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Abstract. We introduce a Markov model for the evolution of a gene
family along a phylogeny. The model includes parameters for the rates
of horizontal gene transfer, gene duplication, and gene loss, in addition to
branch lengths in the phylogeny. The likelihood for the changes in the size
of a gene family across different organisms can be calculated in O(N +
hM2) time and O(N + M2) space, where N is the number of organisms,
h is the height of the phylogeny, and M is the sum of family sizes. We
apply the model to the evolution of gene content in Proteobacteria using
the gene families in the COG (Clusters of Orthologous Groups) database.

1 Introduction

At this time, 294 microbial genomes have been sequenced, and that figure is ex-
pected to soon double (this in addition to 19 complete eukaryotic genomes, see
http://www.ncbi.nlm.nih.gov/Genomes/). These numbers continue to grow
exponentially with advances in technology and expertise [1]. The wealth of
genome sequence data has already caused a revolution in molecular evolution
methods [2, 3]. A few years ago, scientific studies had to focus on nucleotide-level
differences between orthologous genes, mainly because of the technical and finan-
cial limitations on DNA sequence collection. With increasing amounts of whole
genome information, however, it becomes possible to analyze genome-scale dif-
ferences between organisms, and to identify the evolutionary forces responsible
for these changes. In particular, sizes of gene families can be compared, allow-
ing us to better understand adaptive evolutionary mechanisms and organismal
phylogeny. Several studies suggest that gene content may carry sufficient phy-
logenetic signal for the construction of evolutionary trees [4–13]. Comparative
analyses of genome-wide protein domain content [7, 14, 15] have also provided
important insights into evolution. Gene content and similar features have been
used to construct viral [16, 17], microbial [4, 5, 12], and universal trees [6, 14, 18].
Comparative gene content analysis is also used to estimate ancestral genome
composition [19, 20]. The presence-absence pattern of homologs in different or-
ganisms, the so-called phyletic pattern [21, 22], provides clues about gene func-
tion [23] and the evolution of metabolic pathways [20].



A number of processes shape the gene content of an organism. New genes may
be created by duplication of an existing gene, horizontal transfer from a different
lineage, and rarer events such as gene fusion and fission [19]. It has been widely
debated how the extent of horizontal gene transfer (HGT) compares to vertical
inheritance [18, 19, 24–28]. It is clear that horizontal gene transfer plays a major
role in microbial evolution [29], but there is still need for adequate mathematical
models in which that role can be measured.

We introduce a probabilistic model for the evolution of gene content along
a phylogeny. Our model accounts for gene duplication, gene loss and horizontal
transfer. We consider the evolution of the size of a gene family, where the different
processes add new genes to the family or erase members of it, and arrive at
the family sizes observed at the terminal taxa. We describe an algorithm that
calculates the likelihood of gene family sizes in different organisms, given an
evolutionary tree. The algorithm computes the likelihood of family sizes in O(N+
M2h) time where M is the total number of genes in the family, N is the number
of genomes, and h is the height of the tree. Note that the tree height is at most
linear in N , and on average, it is O(

√
N) or O(log N) for uniform or Yule-Harding

distribution of random trees.

To our knowledge, no tractable stochastic model has yet been introduced
that simultaneously accounts for horizontal transfer, gene loss, and duplication.
These processes cannot be modeled by using only two parameters: whereas the
intensity of gene loss and duplication depend on the size of a gene family, the rate
of horizontal transfer has a constant component. Among other applications, a
model that accounts for duplication and transfer is useful for analyzing the evo-
lution of metabolic networks [30]: do new paths evolve by gene duplication and
adaptive selection, or by accommodating genes with new functions via horizontal
gene transfer?

A few probabilistic models were proposed for gene content evolution, which
are less general than ours. Most studies use stochastic models with two param-
eters. Huson and Steel [11] analyzed a two-parameter model that accounts for
gene loss and horizontal transfer but not for gene duplication. They derived a
distance measure based on gene family sizes using likelihood maximization argu-
ments. They further showed that traditional scores for shared gene content [5] are
not as suitable for phylogeny reconstruction as either Dollo parsimony or their
own distance function. Gu and Zhang [12] relied on a model that includes gene
loss and gene duplication but no other modes of gene genesis, and assumes iden-
tical rates across different branches. They showed how gene family sizes can be
used to define additive distances in such a model. Interestingly enough, the data
can be reduced to a three-letter alphabet for the purposes of distance calcula-
tions: only 0, 1 or “many” homologs per family need to be counted. The distance
metric relies on estimates of the rate parameters, which are obtained through
likelihood optimization. Hahn et al. [31] developed an alternative likelihood-
based approach for the same two-parameter model with constant rates across
lineages. Karev et al. developed a rich probabilistic model of gene content evo-
lution in a series of papers [32–34]. The model explains the distribution of gene



family sizes found in different organisms. It is, however, too general for exact
detailed calculations, and for likelihood computations in particular. Our likeli-
hood algorithm is also notable for its computational efficiency. For instance, the
likelihood calculations of [31] in a two-parameter model take cubic time in M ,
and involve the evaluation of infinite sums that are truncated heuristically.

Not all comparative studies of gene content rely on gene family sizes. A fre-
quently employed approach is to measure shared gene content [5, 6, 8–10] by iden-
tifying orthologs between each pair of genomes. Pairwise scores of shared gene
content can be analyzed using distance-based methods of phylogeny construc-
tion or other clustering techniques. Lake and Rivera [13] proposed an improved
technique of assessing shared gene content: for each genome, the presence and
absence of homologs are marked with respect to genes of a reference genome.
The presence-absence marks are encoded in a binary sequence for every genome.
The sequences are used to compute a pairwise distance matrix using standard
methods of phylogeny construction. Finally, a number of studies rely on families
of homologous genes across many organisms, and record the absence or pres-
ence of each family in the genomes [4, 7, 24, 35]. The resulting absence-presence
data are further analyzed with traditional parsimony or distance-based methods.
Some specialized parsimony methods were purposely devised to analyze absence-
presence data [20, 36] for gene families. Our work is concerned with the actual
numbers of paralogs within the gene families, which give an even richer signal
for evolutionary analyses [11, 19, 31].

The paper is organized in the following manner. Section 2 introduces our
stochastic model of gene content evolution, and describes formulas for computing
various associated probabilities, including likelihood. The formulas are used in
an algorithm described in Section 3. Section 4 describes our initial experiments
in modeling gene content evolution in 51 proteobacteria and 3555 gene families
from the database of Clusters of Orthologous Groups (COGs) [22]. Section 5
concludes the paper.

2 Mathematical model

Let T be a phylogenetic tree over a set of organisms S. The tree T is a rooted tree
with node set V (T ) and edge set E(T ), in which leaves are bijectively labeled
with elements of S. Non-leaf nodes have at least two children. Every edge e has
a length te > 0. We are interested in modeling the evolution of a gene family.
The family size changes along the edges: genes may be duplicated, lost, or gained
from an unknown source. We model the evolution of gene counts (family size) at
the tree nodes: the gene count at every node u ∈ V (T ) is a random variable χ(u)
that can take non-negative integer values. In addition to its length, each edge
is equipped with a duplication rate λ, a loss rate µ, and a transfer rate κ. The
loss rate accounts for all possible mechanisms of gene loss, including deletion
and pseudogenization. The transfer rate accounts for processes of gene genesis,
including HGT from another lineage in the same tree, or HGT from an unknown



organism. The tree topology, the edge lengths and rates determine the joint
distribution of the gene counts.

In our model, the evolution of the gene counts on a branch follows a linear
birth-and-death process [37] parametrized by λ, κ, and µ. Let {X(t) : t ≥ 0}
denote the continuous-time Markov process formed by the gene counts along an
edge uv: χ(u) = X(0) and χ(v) = X(tuv). The transition probabilities of the
process are the following:

P
{

X(t + ε) = n + 1
∣∣∣ X(t) = n

}
=

(
κ + nλ

)
ε + o(ε)

P
{

X(t + ε) = n− 1
∣∣∣ X(t) = n

}
= nµε + o(ε)

P
{
|X(t + ε)− n| > 1

∣∣∣ X(t) = n
}

= o(ε).

In other words, every existing gene produces an offspring through duplication
with an intensity of λ, or disappears with an intensity of µ, and new genes are
acquired with an intensity of κ, independently from the number of existing genes.

Remark. For simplicity of notation, we impose the same rates across all
edges throughout the paper. Nevertheless, the presented method accommodates
branch-dependent rates in a straightforward manner.

The histories of individual genes on an edge form a Galton-Watson forest,
see Figure 1. The figure illustrates a scenario where the gene count changes from
three to five. The gene count at the child node is the result of many duplication,
transfer and loss events. The change involves three horizontally transferred genes,
from among which one survives, another one does not, and the third one produces
two surviving paralogs.

 

t
o
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Fig. 1. Galton-Watson forest representing a possible evolutionary scenario of a genome
having three copies of a gene at the initial time point. Symbol o represents the source
from which genes might be transferred horisontally, symbols * represent copies of the
gene in the genome at the begining and the end of the investigated time span. The top
line represents the ancestral genome having three copies of the gene, the bottom line
represents the modern genome, in which there are 5 genes.
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Fig. 2. Pseudo-alignment representing the relationships of ancestral and descendant
genes. The alignment is consistent with the Galton-Watson forest on Figure 1

2.2 Pseudo-Alignments of Genes

We represent the dynamic of the gene gain-loss-duplication model with a Galton-
Watson forest [13], see Fig 1. This figure represents a possible scenario where
three copies has been horisontally transferred from outside source (o). One of
the transferred gene survived, anotherhas been extinct, while the third thought
deleted, has two duplicatives survived by the end of the investigated time span.
The first gene in the ancestral genome has been deleted, and though it had
several duplicative copies of itself, all of the copies have been deleted, too, in
the modern genome. The second gene survived without any additional copies of
itself, and the third gene has been deleted, but has a descendant in the modern
genome.

The Galton-Watson forest is the union of Galton-Watson trees, one of them
represents the fate of horisontally transferred genes and their duplicative copies,
other trees represent the fate of genes already represented in the ancestral
genome. We say that the genes at the leaves of the Galton-Watson tree are
the descendants of the gene at the root of the Galton-Watson tree.

The pseudo-alignment of genes represents relationships of ancestral and de-
scendant genes. Horisontal gene transfers are represented as insertions at the
begining of the alignment. Duplicated genes are written on the right hand side
of the original gene, just like in the Galton-Watson forest representation, see

Fig. 1. Galton-Watson forest showing the evolution of genes in the same family along
a tree edge. The top line represents the ancestral genome with three genes; the bottom
line represents the descendant genome, in which there are five family members. Symbol
o represents the source from which genes might be transferred horizontally, symbols ?
represent paralogous genes in the genome at the beginning and the end of the investi-
gated time span t. Each o or ? in the ancestral genome is the root of a Galton-Watson
tree. Note that the physical order of genes is immaterial: here they are simply drawn
next to each other for clarity.

While it is not too difficult to calculate the probabilities for any particular
gene count on a branch (see §2.1), the likelihood L of observed gene counts at



the leaves involves an infinite number of possible gene counts at intermediate
nodes:

L =
∑

〈mx : x∈V (T )〉

γ(mroot)
∏

xy∈E(T )

P
{

χ(y) = my

∣∣∣ χ(x) = mx

}
, (1)

where γ(·) defines the gene count distribution at the root, and the summation
over the 〈mx〉 vectors takes all values in agreement with the gene counts at the
leaves in the input data. Our main technique for computing the likelihood is to
restrict the computation to genes that have at least one surviving descendant at
the leaves. In what follows we develop the formulas to compute the likelihood.

2.1 Basic transition probabilities

First we analyze the blocks of homologs at a node comprising genes of common
origin. A xenolog block consists of the genes that trace back to a horizontal
transfer event on the branch from the parent. For every gene at the parent,
its descendants form an inparalog block. (Our terminology follows [38].) The
homologs in Figure 1 belong to four blocks: a xenolog block of size three, an
inparalog block of size zero for the deceased parental gene, and two inparalog
blocks of size one. The independent birth-and-death processes associated with
the blocks have been analyzed in the statistical literature.
Definition 1. Define the following basic transition probabilities for gene count
evolution on a branch. Let ht(n) denote the probability that there are n genes of
foreign origin after time t. Let gt(n) denote the probability that a single gene has
n copies after time t.
In other words, ht(n) is the probability mass function for the number of xenologs
at time t, and gt(n) defines the size distribution of an inparalog block at time t.

Theorem 1. The basic transition probabilities can be written as follows.

ht(n) =
(κ

λ + n− 1
n

)(
1− λβ(t)

)κ
λ
(
λβ(t)

)n (2)

where β(t) = 1−e−(µ−λ)t

µ−λe−(µ−λ)t , and(κ
λ + n− 1

n

)
=

1 if n = 0;(
κ
λ

)(
κ
λ +1

)
···

(
κ
λ +n−1

)
n! if n > 0.

Furthermore,

gt(n) =

{
µβ(t) if n = 0;(
1− µβ(t)

)(
1− λβ(t)

)(
λβ(t)

)n−1 if n > 0.
(3)

Proof. The size of the xenolog block follows a birth-and-death process with a
constant immigration rate κ and no emigration. The transition probabilities of
(2) for such a process were analyzed by Karlin and McGregor [39]. An inparalog
block evolves by a simple birth-and-death process: the transition probabilities of
(3) are derived in, e.g., [37]. 2



2.2 Gene extinction and survival

Definition 2. A surviving gene at a node x is such that it has at least one
modern descendant at the leaves below x.

Let Dx denote the probability that a gene present at node x is not surviving,
i.e., that it has no modern descendants.

Lemma 1. The extinction probability Dx can be calculated as follows. If x is a
leaf, then Dx = 0. Otherwise, let x be the parent of x1, x2, . . . , xd.

Dx =
d∏

j=1

(
µβ(tj) +

(
1− µβ(tj)

)(
1− λβ(tj)

) Dxj

1− λβ(tj)Dxj

)
(4)

where tj is the length of the branch leading from x to xj.

Proof. For leaves, the statement is trivial. When x is not a leaf, condition on the
gene counts at the children:

Dx =
d∏

j=1

∞∑
m=0

gtj
(m)

(
Dxj

)m
.

Plugging in gt(m) from Eq. (3) and replacing the infinite series with a closed
form gives (4). 2

2.3 Effective transition probabilities

We introduce two new probabilities, denoted by Hx(n) and Gx(n), for having n
surviving genes in a block at node x. The effective transition probabilities are
related to ht(n), and gt(n), but take into consideration eventual extinction below
node x. A formal definition follows.

Definition 3. Let y be a non-root node. Define the following effective transition
probabilities. Let Hy(n) denote the probability that the xenolog block at node y
contains n surviving genes. Let Gy(n) denote the probability that an inparalog
block at node n contains n surviving genes.

Lemma 2. Let y be a non-root node, let x be its ancestor, and let t be the length
of the edge xy. The effective transition probabilities can be written as follows.

Hy(n) =
(κ

λ + n− 1
n

)(
1− λβ(t)

1−Dyλβ(t)

)κ
λ
(

(1−Dy)λβ(t)
1−Dyλβ(t)

)n

(5)

Gy(0) = 1−
(
1− µβ(t)

)
(1−Dy)

1−Dyλβ(t)
; (6a)

Gy(n) =

(
1− µβ(t)

)(
1− λβ(t)

)(
λβ(t)

)
(1−Dyλβ(t))

(
(1−Dy)λβ(t)
1−Dyλβ(t)

)n

, n > 0. (6b)



Proof. We condition on the number of xenologs at y (whether or not they sur-
vive).

Hy(n) =
∞∑

i=0

(
n + i

i

)
ht(n + i)

(
Dy

)i(1−Dy

)n
.

Using Eq. (2) leads to an infinite series that can be simplified to get (5). Similarly,
write

Gy(n) =
∞∑

i=0

(
n + i

i

)
gt(n + i)

(
Dy

)i(1−Dy

)n
.

Taking the values of gt(n + i) from Eq. (3) and simplifying the resulting infinite
series yields (6). 2

2.4 Number of surviving genes on a branch

Definition 4. Let y be a non-root node, and let x be its ancestor. Let py(m|n)
denote the survival probability defined as the probability of the event that there
are m surviving genes at node y under the condition that there are n genes at
node x (not necessarily surviving).

Lemma 3. The survival probabilities can be computed as follows.

py(m|0) = Hy(m) (7a)

py(0|n) = Hy(0)
(
Gy(0)

)n 0 < n (7b)
py(1|n) = Gy(0)py(1|n− 1) + Gy(1)py(0|n− 1) 0 < n (7c)

py(m|n) = αpy(m− 1|n)

+
(
Gy(1)− αGy(0)

)
py(m− 1|n− 1)

+Gy(0)py(m|n− 1)

0 < n, 1 < m (7d)

where

α =
(1−Dy)λβ(t)
1−Dyλβ(t)

. (8)

Proof. For py(m|0) and py(0|n), the equations are straightforward. Otherwise,
we condition on the surviving copies of a single gene at y:

py(m|n) =
m∑

i=0

Gy(i)py(m− i|n− 1). (9)

Now, using that Gy(i + 1) = αGy(i) whenever i > 0, and comparing (9)
for py(m|n) and py(m− 1|n), we can write py(m|n) in a recursive form as shown.
2



2.5 Conditional likelihoods

Definition 5. Let x be a node in the tree. Define the conditional likelihood
Lx(n) for all n as the probability of having the observed gene counts at the leaves
in the subtree rooted at x, under the condition that there are n surviving genes
at x.

Theorem 2. The conditional likelihoods can be calculated as follows. In the case
when x is a leaf, Lx(n) = 1 if n is the observed gene count at x, otherwise the
likelihood is 0. If x is not a leaf, and has children x1, x2, . . . , xd, then the following
recursions hold.

Lx(0) =
d∏

j=1

Mj∑
m=0

pxj
(m|0)Lxj

(m); (10a)

Lx(n) = (1−Dx)−n

( d∏
j=1

Mj∑
m=0

pxj (m|n)Lxj (m)

−
n−1∑
i=0

(
n

i

)
(Dx)n−i(1−Dx)iLx(i)

)
; 0 < n ≤

d∑
j=1

Mj , (10b)

where Mj is the sum of gene counts at the leaves in the subtree rooted at xj. If
n >

∑d
j=1 Mj, then Lx(n) = 0.

Proof. For a leaf node, or for n >
∑d

j=1 Mj , the theorem is trivial. Otherwise,
consider the likelihood `x(n) of the observed gene counts at the leaves in the
subtree rooted at x, conditioned on the event that there are n genes present
at x, which may or may not survive. We write the likelihood in two ways. First,
by conditioning on the number of surviving genes at the children,

`x(n) =
d∏

j=1

Mj∑
m=0

pxj
(m|n)Lxj

(m). (11)

Secondly, by conditioning on the number of surviving genes at x,

`x(n) =
n∑

i=0

(
n

i

)(
Dx

)n−i(1−Dx

)i
Lx(i). (12)

Now, rearranging the equality of the two right-hand sides gives the desired result.
2

Remark. Clearly, the gene counts Mx of Theorem 2 are easily computed
for all x. If m(x) is the gene count for every leaf x then

Mx =

{
m(x) if x is a leaf;∑d

j=1 Mxj
if x1, . . . , xk are the children of x.

(13)



2.6 Likelihood

It is assumed that the family size at the root is distributed according to the
equilibrium probabilities:

γ(n) = h∞(n) =
(κ

λ + n− 1
n

)(
1− λ

µ

)κ
λ
(

λ

µ

)n

. (14)

Theorem 3. Let M be the total number of genes at the leaves. The likelihood
of the observed gene counts equals

L =
M∑

n=0

Lroot(n)

(κ
λ +n−1

n

)(
1− λ

µ

)κ
λ
(
(1−Droot)λ

µ

)n

(
1− λ

µDroot

)κ
λ +n

. (15)

Proof. By summing the likelihoods conditioned on the surviving genes at the
root,

L =
M∑

n=0

Lroot(n)
∞∑

i=0

γ(n + i)
(

n + i

i

)
(Droot)i(1−Droot)n. (16)

Now, plugging in the values of γ(·) from Eq. (14) and replacing the infinite series
by a closed form gives the theorem’s formula. 2

Remark. In place of the equilibrium probabilities of (14), many other prior
distributions can be accommodated by the summation in (16).

3 Algorithm

This section employs the formulas of Section 2 in a dynamic programming algo-
rithm to compute the likelihood exactly. More precisely, the algorithm computes
the likelihood of gene counts at the tree leaves, given the duplication rate λ,
the transfer rate κ, and the loss rate µ. Algorithm ComputeLikelihood below
proceeds by a depth-first traversal; the necessary variables are calculated from
the leaves towards the root. Let m(u) denote the gene count at every leaf u.

ComputeLikelihood
Input λ, κ, µ, T , gene counts m(u) : u is a leaf of T
Output likelihood of the m(·) values

1 for each node x ∈ V (t) in a depth-first traversal
2 Compute Dx using Eq. (4).
3 Compute the sum of gene counts Mx by Eq. (13).
4 if x is not the root then
5 Let y be the parent of x.
6 for n = 0, . . . ,My do
7 for m = 0, . . . ,Mx do compute px(m|n) by Eq. (7).
8 for n = 0, . . . ,Mx do compute Lx(n) by Eq. (10).
9 Compute the likelihood L at the root using Eq. (15).
10 return L.



Theorem 4 below analyzes the algorithm’s complexity in terms of the topol-
ogy of T . In particular, it uses the notions of height of a node x, defined as the
number of edges on the path leading from the root to x, levels of nodes, which are
sets of nodes with the same height, and height of the tree, which is the maximum
of the leaf heights.

Theorem 4. Let h be the height of T in Algorithm ComputeLikelihood,
let N be the number of its leaves, and let M = Mroot be the sum of gene counts.
The algorithm can be implemented in such a way that it uses O(N + M2) space
and runs in O(N + hM2) time.

Proof. Computing Dx and Mx takes O(1) time when x is a leaf, or O(d) for
an inner node with d children. There are O(N) nodes in the tree and, thus,
computing Dx and Mx for all x is done in O(N) time. The computed values are
stored in O(N) space.

In order to analyze the computations in Lines 4–8, we consider nodes at the
same level. Line 8 computes Lx(n) for all n = 0, . . . ,Mx in O((Mx + 1)(Mx +
dx)) total time where dx is the number of children of node x. Lines 5–7 com-
pute px(m|n) for (Mx + 1)(My + 1) pairs of n, m values. (Notice that Hy(m)
can be computed in O(1) time for each m in the iteration over m using that
Hy(m) = αm+κ/λ−1

m Hy(m−1) with the α of Eq. (8).) For the children x1, . . . , xdy

of the same node y, the total time spent in Lines 5–7 is O((My + 1)(My + dy)).
Terms of the type O(dx) sum up to O(N) in the tree. Considering all nodes at
the same level k, other terms’ contribution to the running time is

O
( ∑

all y at level k − 1

(M2
y + dMy) +

∑
all x at level k

(M2
x + dMx)

)
,

where d is the maximum number of children. Clearly,
∑

x Mx ≤ M if the sum-
mation goes over x for which their subtrees do not overlap, such as nodes at
the same level. Now,

∑
x M2

x ≤ (
∑

x Mx)2 ≤ M2, and, thus, O(M2 + Md) time
is spent on each level. Therefore, the total time spent in the loop of Line 4
is O

(
N + h(M2 + Md)

)
. Line 9 takes O(M) time. Ignoring degenerate cases

with M � d, the theorem’s claim follows.
In order to obtain the space complexity result, notice that at the end of

the loop in Line 8 the computed variables for the children of x are not needed
anymore. Therefore, the nodes for which px(·|·) is needed are such that their
subtrees do not overlap. By the same type of argument as with time spent on a
level, the number of variables that need to be kept in memory is O(M2). 2

4 Gene content evolution in Proteobacteria

Proteobacteria form one of the most diverse groups of prokaryotes. Proteobac-
teria provide an excellent case study for gene content evolution: they include
pathogens, endosymbionts, and free-living organisms. Genome sizes vary ten-
fold within this group, and horizontal transfer is abundant [25]. Their phylogeny
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Fig. 2. Rates in different groups and the distribution of COG functional categories. The
functional categories are: J–translation, K–transcription, L–replication and repair, D–
cell cycle control and mitosis, V—defense mechanisms, T–signal transduction, M–cell
wall/membrane/envelope biogenesis, N–cell motility, U–intracellular trafficking and se-
cretion, O–posttranslational modification, protein turnover and chaperones, C–energy
production and conversion, G–carbohydrate transport and metabolism, E–amino acid
transport and metabolism, F–nucleotide transport and metabolism, H–coenzyme trans-
port and metabolism, I–lipid transport and metabolism, P–inorganic ion transport
and metabolism, Q–secondary metabolites biosynthesis, transport and catabolism, R–
general function prediction only, S–function unknown. The “size” columns gives the
number of COGs in each rate group. (The numbers in a row do not always add up
to the value in the “size” column because some COGs have more than one functional
assignment.)

is still not resolved to satisfaction [40–43]. We used 51 proteobacteria in the
first application of our likelihood method. Gene counts were based on the newer
version [22] of the COG database. Each COG is a manually curated protein
family of homologs. The COGs are classified into 23 functional categories. (For
each of the 51 proteobacteria, the number of genes in each COG family was
established by Pál et al. [30]. There are 3555 COG families that have at least
one member in the organisms. The organisms and the phylogeny are shown at
http://www.iro.umontreal.ca/∼csuros/gene content/.) The purpose of ap-
plying the likelihood method was not to carry out in-depth data analysis, but
rather to get a first impression of our method’s performance on realistic data.

First we optimized the branch lengths and the λ, κ parameters while keeping
µ = 1.0 to fix the scaling of edge lengths. In a second pass, we clustered the COG
families with different rates in different groups. The groups were established in



several iterations of Expectation Maximization: in an E-step, each family was
assigned to the best group (the one whose rates give the highest likelihood), in
an M-step, rates were optimized within each group separately to maximize the
likelihood of the COG gene counts within the group’s families. Figure 2 shows
the rates in different groups (Groups 0–8), as well as the distribution of COG
functional classes across clusters. The picture shows that various rate groups
are needed to describe the evolution of the families. While the results and the
methodology still need a thorough critical assessment, some interesting patterns
already emerge. About 19% of the families are very stable (Group 0), including
the large majority of genes involved in translation (category J) such as tRNA
synthetases and ribosomal proteins, and cell cycle control (category D). About
one in nine families fall into groups with large horizontal transfer rates (Groups
4 and 5), while one in three families are in groups with very low transfer rates. In
some categories duplication plays only a minor role: the evolution of cell motility
(category N), and various metabolic functions (F,H,I) seem to be shaped mainly
by horizontal transfer and loss.

5 Conclusion

We presented the first three-parameter model of gene content evolution, along
with a fast algorithm for computing likelihoods. We implemented parameter opti-
mization and a gene family clustering method and carried out a pilot experiment
using COG family sizes in 51 Proteobacteria.

We modeled gene family evolution by a birth-and-death process. It was shown
that birth-and-death processes of various complexity explain the observed power-
law behavior of gene family sizes [32–34, 44]. In order to develop a truly realistic
likelihood model, rate variation must be permitted across lineages and families.
Our formulas can be readily adapted to branch-dependent rates. The challenge
lies rather in the parametrization: introducing four parameters (three rates and
branch length) for every tree edge and every family will lead to overfitting. A
possible solution is to work with two sets of parameters: a branch-specific and
a family-specific set. We are now working on developing adequate rate-variation
models along these lines. In another related inquiry, we are investigating the
possibility of pairing this model with sequence evolution models, to achieve a
more nuanced modeling of homologies than simple counts. Incorporating gene
similarity will undoubtedly lead to an improved likelihood model of gene content
evolution.

This paper focuses on the core algorithmic problems of likelihood computa-
tions in a biologically realistic model of gene content evolution. The presented
likelihood algorithm can be utilized in a number of contexts. The computations
can be used in parameter optimization to estimate duplication, loss, and trans-
fer rates in different gene families. By comparing the maximum likelihood values
achieved with different evolutionary tree topologies, organismal phylogeny can
be derived from gene content. “Unusual” branches with excess transfer, loss,
etc., can be identified by examining the likelihoods, adapting an idea of [31].



The conditional likelihoods of §2.5 can be used in likelihood-based computations
of ancestral gene content, similarly to standard methods employed in case of
molecular sequences [45] and introns [46]. The likelihood computation allows
for the sampling of different trees in a Bayesian Markov Chain Monte Carlo
method. We believe that our approach — the efficient computation of exact
likelihoods in a three-parameter model — will find many important applications
in comparative gene content analysis.

Acknowledgments

We would like to thank Eugene Koonin, Hervé Philippe and Yuri Wolf for useful
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toral fellowship.

References

1. Green, E.D.: Strategies for the systematic sequencing of complex genomes. Nature
Reviews Genetics 2 (2001) 573–583

2. Wolfe, K.H., Li, W.H.: Molecular evolution meets the genomic revolution. Nature
Genetics 33 (2003) 255–265

3. Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of
the tree of life. Nature Reviews Genetics 6 (2005) 361–375

4. Fitz-Gibbon, S.T., House, C.H.: Whole genome-based phylogenetic analysis of
free-living microorganisms. Nucleic Acids Research 27 (1999) 4218–4222

5. Snel, B., Bork, P., Huynen, M.A.: Genome phylogeny based on gene content.
Nature Genetics 21 (1999) 108–110

6. Tekaia, F., Lazcano, A., Dujon, B.: The genomic tree as revealed from whole
proteome comparisons. Genome Research 9 (1999) 550–557

7. Lin, J., Gerstein, M.: Whole-genome trees based on the occurrence of folds and or-
thologs: implications for comparing genomes on different levels. Genome Research
10 (2000) 808–818

8. Clarke, G.D.P., Beiko, R.G., Ragan, M.A., Charlebois, R.L.: Inferring genome trees
by using a filter to eliminate phylogenetically discordant sequences and a distance
matrix based on mean normalized BLASTP scores. Journal of Bacteriology 184
(2002) 2072–2080

9. Korbel, J.O., Snel, B., Huynen, M.A., Bork, P.: SHOT: a web server for the
construction of genome phylogenies. Trends in Genetics 18 (2002) 158–162

10. Dutilh, B.E., Huynen, M.A., Bruno, W.J., Snel, B.: The consistent phylogenetic
signal in genome trees revealed by reducing the impact of noise. Journal of Molec-
ular Evolution 58 (2004) 527–539



11. Huson, D.H., Steel, M.: Phylogenetic trees based on gene content. Bioinformatics
20 (2004) 2044–2049

12. Gu, X., Zhang, H.: Genome phylogenetic analysis based on extended gene contents.
Molecular Biology and Evolution 21 (2004) 1401–1408

13. Lake, J.A., Rivera, M.C.: Deriving the genomic tree of life in the presence of hori-
zontal gene transfer: conditioned reconstruction. Molecular Biology and Evolution
21 (2004) 681–690

14. Yang, S., Doolittle, R.F., Bourne, P.E.: Phylogeny determined by protein domain
content. Proceedings of the National Academy of Sciences of the USA 102 (2005)
373–378

15. Deeds, E.J., Hennessey, H., Shakhnovich, E.I.: Prokaryotic phylogenies inferred
from protein structural domains. Genome Research 15 (2005) 393–402

16. Montague, M.G., Hutchison III, C.A.: Gene content phylogeny of herpesviruses.
Proceedings of the National Academy of Sciences of the USA 97 (2000) 5334–5339

17. Herniou, E.A., Luque, T., Chen, X., Vlak, J.M., Winstanley, D., Cory, J.S.,
O’Reilly, D.R.: Use of whole genome sequence data to infer baculovirus phylogeny.
Journal of Virology 75 (2001) 8117–8126

18. Simonson, A.B., Servin, J.A., Skophammer, R.G., Herbold, C.W., Rivera, M.C.,
Lake, J.A.: Decoding the genomic tree of life. Proceedings of the National Academy
of Sciences of the USA 102 (2005) 6608–6613

19. Snel, B., Bork, P., Huynen, M.A.: Genomes in flux: the evolution of archaeal and
proteobacterial gene content. Genome Research 12 (2002) 17–25

20. Mirkin, B.G., Fenner, T.I., Galperin, M.Y., Koonin, E.V.: Algorithms for com-
puting evolutionary scenarios for genome evolution, the last universal common an-
cestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
BMC Evolutionary Biology 3 (2003) 2

21. Koonin, E.V., Galperin, M.Y.: Sequence-Evolution-Function: Computational Ap-
proaches in Comparative Genomics. Kluwer Academic Publishers, New York (2002)

22. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin,
E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S.,
Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A.:
The COG database: an updated version includes eukaryotes. BMC Bioinformatics
4 (2003) 441

23. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: As-
signing protein functions by comparative genome analysis: protein phylogenetic
profiles. Proceedings of the National Academy of Sciences of the USA 96 (1999)
4285–4288

24. Jordan, I.K., Makarova, K.S., Spouge, J.L., Wolf, Y.I., Koonin, E.V.: Lineage-
specific gene expansions in bacterial and archaeal genomes. Genome Research 11
(2001) 555–565

25. Gogarten, J.P., Doolittle, W.F., Lawrence, J.G.: Prokaryotic evolution in light of
gene transfer. Molecular Biology and Evolution 19 (2002) 2226–2238

26. Kurland, C.G., Canback, B., Berg, O.G.: Horizontal gene transfer: a critical view.
Proceedings of the National Academy of Sciences of the USA 100 (2003) 9658–9662

27. Kunin, V., Goldovsky, L., Darzentas, N., Ouzounis, C.A.: The net of life: recon-
structing the microbial phylogenetic network. Genome Research 15 (2005) 954–959

28. Ge, F., Wang, L.S., Kim, J.: The cobweb of life revealed by genome-scale estimates
of horizontal gene transfer. PLoS Biology 3 (2005) e316

29. Boucher, Y., Douady, C.J., Papke, R.T., Walsh, D.A., Boudreau, M.E.R., Nesbø,
C.L., Case, R.J., Doolittle, W.F.: Lateral gene transfer and the origin of prokaryotic
groups. Annual Review of Genetics 37 (2003) 283–328



30. Pál, C., Papp, B., Lercher, M.: Adaptive evolution of bacterial metabolic networks
by horizontal gene transfer. Nature Genetics 37 (2005) 1372–1375

31. Hahn, M.W., De Bie, T., Stajich, J.E., Nguyen, C., Cristianini, N.: Estimating
the tempo and mode of gene family evolution from comparative genomic data.
Genome Research 15 (2005) 1153–1160

32. Karev, G.P., Wolf, Y.I., Rzhetsky, A.Y., Berezovskaya, F.S., Koonin, E.V.: Birth
and death of protein domains: a simple model of evolution explains power law
behavior. BMC Evolutionary Biology 2 (2002) 18

33. Karev, G.P., Wolf, Y.I., Koonin, E.V.: Simple stochastic birth and death models
of genome evolution: was there enough time for us to evolve? Bioinformatics 19
(2003) 1889–1900

34. Karev, G.P., Wolf, Y.I., Berezovskaya, F.S., Koonin, E.V.: Gene family evolu-
tion: an in-depth theoretical and simulation analysis of non-linear birth-death-
innovation models. BMC Evolutionary Biology 4 (2004) 32

35. Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Tatusov, R.L., Koonin, E.V.: Genome
trees constructed by five different approaches suggest new major bacterial clades.
BMC Evolutionary Biology 1 (2001) 8

36. Kunin, V., Ouzounis, C.A.: GeneTRACE-reconstruction of gene content of ances-
tral species. Bioinformatics 19 (2003) 1412–1416

37. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley &
Sons (1950)

38. Sonnhammer, E.L.L., Koonin, E.V.: Orthology, paralogy and proposed classifica-
tion for paralog subtypes. Trends in Genetics 18 (2002) 619–620

39. Karlin, S., McGregor, J.: Linear growth, birth, and death processes. Journal of
Mathematics and Mechanics 7 (1958) 643–662

40. Lerat, E., Daubin, V., Moran, N.A.: From gene trees to organismal phylogeny in
Prokaryotes: the case of the γ-Proteobacteria. PLoS Biology 1 (2003) E19

41. Boussau, B., Karlberg, E.O., Frank, A.C., Legault, B.A., Andersson, S.G.E.: Com-
putational inference of scenarios for α-proteobacterial genome evolution. Proceed-
ings of the National Academy of Sciences of the USA 101 (2004) 9722–9727

42. Herbeck, J.T., Degnan, P.H., Wernegren, J.J.: Nonhomogeneous model of sequence
evolution indicates independent origins of endosymbionts within the Enterobacte-
riales (γ-Proteobacteria). Molecular Biology and Evolution 22 (2005) 520–532

43. Belda, E., Moya, A., Silva, F.J.: Genome rearrangement distances and gene order
phylogeny in γ-Proteobacteria. Molecular Biology and Evolution 22 (2005) 1456–
1467

44. Reed, W.J., Hughes, B.D.: A model explaining the size distribution of gene families.
Mathematical Biosciences 189 (2004) 97–102

45. Pupko, T., Pe’er, I., Shamir, R., Graur, D.: A fast algorithm for joint reconstruction
of ancestral amino acid sequences. Molecular Biology and Evolution 17 (2000)
890–896
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Appendix: organisms in the data set

The picture below shows the organisms and the phylogeny in the experiments
of Section 4. Branch lengths are already optimized to maximize the likelihood.
Notice that branch lengths are not easy to interpret: scaling is defined in such
a way that the rate µ = 1 in Group 0, a modestly dynamic group (cf. Fig. 2).
Long branches indicate major changes in gene content.
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Abbreviations: EcolK12 –Escherichia coli K12, Sfle –Shigella flexneri 2a str.
2457T, Ecol933 –Escherichia coli O157:H7 str. EDL933, EcolO6 –Escherichia



coli O6, Styp –Salmonella typhimurium LT2, Sent –Salmonella enterica subsp.
enterica serovar Typhi str. CT18, Ypes –Yersinia pestis biovar Medievalis str.
91001, Plum –Photorhabdus luminescens subsp. laumondii TTO1, BaphSg –
Buchnera aphidicola str. Sg, BaphAPS –Buchnera aphidicola str. APS, BaphBp
–Buchnera aphidicola str. Bp, Wglo –Wigglesworthia glossinidia endosymbiont of
Glossina brevipalpis, Bflo –[Candidatus] Blochmannia floridanus, Pmul –Pasteurella
multocida subsp. multocida str. Pm70, Hinf –Haemophilus influenzae Rd KW20,
Hduc –Haemophilus ducreyi 35000HP, Ppro –Photobacterium profundum SS9,
VvulCM –Vibrio vulnificus CMCP6, VvulYJ –Vibrio vulnificus YJ016, Vpar
–Vibrio parahaemolyticus RIMD 2210633, Vcho –Vibrio cholerae O1 biovar el-
tor str. N16961, Sone –Shewanella oneidensis MR-1, Psyr –Pseudomonas sy-
ringae pv. tomato str. DC3000, Pput –Pseudomonas putida KT2440, Paer –
Pseudomonas aeruginosa PAO1, Cbur –Coxiella burnetii RSA 493, Xaxo –Xanthomonas
axonopodis pv. citri str. 306, Xcam –Xanthomonas campestris pv. campestris
str. ATCC 33913, Xfas9a –Xylella fastidiosa 9a5c, XfasTem –Xylella fastid-
iosa Temecula1, Neur –Nitrosomonas europaea ATCC 19718, NmenMC –Neisseria
meningitidis MC58, NmenZ –Neisseria meningitidis Z2491, Cvio –Chromobacterium
violaceum ATCC 12472, Bbro –Bordetella bronchiseptica RB50, Bpar –Bordetella
parapertussis 12822, Rsol –Ralstonia solanacearum GMI1000, Rpro –Rickettsia
prowazekii str. Madrid E, Rcon –Rickettsia conorii str. Malish 7, WspM –Wolbachia
endosymbiont of Drosophila melanogaster, Smel –Sinorhizobium meliloti 1021,
Atum –Agrobacterium tumefaciens str. C58, Mlot –Mesorhizobium loti MAFF303099,
Bsui –Brucella suis 1330, Bmel –Brucella melitensis 16M, Bjap –Bradyrhizobium
japonicum USDA 110, Rpal –Rhodopseudomonas palustris CGA009, Ccre –Caulobacter
crescentus CB15, Bbac –Bdellovibrio bacteriovorus HD100, Dvul –Desulfovibrio
vulgaris subsp. vulgaris str. Hildenborough, Gsul –Geobacter sulfurreducens PCA.


