. In case of MD
seeds (sensitivity marked with ∗), the values are calculated from simulations involving one million random similarity
regions: the accuracy is thus within ±0.002 with probability 99.9%. The “Daughters” column describes a minimal
daughter set (the largest antichain) selected from the complete daughter set: MD-11-13 for instance is a set of 8
weight-12 daughters and 3 weight-11 daughters. The weight-13 parent is the spaced seed 1110110010110101111; the
weight-14 parent is 1111001010110011010111. Both of these have maximum sensitivity among spaced seeds with equal
weight. False positive rate is normalized by that of a weight-11 spaced seed. The VS seeds are vector seeds from [24].
For comparison, the spaced seeds of weight 10 and 11 in Table 1 have sensitivity of 0.618 and 0.451, respectively.

The idea of daughter seeds and the two-stage extension can be combined together to further improve
the sensitivity and specificity. Because the two-stage extension of different daughter seeds can be done
separately, we can choose different checkpoints, S′, for different daughter seeds. This resembles the multiple
seeds idea and gives the flexibility to minimize the dependency between different daughter seeds. Therefore,

6

the sensitivity can be maximized. For instance, a 17-element set of weight-11 daughters of a weight-13 parent
used in conjunction with two-hit extension has a sensitivity of 0.917 at the same speed as MD-25-14, which is
faster than a weight-10 spaced seed. More results about the combination will be included in the full version
of this extended abstract.

4 Two ideas for reducing memory usage

Daughter seeds rely on a single hash table for the parent seed, and avoid this way the impractical memory
requirements of general seed sets. Further memory reductions can be achieved by storing the hash table in a
more compact fashion. We need a data structure that supports the operation reportAll discussed in §2.3.
If k-mers are used, then a suffix array can provide the functionality, which can be implemented using O(|S|)
bits [28] in addition to storing the sequence S. Various self-indexing methods [29, 30] promise even better
compression by storing S and the indexing structure together. These latter, however, are still impractical for
genomic DNA sequence comparisons, since the amount of time they spend on retrieving each hit is measured
in milliseconds [30]. Given that the number of hits between two sequences of length 108 is about 2.4 · 109

(when using a 11-weight key), the implied running time (in the order of several weeks) is unacceptable.
When changing the data structure, even a four-fold increase in the execution of reportAll is undesirable,
since in a conventional implementation shorter hash keys imply the same increase in running time, with the
added benefits of reduced memory usage and improved sensitivity. One can also attempt to eliminate some
keys from the table while preserving a good level of sensitivity. Roberts et al. [31] offer an elegant method
of selecting the keys to keep, which can lead to a tenfold memory reduction in the overlap detection phase
of shotgun sequence assembly, but it is not clear whether the method is equally effective for local alignment
tasks that require high sensitivity.

The data structure for the hashing is typically implemented using 32-bit integers [12], as outlined in §2.3.
Consequently, a table for a k-weight key occupies 4(4k+|S|) bytes. We describe a way of saving space without
much sacrifice in either speed or ease of implementation. In particular, we show how to replace 32-bit integers
with (2k)-bit integers. For seeds of weights 10–13, this means a memory reduction of 37.5–18.75%. The idea
is fairly simple: choose a large integer Q and store the modulo Q remainders in both head and next. The
integer value Q is reserved for marking ends of lists, so dlog2(Q + 1)e-bit integers suffice. Figure 2 shows the
data structure. Since Add(g, i) is called in increasing order of i (cf. Fig. 1), key occurrences are restored
correctly.

Theorem 2. (a) reportAll of Fig. 2 correctly enumerates the occurrences of a key g, provided that the
calls Add(g, i) were made in increasing order of i.

(b) Suppose that S is a uniform random string, and the hash function is such that all keys occur with
equal probability. If Q � 1 and |S| → ∞, then the hash function is evaluated in the loop of Line R5
(1− e−Q/H)−1 times on average. If h is defined by a weight-k spaced seed, then, for each occurrence of
a key g, ReportAll(g) performs an expected number of k + 4/3

eQ/H−1
character comparisons.

Proof. Claim (a) holds since g occurs in positions q1Q+head[g], q2Q+next[head[g]], q3Q+next[next[head[g]]], . . .
with q1 ≥ q2 ≥ · · · . The variable q always stores the current value of qi until all the occurrences are enu-
merated. In order to prove Claim (b), we use the fact that the set positions in which a particular key occurs
can be modeled using a Poisson process [32]. Let ∆ be the number of times the while condition is evaluated
in Line R5 before continuing with Line R6. Let X be the distance between the previously found occurrence
and the one the loop is looking for. Then P{∆ = q} = P{X ∈ [1 + (q − 1)Q, qQ]} for all q = 1, 2, Using
the Poisson process approximation, P{∆ = q} = (1− γ)γq−1 with γ ≈ (1−H−1)Q ≈ e−Q/H . Consequently,
E∆ = 1

1−γ as claimed. For spaced seeds in particular, when the loop condition evaluates to true, an expected
number of 4/3 positions are looked at, and when the condition finally fails, k comparisons are made. The
expected number of tested positions is therefore k + 4

3 (E∆− 1), as claimed.

By Theorem 2, using Q = 4k − 1 with a weight-k seed entails an expected number of (k +0.77) character
comparisons. (One can even get away with not comparing all k positions in Line R5 but only some k′ < k

7

Initialization
I1 allocate head[0..H − 1]
I2 for all g set head[g]← Q
I3 allocate next[1..|S| − ` + 1]

Add(g, i)
A1 next[i]← head[g]
A2 head[g]← i mod Q

reportAll(g)
R1 set Occ← ∅; i← head[g]
R2 if i = Q then return Occ

R3 set q ←
⌊
|S|−`−i+1

Q

⌋
R4 while i 6= Q do
R5 while h(S[qQ + i..qQ + i + `− 1]) 6= g do q ← q − 1
R6 Occ← Occ ∪ {qQ + i}
R7 j ← next[qQ + i]; if j ≥ i then q ← q − 1
R8 i← j
R9 return Occ

Fig. 2. Data structure for occurrence lists that uses integers in the range {0, . . . , Q}. The value Q represents a null
pointer.

of them. There is a small chance (0.25k′) that we switch to enumerating occurrences of a different hash
key g′. The key g′, however, matches key g in k′ positions, and so the generated hits are not completely
arbitrary. The advantage is the lower number of comparisons per hit.) As an alternative to the (modQ)
representation, one can avoid the character comparisons by using run-length encoding [33] of the distances
between consecutive occurrences, which reduces the space equivalently at the price of having to handle bit
vectors of varying length.

Suffix trees or arrays can be employed to enumerate occurrences of k-mers. To our knowledge, there is
no efficient way of retrieving occurrences of spaced seeds from a suffix array, and thus their use is limited
to k-mers. At the same time, suffix tree-based local alignment methods use at least 12.5–15.6 bytes [15]
per base pair. Here we describe a simple method of reducing storage for hashing with k-mers in genome-
size local alignments. The idea is to use a hash table for longer (k + d)-mers sampled in every (d + 1)-th
position of S. The occurrences of a key g can be retrieved by listing the occurrences of the keys a1a2 · · · ad ·g,
a1 · · · ad−1gad, . . . , ga1a2 · · · ad for all choices of a1, . . . , ad ∈ Σ. With a judicious choice of d, the running
time remains essentially the same, while the memory usage is reduced. Table 3 shows some numerical values,
for a typical mammalian chromosome or genome. For instance, about 1.5 bytes/nucleotide suffice for 11-
mer based alignment of a whole mammalian genome, if the sequence is stored in 2 bits/nucleotide and the
table is stored in less than 10 bits/nucleotide. This memory usage is better than that of the currently most
space-efficient suffix array representation [34], which uses 12 bits per nucleotide in addition to the sequence
storage. At the same time, the hash table takes considerably less effort to implement.

5 Conclusion

We introduced novel ideas on selecting a structured set of spaced seeds to gain superior sensitivity and speed
in hit-and-extend methods of local alignment. Our guideline in designing the techniques was to minimize
memory usage, in order to avoid the main obstacle encountered by other methods such as multiple seeds and
vector seeds. We described some additional, easily implementable ways to lower memory demands. Memory
usage is a key factor in the efficiency of homology search algorithms, and is likely to become even more
important in the future. Both the number and total length of DNA sequences in Genbank has doubled about
every 17 months since 1983. This rate of increase is comparable to the popular version of Moore’s law about
computing power doubling every 18 months, and thus powerful heuristics are likely to remain highly valued

8

table chromosome genome
int32 modQ int32 modQ

11-mers 33 22.69 32.07 22.04

every 2nd 12-mer 20 14.375 16.25 11.68

every 4th 14-mer 136 110.5 12 9.75

table chromosome genome
int32 modQ int32 modQ

12-mers 36 27 32.5 24.38

every 2nd 13-mer 32 25 17 13.28

Table 3. Number of bits used per character when storing a k-mer table. The traditional implementation uses 32-
bit integers; the implementation of Fig. 2 uses 2k-bit integers. Notice that (2k − 1) or (2k − 2) bits suffice for
storing occurrences restricted to every second or fourth position, respectively. Sequence lengths are |S| = 227 for a
chromosome, and |S| = 231 for a genome, based on the human genome.

in the comparison of molecular sequences. Our methods are memory efficient and offer practical solutions
for the alignment of large genomic sequences in terms of speed and sensitivity.

Acknowledgments

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada,
and the Fonds québécois de la recherche sur la nature et les technologies.

References

1. Miller, W., Makova, K.D., Nekrutenko, A., Hardison, R.C.: Comparative genomics. Annual Review of Genomics
and Human Genetics 5 (2004) 15–56

2. Frazer, K.A., Elnitski, L., Church, D.M., Dubchak, I., Hardison, R.C.: Cross-species sequence comparisons: A
review of methods and available resources. Genome Research 13 (2003) 1–12

3. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology
147 (1981) 195–197

4. Gotoh, O.: An improved algorithm for matching biological sequences. Journal of Molecular Biology 162 (1982)
708–708

5. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence alignment algorithm for unrestrictred
cost matrices. In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA). (2002) 679–688

6. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proceedings of the National
Academy of Sciences of the USA 85 (1988) 2444–2448

7. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of
Molecular Biology 215 (1990) 403–410

8. Wilbur, W.J., Lipman, D.J.: Rapid similarity searches of nucleic acid and protein data banks. Proceedings of
the National Academy of Sciences of the USA 80 (1983) 726–730

9. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25 (1997) 3389–3402

10. Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D., Miller, W.: Human-
mouse alignments with BLASTZ. Genome Research 13 (2003) 103–107

11. Ning, Z., Cox, A.J., Mullikin, J.C.: SSAHA: A fast search method for large DNA databases. Genome Research
11 (2001) 1725–1729

12. Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive homology search. Bioinformatics 18 (2002)
440–445

13. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: highly sensitive and fast homology search. Journal of
Bioinformatics and Computational Biology 2 (2004) 411–439

14. Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., Salzberg, S.L.: Alignment of whole genomes.
Nucleic Acids Research 27 (1999) 2369–2376

15. Kurtz, S., Phillippy, A., arthur L. Delcher, Smoot, M., Shumway, M., Antonescu, C., Salzberg, S.L.: Versatile
and open software for comparing large genomes. Genome Biology 5 (2004) R12

16. Buhler, J., Keich, U., Sun, Y.: Designing seeds for similarity search in genomic DNA. Journal of Computer and
System Sciences 70 (2005) 342–363

9

17. Choi, K.P., Zhang, L.: Sensitivity analysis and efficient method for identifying optimal spaced seeds. Journal of
Computer and System Sciences 68 (2004) 22–40

18. Keich, U., Li, M., Ma, B., Tromp, J.: On spaced seeds for similarity search. Discrete Applied Mathematics 138
(2004) 253–263

19. Brown, D.G., Li, M., Ma, B.: A tutorial of recent developments in the seeding of local alignment. Journal of
Bioinformatics and Computational Biology 2 (2004) 819–842

20. Pevzner, P., Waterman, M.S.: Multiple filtration and approximate pattern matching. Algorithmica 13 (1995)
135–154

21. Burkhardt, S., Kärkkäinen, J.: Better filtering with gapped q-grams. Fundamenta Informaticae 23 (2003) 1001–
1008

22. Frieze, A.M., Preparata, F.P., Upfal, E.: Optimal reconstruction of a sequence from its probes. Journal of
Computational Biology 6 (1999) 361–368

23. Sun, Y., Buhler, J.: Designing multiple simultaneous seeds for DNA similarity search. In: Proc. 8th Annual
International Conference on Computational Molecular Biology (RECOMB). (2004) 76–84

24. Brejová, B., Brown, D., Vinař, T.: Vector seeds: An extension to spaced seeds. Journal of Computer and System
Sciences 70 (2005) 364–380

25. Ross, S.M.: Stochastic Processes. Second edn. Wiley & Sons (1996)
26. Ewens, W.J., Grant, G.R.: Statistical Methods in Bioinformatics: An Introduction. Springer-Verlag (2001)
27. Kucherov, G., Noé, L., Ponty, Y.: Estimating seed sensitivity on homogeneous alignments. In: Proc. 4th IEEE

Symposium on Bioinformatics and Bioengineering (BIBE). (2004) 387–394
28. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications to text indexing and string

matching. In: Proc. 32nd ACM Symposium on Theory of Computing (STOC). (2000) 397–406
29. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Proc. 41st Annual Symposium

on Foundations of Computer Science (FOCS). (2000) 390–398
30. Mäkinen, V., Navarro, G.: Compressed compact suffix arrays. In: Combinatorial Pattern Matching: 15th Annual

Symposium. Volume 3109 of LNCS., Springer-Verlag (2004) 421–433
31. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage requirements for biological

sequence comparison. Bioinformatics 20 (2004) 3363–3369
32. Waterman, M.S.: Introduction to Computational Biology: Maps, Sequences and Genomes. CRC Press (1995)
33. Golomb, S.W.: Run-length encodings. IEEE Transactions on Information Theory 12 (1966) 399–401
34. Hon, W.K., Sadakane, K.: Space-economical algorithms for finding maximal unique matches. In: Combinatorial

Pattern Matching: 13th Annual Symposium. Volume 2373 of LNCS. (2002) 144–152

10

A Multiple daughter seeds in Table 2

--------- MD-3-13

123 45 6 78 9 0123

1110110010110101111 parent

1110110010110101110 13

1110110010010101111 7

1110010010110101111 4

--------- MD-5-13

MD-3-13+

1110110010110001111 9

1110110010110100111 10

--------- MD-11-14

12345 5 6 78 90 1 234

1111001010110011010111 parent

1111001010110011010100 13,14

1111001010100011010011 8,12

0111001010110011010111 1

1011001010110011010111 2

1101001010110011010111 3

1110001010110011010111 4

1111000010110011010111 5

1111001000110011010111 6

1111001010010011010111 7

1111001010110001010111 9

1111001010110010010111 10

1111001010110011000111 11

--------- MD-16-14

12345 5 6 78 90 1 234

1111001010110011010111 parent

1111001010110011010100 13,14

1111001010100011010110 8,14

1111001000110010010111 6,10

1111001000110011010101 6,13

1111001010000011010111 7, 8

1111001010010011010101 7,13

1101000010110011010111 3, 5

1110001010110010010111 4,10

1111001010010010010111 7,10

1111000010110011010110 5,14

1101001010110011000111 3,11

1101001000110011010111 3, 6

1101001010110001010111 3, 9

0111001010110011010111 1

1011001010110011010111 2

1111001010110011010011 12

--------- MD-11-13

123 45 6 78 9 0123

1110110010110101111 parent

1110110010110001101 9,12

1110110010100100111 8,10

1110100010110100111 5,10

11

0110110010110101111 1

1010110010110101111 2

1000110010110101111 3

1110010010110101111 4

1110110000110101111 6

1110110010010101111 7

1110110010110101011 11

1110110010110101110 13

--------- MD-25-14

12345 5 6 78 90 1 234

1111001010110011010111 parent

1111001010110011010100 13,14

1111001010100011010110 8,14

1111001000110010010111 6,10

1111001000110011010101 6,13

1111001010000011010111 7, 8

1111001010010011010101 7,13

1101000010110011010111 3, 5

1110001010110010010111 4,10

1111001010010010010111 7,10

1111000010110011010110 5,14

1101001010110011000111 3,11

1101001000110011010111 3, 6

1101001010110001010111 3, 9

1111001000100011010111 6, 8

1110001010100011010111 4, 8

1111001010110010010110 10,14

1111001010100011000111 8,11

1101001010100011010111 3, 8

1111001000110011010110 6,14

1111001010100011010011 8,12

1111001010110010010011 10,12

1111001010110010000111 10,11

1101001010110010010111 3,10

0111001010110011010111 1

1011001010110011010111 2

--------- MD-14-13

123 45 6 78 9 0123

1110110010110101111 parent

1110110010110001101 9,12

1110100010110100111 5,10

1110110010100100111 8,10

1110110010000101111 7, 8

1110110010110101100 12,13

1110110000110100111 6,10

0110110010110101110 1,13

1110110010110101010 11,13

1110110000110101110 6,13

1110110010100101110 8,13

1110110010110100110 10,13

1100110010110101011 3,11

1010110010110101111 2

1110010010110101111 4

12

