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Maximum-Scoring Segment Sets
Mikl ós Cs̋urös

Abstract— We examine the problem of finding maximum-
scoring sets of disjoint segments in a sequence of scores. The
problem arises in DNA and protein segmentation, and in post-
processing of sequence alignments. Our key result states a simple
recursive relationship between maximum-scoring segment sets.
The statement leads to fast algorithms for finding such segment
sets. We apply our methods to the identification of non-coding
RNA genes in thermophiles.
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I. I NTRODUCTION

Suppose thatw1, w2, . . . , wn ∈ R is an arbitrary sequence
of scores withn > 0. A segmentS is a set of consecutive
integers:S = [a, b] = {a, a + 1, . . . , b}. The score of a
segmentS is the sum of the scores indexed by the segment’s
elements:w(S) =

∑
i∈S wi. A segment of maximum score

can be found in linear time [2] by scanning the scores once.
This paper considers a natural generalization of the maximum-
scoring segment problem. Namely, we are interested in find-
ing k disjoint segments with maximum total score.

A k-cover C = {S1, . . . , Sk} is a non-intersecting set
of segments. The score of ak-cover C is the sum of its
elements’ scores:w(C) =

∑
S∈C w(S). It is useful to define

the indicator vector (z1, . . . , zn) of a cover C: zi = 1 if
i ∈ ∪S∈CS and zi = 0 otherwise. Using this notation,
w(C) =

∑n
i=1 wizi. A k-cover ismaximalif it has maximum

score among allk-covers. We define the 0-cover as the empty
set with score 0.

A cover may define a segmentation, which alternates high-
and low-scoring regions, i.e., segments within and outside the
cover. Segmentation methods have been extensively used in the
analysis of protein and DNA sequences [3]. Various scoring
schemes permit the identification of charge clusters and hy-
drophobic profiles for proteins [4], determination of isochores
in DNA sequences [5], [6], discovery of CpG islands [6],
[7], and even gene finding [8]. Different methods include
maximum likelihood estimation [5], Hidden Markov Models
[8], [9], entropy-based [6], and various “moving window”
techniques. Segmentation methods are also used to remove
low-scoring regions from sequence alignments [10].

Our key result is Theorem 1 of Section II, which states the
incremental nature of maximal covers. This theorem leads to
an algorithm that finds ak-cover with maximum score fork ≤
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K in O(nK) time whereK is an upper bound on the cover
size. Section III examines maximal cover problems arising
in statistical contexts where probabilistic principles guide the
choice of scores and cover sizes. Section IV describes the
algorithms for finding maximal covers using different optimal-
ity criteria, as well as an algorithm for finding a maximalk-
cover inO(n log n) time. Section V deals with the problem of
identifying GC-rich regions in AT-rich genomes, which often
coincide with non-protein-coding RNA genes in thermophiles.
Section VI discusses related results and concludes the paper.

II. RELATIONSHIPS BETWEEN CONSECUTIVE MAXIMAL

COVERS

In this section we examine characteristics of maximal cov-
ers, and prove that there is a simple recursive relationship
between them. Theorem 1 shows that a maximal(k + 1)-
cover can be obtained from any maximalk-cover, either (1)
by adding a new segment to it, or (2) by removing the
middle of a segment in it. By Theorem 2, the converse is
also true: a maximal(k − 1)-cover can be created from any
maximal k-cover by merging two segments, or by removing
one. Theorem 2 further implies thatall maximal covers can be
produced by consecutive applications of operations (1) and (2)
of Theorem 1. Figure 1 illustrates these relations between
successive maximal covers.

Theorem 1:Let Ck be a maximalk-cover fork ∈ [0, n−1].
There exists a maximal(k+1)-coverCk+1 which satisfies one
of the following conditions.

(1) There exists such a segment[a, b] that Ck+1 = Ck ∪
{[a, b]}; or

(2) there exista, b, c, d ∈ [1, n] for which a ≤ c < d ≤ b,
andCk+1 = Ck ∪ {[a, c], [d, b]} \ {[a, b]}.

Theorem 2:Let Ck be a maximalk-cover for k ∈ [1, n].
There exists a maximal(k − 1)-cover Ck−1 which satisfies
one of the following conditions.

(1) There exists such a segment[a, b] ∈ Ck that Ck−1 =
Ck \ {[a, b]}; or

(2) there exista, b, c, d ∈ [1, n] for which a ≤ c < d ≤ b,
andCk−1 = Ck ∪ {[a, b]} \ {[a, c], [d, b]}.
Proof: [Theorem 1] For k = 0, the theorem holds

trivially. Let k > 0. Let Ck be a maximalk-cover. Define
∆1 = max

{
w([a, b]) : [a, b] ∩ ∪S∈Ck

= ∅
}

, and ∆2 =
max

{(
w([a, c]) + w([d, b])− w([a, b])

)
: [a, b] ∈ Ck, a ≤ c <

d ≤ b
}

. Let ∆ = max{∆1,∆2}. The theorem claims that
the score of a maximal(k + 1)-cover equalsw(Ck) + ∆.
(Obviously, a maximal(k + 1)-cover cannot have score less
thanw(Ck)+∆ since the definitions of∆1 and∆2 correspond
to the set of(k + 1)-covers that can be produced by applying
operation (1) or (2).) For the sake of contradiction, assume that
there exists a(k+1)-coverC′k+1 with w(C′k+1) > w(Ck)+∆.
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Fig. 1. Relations between maximal covers (Theorems 1 and 2).

We show that then it is possible to construct ak-coverC′k with
larger score than that ofCk, which contradicts the maximality
of Ck.

Since there are more segments inC′k+1 than inCk, it must be
the case that either there exists a segmentS′ ∈ C′k+1 which
does not overlap any segment ofCk, or that there exists a
segment[a, b] ∈ Ck which overlaps two consecutive segments
[a′, c], [d, b′] ∈ C′k+1. In the first case, thek-cover C′k is
obtained fromC′k+1 by removingS′. Necessarily,w(S′) ≤
∆1 ≤ ∆, and thus

w(C′k) = w(C′k+1)− w(S′) ≥ w(C′k+1)−∆ > w(Ck),

a contradiction.
In the second case,C′k is produced fromC′k+1 by fusing the

two segments:C′k = C′k+1∪{[a′, b′]}\{[a′, c], [d, b′]}. Clearly,

w([a′, c]) + w([d, b′])− w([a′, b′])
= w([a, c]) + w([d, b])− w([a, b])
≤ ∆2 ≤ ∆.

Hence,

w(C′k) = w(C′k+1)
−

(
w([a′, c]) + w([d, b′])− w([a′, b′])

)
≥ w(C′k+1)−∆ > w(Ck),

again a contradiction.
Proof: [Theorem 2] The proof uses the same logic as the

previous proof. Considerk > 1, otherwise the claim is trivially
true. Let Ck = {[a1, b1], . . . , [ak, bk]} be a maximalk-cover
with a1 < a2 < · · · < ak. Let ∆1 = min

{
w([ai, bi]) : i ∈

[1, k]
}

, and let ∆2 = min
{
w([ai, bi]) + w([ai+1, bi+1]) −

w([ai, bi+1]) : i ∈ [1, k − 1]
}

. Define ∆ = min{∆1,∆2}.
The theorem implies that a maximal(k − 1)-cover has score
w(Ck)−∆. For the sake of contradiction, suppose that there
exists a(k− 1)-coverC′k−1 with w(C′k−1) > w(Ck)−∆. We
show that then it is possible to construct ak-cover C′k with
larger score than that ofCk, which contradicts the maximality
of Ck.

Since there are more segments inCk than inC′k−1, it must
be the case that either there exists a segmentS ∈ Ck which
does not intersect any segment ofC′k−1, or that there exists
a segment[a′, b′] ∈ C′k−1 which overlaps two consecutive
segments[ai, bi], [ai+1, bi+1]. In the first case, thek-cover
C′k is obtained fromC′k−1 by addingS. Necessarily,w(S) ≥
∆1 ≥ ∆, and thus

w(C′k) = w(C′k−1) + w(S) ≥ w(C′k−1) + ∆ > w(Ck),

a contradiction.
In the second case,C′k is produced fromC′k−1 by splitting

the segment[a′, b′]: C′k = C′k−1∪{[a′, bi], [ai+1, b
′]}\{[a′, b′]}.

Clearly,

w([a′, bi]) + w([ai+1, b
′])− w([a′, b′])

= w([ai, bi]) + w([ai+1, bi+1])−w([ai, bi+1]) ≥ ∆2 ≥ ∆.

Hence,

w(C′k) = w(C′k−1)
+

(
w([a′, bi]) + w([ai+1, b

′])− w([a′, b′])
)

≥ w(C′k−1) + ∆ > w(Ck),

again a contradiction.
The theorems have some important consequences. First,

Theorem 1 implies a simple algorithm for calculating succes-
sive maximal covers, which we describe in §IV-A. Secondly,
Theorem 2 allows for a fast algorithm that finds a maximal
cover inO(n log n) time, described in §IV-C. Finally, Corol-
lary 1 below shows that the score of maximalk-covers is a
concave function ofk.

Corollary 1: Let 1 < k < n. Let Ck−1, Ck, andCk+1 be
maximal (k − 1)-, k-, and(k + 1)-covers, respectively. Then

w(Ck+1)− w(Ck) ≤ w(Ck)− w(Ck−1). (1)
Proof: Without loss of generality, we can assume that

the covers satisfy the relationships described by Theorem 1.
Let Ck = {[a1, b1], . . . , [ak, bk]} with a1 ≤ b1 < a2 ≤ b2 <
· · · < ak ≤ bk.

Case 1.1: There exista, b ∈ [1, n] and i ∈ [1, k] such
thatCk−1 = Ck \{[ai, bi]} andCk+1 = Ck∪{[a, b]}. We need
to prove thatw([ai, bi]) ≤ w([a, b]). SinceCk+1 contains both
segments, they may not overlap. Hence Eq. (1) must hold,
otherwiseCk−1 ∪ {[a, b]} is a betterk-cover thanCk.

Case 1.2:There existi, j ∈ [1, k] andb, a ∈ [aj , bj ] such
thatCk−1 = Ck \{[ai, bi]} andCk+1 = Ck ∪{[aj , b], [a, bj ]}\
{[aj , bj ]}. Clearly, if i 6= j then Eq. (1) must be satisfied
otherwiseCk+1 \ {[ai, bi]} is a betterk-cover thanCk. If
i = j, then w([ai, b]) + w([a, bi]) − w([ai, bi]) ≤ w([ai, bi])
must hold: otherwise,w([ai, b]) > w([ai, bi]) or w([a, bi]) >
w([ai, bi]) and thusCk−1 ∪ {[ai, b]} or Ck−1 ∪ {[a, bi]} is a
higher-scoringk-cover thanCk.

Case 2.1: There existi ∈ [1, k − 1] and a, b ∈ [1, n]
such thatCk−1 = Ck ∪ {[ai, bi+1]} \ {[ai, bi], [ai+1, bi+1]}
andCk+1 = Ck ∪ {[a, b]}. If [a, b] does not overlap[ai, bi+1],
then Eq. (1) must hold, or elseCk−1 ∪ {[a, b]} is a betterk-
cover thanCk. Suppose that[a, b] intersects[ai, bi+1] and thus
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bi < a ≤ b < ai+1. We need to prove that

w([a, b]) ≤ w([ai, bi]) + w([ai+1, bi+1])− w([ai, bi+1]). (*)

Now, w([ai, b]) ≤ w([ai, bi]) and w([a, bi+1]) ≤
w([ai+1, bi+1]), otherwise[ai, bi] can be replaced by[ai, b]
or [ai+1, bi+1] can be replaced by[a, bi+1] in Ck, result-
ing in a higher score. By adding the two inequalities, we
get w([ai, b]) + w([a, bi+1]) ≤ w([ai, bi]) + w([ai+1, bi+1]).
The left-hand side equalsw([ai, bi+1]) + w([a, b]), and thus
w([ai, bi+1])+w([a, b]) ≤ w([ai, bi])+w([ai+1, bi+1]), which
is tantamount to (*).

Case 2.2: There exist i ∈ [1, k − 1], j ∈ [1, k],
and b, a ∈ [aj , bj ] such thatCk−1 = Ck ∪ {[ai, bi+1]} \
{[ai, bi], [ai+1, bi+1]} and Ck+1 = Ck ∪ {[aj , b], [a, bj ]} \
{[aj , bj ]}. Similarly to Case 1.1, the removal of the subseg-
ments can be carried out in any order, and thus Eq (1) must
hold.

REMARK . Kearnset al. [11] consider a problem in a
machine learning context, which turns out to be a special
case of finding maximal covers. They consider empirical
error minimization for a learning sample with one-dimensional
observations, which is equivalent to finding a maximal cover
when all scores equal+1 or −1. Theorem 2 for this special
case, and an implied algorithm similar to that of §IV-C, appear
in [11]; our proof is an adaptation of theirs to general scores.

III. SCORES BASED ON PROBABILISTIC MODELS

In this section we consider the case when scores are based
on probabilistic models. First, §III-A shows that in a statistical
context, maximal likelihood estimation of change points [5],
[12] leads to a maximal cover problem. Secondly, §III-B
examines the problem of cover size selection, based on the
minimum description length principle, and other statistical
notions of complexity. We continue by arguing for a cover
size selection method based on statistical significance in §III-
C. Finally, §III-D shows how Hidden Markov Model-based
segmentation fits into the framework of maximal covers.

A. Maximum likelihood estimation of segments

Let X1, . . . , Xn be a sequence of independent random
letters from an alphabetΣ = {σ1, . . . , σr}. The distribution
of every Xi is one of two known distributions, specified by
the probabilitiesp(σj) and q(σj). A changed segmentis a
segment[a, b] of indices whereP{Xi = σj} = q(σj) for
all i ∈ [a, b]. A segment[a, b] is unchangedif P{Xi = σj} =
p(σj) for all i ∈ [a, b]. Maximum likelihood estimation of
changed segments turns into a maximal cover problem. Let
xi : i ∈ [1, n] be the observed values ofXi. Let C be a
non-intersecting set of hypothetical changed segments. Let
z = (z1, . . . , zn) be the indicator vector forC. The likelihood
function is f

(
x

∣∣ z,p,q
)

=
∏n

i=1(p(xi))1−zi(q(xi))zi .
Define

wi = log(q(xi))− log(p(xi)). (2)

(Throughout the paper,log denotes natural logarithm.) The
log-likelihood can be written as

log f
(
x

∣∣ z,p,q
)

=
n∑

i=1

log p(xi) +
n∑

i=1

wizi.

-++++++--++++---++++--++++++-

k=3

k=2

Fig. 2. Maximal k-covers with minimum segment lengthsm1 = 6
andm0 = 1. A ’+’ denoteswi = 1 and ’-’ denoteswi = −1. An equivalent
scoring scheme is realized whenΣ = {0, 1}, andp(0) = 1−q(0) in Eq. (2).

The first term is the log-likelihood of the null hypothesis that
there are no changed segments. The second term is the log-
likelihood ratio (LLR) of the alternative hypothesis defined
by C. Accordingly, a maximalk-cover maximizes the LLR
among hypotheses withk changed segments if the scores are
set by Eq. (2).

Notice that the framework is easily extended to infinite
alphabets, or even to continuous distributions.

Fu and Curnow [5] examine the problem of finding ak-set
of changed segments that maximizes the LLR with restrictions
on the minimum lengths of changed and unchanged segments
specified by thresholdsm1 andm0, respectively. They aim to
maximize the LLR by using scores defined by Equation (2),
and by finding ak-cover{[a1, b1], . . . , [ak, bk]} for which∀i ∈
[1, k] : bi − ai + 1 ≥ m1, ∀i ∈ [2, k] : ai − bi−1 + 1 ≥ m0,
and eithera1 = 1 or a1 > m0, and eitherbk = n or n −
bk ≥ m0. Fu and Curnow state a theorem (with an incorrect
proof) that is similar to Theorem 1: “Given one set of best
k segments [k-cover in our terminology], we can find one
set of best(k + 1) segments if it exists, by either adding the
best segment which does not overlap with any of thek best
segments, or by splitting and expanding one of the bestk
segments.” Their claim, however, does not seem to hold in
general, as the relationship between maximal covers may be
complicated if a minimum length is imposed on the segments.
Figure 2 shows an example where more than one segment
change between consecutive maximal covers. Alternatively, if
segments can be of arbitrary length, then by Theorem 1, there
is no need for expansions.

B. Selecting the cover size: complexity penalties

Unless it is warranted by the problem at hand, the rea-
son for restricting segment lengths is to avoid overfitting:
the cover {[i, i] : wi > 0} maximizes the likelihood but
it hardly captures any meaningful pattern in the data. We
suggest that one should instead penalize the cover size. Define
the complexity-penalized scoreof a cover C by w̃(C) =
w(C) − r(|C|) where r : N 7→ [0,∞) is a monotone in-
creasing penalty function. The optimal cover has maximum
complexity-penalized score. First we describe a penalty based
on minimum description length (MDL). According to the
MDL principle [13], [14], one favors the coverC which
minimizes the length of encoding the data andC. Let z be
the indicator vector forC. Given z, everyxi can be encoded
in b(zi, xi) bits on average, whereb(0, σ) = − log2 p(σ) and
b(1, σ) = − log2 q(σ). The cover itself can be specified by
the endpoints of its segments using2|C| log2 n bits. The total
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codelength equals

`(x,C) =
n∑

i=1

b(zi, xi) + 2|C| log2 n

= `(x, ∅)− w(C)− 2|C| log n

log 2
.

The MDL cover thus maximizesw(C)−2|C| log n, and corre-
sponds to the penaltyr(k) = 2k log n. A more efficient encod-
ing can rely on the fact that there are

(
n+1
2k

)
possiblek-covers

in which segments do not abut. (IfC = {[a1, b1], . . . , [ak, bk]}
with bi < ai−1 for all i = 1, . . . , k − 1, then there is
a one-to-one correspondence between combinations of2k
points from [1, n + 1] and selections of{a1, b1 + 1, a2, b2 +
1, . . . , ak, bk +1}.) Whenk = o(n) andn � 1, a k-cover can
be encoded inlog2

(
n+1
2k

)
≈ 2k log2 n− 2k log2(2k) bits. The

corresponding penalty equalsr(k) = 2k(log n− log(2k)).
Other MDL-related penalties such as Akaike’s AIC [15] or

the Bayesian Information Criterion (BIC) of Schwarz [16] lead
to similar penalty functions that are linear in the cover size.
For a model of dimensiond, AIC recommends usingd, and
BIC recommends usingd2 log n as penalty. In our case, the
model dimension isd = 2k, the number of parameters needed
to specify ak-cover. Notice that BIC gives half as large of a
penalty as MDL does.

C. A penalty based on statistical significance

As an alternative to the MDL approach, a penalty can
be defined using statistical significance, measured by the
probability that a segment has a large score under the null
hypothesis that there are no changed segments. The distri-
bution of the maximum segment score, i.e., the scorew(1)

of the maximal 1-cover, under the null hypothesis has been
extensively studied [17]–[19]. It is known [17], [18] that
w(1) → log n almost surely asn →∞, and that for allx,

lim
n→∞

P
{
w(1) − log n ≤ x

}
= exp

(
−Ce−x

)
, (3)

where C is independent ofn and x, and is defined by a
rapidly converging infinite sum. (For the general case of
assigning scoreuj to every letterσj with

∑r
j=1 p(σj)uj < 0,

w(1) → λ−1 log n whereλ is the unique positive solution of∑r
j=1 p(σj) exp(λuj) = 1. Whenuj = log q(σj)

p(σj)
, λ = 1 is a

solution.) This result provides a means to selectα, in order to
search for the coverC that is optimal according to a penalty
function r(k) = αk. The following theorem characterizes
the segment scores inC: every changed segment inC scores
at leastα, no subsegment of an unchanged segment scores
aboveα, and every unchanged segment attains a score of at
most (−α), and no subsegment of a changed segment scores
below (−α).

Theorem 3:Fix α ≥ 0, and letC = {[a1, b1], . . . , [ak, bk]}
be a cover that maximizes̃w(C) = w(C) − α|C|. If C 6= ∅,
then the following holds. For alli ∈ [1, k], w([ai, bi]) ≥ α,
and there does not exista, b with ai < a ≤ b < bi and
w([a, b]) < −α. For all i ∈ [1, k − 1], bi + 1 < ai+1, and
w([bi + 1, ai+1 − 1]) ≤ −α. For all i ∈ [0, k], there does not
exist a, b for which bi < a ≤ b < ai+1 and w([a, b]) > α,
whereb0 = 0 andak+1 = n + 1.

A consequence of Theorem 3 is that by settingα = x +
log n with an appropriately chosenx we can ensure that every
changed segment has significant statistical support, and that
maximal set of such segments is selected. In particular, Eq. (3)
implies that for largen, C is non-empty with probability1−
exp(−Cne−α) under the null hypothesis. Accordingly, for a
given 0 < p < 1, we can use

α ≥ log n + log
C

− log(1− p)
≈ log n + log

C

p
, (4)

in order to get a non-empty optimal cover with at mostp
probability. By switching the roles of changed and unchanged
segments, a similar argument can be made to measure the
statistical support for unchanged segments.

Proof: [Theorem 3] If there existsS ∈ C for which
w(S) < α then by removing that segment fromC, we obtain a
(k−1)-coverC′ with w̃(C′) > w̃(C), which is a contradiction.
If there existsbi+1 = ai+1 or w([bi+1, ai+1−1]) > −α, then
by replacing[ai, bi] and[ai+1, bi+1] with [ai, bi+1], we obtain
a (k − 1)-cover that has larger penalized scorew̃ than w̃(C).

If for some i there existai < a ≤ b < bi with w([a, b]) <
−α, then the coverC′ = C∪{[ai, a−1], [b+1, bi]}\{[ai, bi]} is
a (k+1)-cover with scorew(C′) > w(C)+α, and thusw̃(C′) >
w̃(C), which is a contradiction. If for somei there existbi <
a ≤ b < ai+1 with w([a, b]) > α, then the coverC′ = C ∪
{[a, b]} is a(k+1)-cover with scorew(C′) > w(C)+α, which
is again a contradiction.

D. Two-state Hidden Markov Models

Our last example of penalizing cover size is that of seg-
mentation by a Hidden Markov Model (HMM). Extending
the maximum likelihood framework, we impose that the
random sequenceX1, . . . , Xn is generated by a two-state
HMM [8], [9]. The two states correspond to changed and
unchanged segments. A run of the HMM results in a state
sequenceZ1, . . . , Zn forming a Markov chain, and the se-
quence of emitted charactersX1, . . . , Xn. If Zi = 0, thenXi

is drawn according to the unchanged segments’ distributionp,
otherwise it is drawn according toq. The most likely state
sequencez = (z1, . . . , zn) for a given observation sequence
x = (x1, . . . , xn) defines a segmentation of[1, n] into changed
and unchanged segments, i.e., segments wherezi = 1 vs.
segments wherezi = 0. Clearly,z is the indicator vector for
a cover. The likelihood function equals

f
(
x

∣∣ z
)

= π(z1)
( n∏

i=1

(p(xi))1−zi(q(xi))zi

)( n∏
i=2

τ(zi−1 → zi)
)
,

whereπ are the starting probabilities andτ are the transition
probabilities for the states’ Markov chain. There exists a well-
known method for finding the most likely state sequence,
known as the Viterbi algorithm [20], but formulating it as
a maximal cover problem enables us to consider further
variations with restrictions on the number of state changes
(§IV-A) or on state durations (§IV-B). The LLR of a state
sequencez (viewed as an indicator for a coverC) with respect
to the null hypothesis that allzi = 0 can be written in the
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form
∑n

i=1 wizi − α|C|, where

wi = log
q(σ)
p(σ)

+ log
τ(1 → 1)
τ(0 → 0)

+ δi; (5a)

α = − log
τ(0 → 1)
τ(0 → 0)

− log
τ(1 → 0)
τ(0 → 0)

+ log
τ(1 → 1)
τ(0 → 0)

,

(5b)

andδi = 0 for everyi ∈ [2, n−1], otherwise it hides correction
terms:δ1 = − log τ(0→1)

τ(0→0) + log π(1)
π(0) and δn = − log τ(1→0)

τ(0→0) .
Consequently, segmentation by the most likely state sequence
in a two-state HMM is an instance of finding an optimal cover
using linear complexity penalties.

At first sight, it may seem that the scores and the complexity
penalty do not depend onn. In practice, however, the state
transition parametersτ often incorporate such a dependence.
For example, Viterbi training [20] alternates an expectation
and a minimization step until convergence is reached. First,z
is calculated given the model parameters, then the parameters
are readjusted givenz. Let ` =

∑n
i=1 zi be the total length

of changed segments, and letk be the number of changed
segments when a fix point is reached in the optimization. For
simplicity, assume thatz1 = zn = 0. The state transition
probabilities are estimated asτ(0 → 1) = k

n−`−1 , τ(0 → 0) =
n−`−k−1

n−`−1 , τ(1 → 0) = k
` , andτ(1 → 1) = `−k

k . If k � ` �
n, then the complexity penalty isα ≈ log n + log `− 2 log k.
The formula depends on the total length of segments, and thus
does not fit our framework in which penalties depend solely
on the number of segments in the cover. Nevertheless, it shows
that HMM penalties fall between MDL (α = 2 log n) and BIC
penalties (α = log n).

IV. A LGORITHMS

A. An algorithm for finding a maximal cover

By Theorem 1, a maximal(k + 1)-cover can be found by
updating a maximalk-cover. For eachk, one needs to find
the segment that can be either added or removed to increase
the cover score by the largest amount. The idea is employed
by the algorithm MAX COVER, shown in Figure 3, which is
an adaptation of Jon Bentley’s classic algorithm [2]. (In fact,
Bentley credits Joseph Kadane of CMU with the design.)

The algorithm scans the scoreswi once for everyk ∈ [1,K]
in Lines C4–C8. For everyk, the algorithm calculates the max-
imum increasewmax in cover score that can be achieved by
removing a sub-segment or adding a segment (the segmentS).

Lemma 1:The algorithm MAX COVER finds a cover that
has maximum score among covers with at mostK segments
in O(nK) time.

Proof: First we prove the bound on the running time.
Line C1 initializes(z1, . . . , zn) in O(n) time. The loop body
C5–C8 is executed inO(1) time for every k = 1, . . . ,K
and i = 1, . . . , n. The else branch of Line C9 is executed
in O(n) time for everyk.

Concerning the algorithm’s correctness, in the trivial case
whenwi ≤ 0 for all i, the algorithm returnsC = ∅ correctly.
We prove the lemma for non-trivial cases by induction. The
induction hypothesis is that(z1, . . . , zn) correspond to a

maximal(k−1)-coverC for a k ∈ [1,K−1] at the beginning
of the loop onk in Line C3.

We start with a few observations on how the algorithm
works. Line C5 ensures that[i0, i] is a viable segment in
Lines C6–C8 in the sense that[i0, i] is entirely within a
segment ofC or it does not intersect any segment ofC.
Lines C5 and C6 track the score of[i0, i], so that in Line C6,
w = w([i0, i]). The segmentS can be updated in Line C8 only
if |w| > 0. Consequently, if the algorithm does not terminate
in Line C9, then it creates ak-cover.

Now we prove that the algorithm creates a maximalk-
cover. Define the set of segmentsA+ that do not intersect any
element ofC. Let w+ = max{w(T ) : T ∈ A+}. Similarly,
let A− be the set of subsegments of the segments inC,
and let w− = max{−w(T ) : T ∈ A−}. Clearly, w+ is the
maximum score increase that can be achieved by adding a
segment, andw− is the maximum score increase that can
be achieved by splitting a segment. We claim that ifw∗ =
max{w+, w−} > 0, thenwmax = w(S) = w∗ in Line C9.

Let [a0, b0] ∈ A+ be the segment for whichw([a0, b0]) =
w+, b0 is minimal, and there does not exist[a, b0] with a >
a0 and w([a, b0]) = w+. Similarly, let [a1, b1] ∈ A− be the
segment for whichw([a1, b1]) = −w−, b1 is minimal, and
there does not exist[a, b1] with a > a1 andw([a, b1]) = −w−.
We show thatS = [a0, b0] if w+ = w− and b0 < b1, or if
w+ > w−. It is clear that ifi0 = a0 and i = b0 in Line C8,
thenS is set to[a0, b0], wmax is set tow+ and their values do
not change anymore until finishing with the loop oni. Hence
we have to show thati0 = a0 when i = b0. When i = a0,
i0 ≤ i after Line C5. In fact, we must havei0 = a0, or else
w[i0, a0 − 1] > 0 and the segment[i0, b0] would have a score
w([i0, b0]) = w([i0, a0 − 1]) + w([a0, b0]) > w+. Moreover,
i0 cannot change whilea0 < i ≤ b0 since thenw([a0, i0]) ≤
0 right before i0 is updated the first time in Line C5, and
thus wheni = b0, we havew([i0, i]) ≥ w+ contradicting the
definitions ofa0, b0.

One can prove in an analogous manner thatS = [a1, b1]
if w+ = w− and b1 < b0, or if w− > w+. Therefore,C is
updated in Line C9 correctly for everyk if there is ak-cover
that has a larger score than the maximal(k − 1)-cover. By
Corollary 1, we can stop the first time that there does not
exist such a cover.

B. Algorithms for linear complexity penalties

Suppose that we want to find a coverC that maximizes
the penalized scorẽw(C) = w(C) − α|C| with someα ≥ 0.
The MDL approach of §III-A setsα = 2 log n; the statistical
significance framework (settingα by Eq. (4)), and the HMM
approach of §III-D also use linear penalty functions.

Let C0 = ∅,C1,C2, . . . be a series of maximalk-covers.
By Corollary 1, a coverC∗ maximizing w̃ is the first Ck

for which w(Ck+1) − w(Ck) < α. It is easy to modify
MAX COVER to find C∗. The only necessary change is in
Line C9, wherez needs to be returned ifwmax ≤ α.
MAX COVER then findsC∗ in O(nK) time if it is invoked
with K ≥ |C∗|. In what follows we develop a faster algorithm.

For all i ∈ [1, n], defineW 0(i) as the maximum of̃w for
covers of[1, i] which do not includei. DefineW 1(i) as the
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Algorithm MAX COVER
Input: wi scores fori ∈ [1, n], K maximum cover size
Output: indicator vector for ak-cover with maximum score for0 ≤ k ≤ K

C1 initialize zi ← 0 for i = 1, . . . , n
C2 for k ← 1, . . . , K do
C3 seti0 ← 1; w ← 0; S ← null; wmax ← 0
C4 for i← 1, . . . , n do
C5 if i > 1 andzi−1 6= zi then i0 ← i; w ← 0
C6 w ← w + wi //current candidate is[i0, i] with scorew
C7 if (zi = 0 andw ≤ 0) or (zi = 1 andw ≥ 0) then i0 ← i + 1; w ← 0
C8 else if |w| > wmax then wmax ← |w|; S ← [i0, i]
C9 if wmax = 0 then return (z1, . . . , zn) elsesetzi ← 1− zi for all i ∈ S
C10 return (z1, . . . , zn)

Fig. 3. Algorithm MAX COVER.

maximum of w̃ for covers of[1, i] which do includei. The
following lemma shows the recursions for calculatingW j(i).

Lemma 2:For all i > 1,

W 0(i) = max{W 0(i− 1),W 1(i− 1)};
W 1(i) = wi + max{W 0(i− 1)− α, W 1(i− 1)}.

Proof: Let i > 1 be arbitrary and consider the covers
realizing W 0(i − 1) and W 1(i − 1). Since both of them are
covers of[1, i] and do not includei, W 0(i) ≥ max{W 0(i −
1),W 1(i − 1)}. However, strict inequality is not possible
since the cover realizingW 0(i) is a cover of[1, i − 1], and
thus its penalized score cannot be larger than the maximum
of w̃ among covers of[1, i − 1]. In a similar spirit, consider
the covers of[1, i] obtained by adding[i, i] to a cover re-
alizing W 0(i − 1), and by extending the last interval of a
cover realizingW 1(i− 1). Since their penalized scores equal
(wi + W 0(i − 1) − α) and (wi + W 1(i − 1)), respectively,
W 1(i) ≥ wi +max{W 0(i− 1)−α, W 1(i− 1)}. Again, strict
inequality is not possible since one can removei from the
cover of[1, i] that realizesW 1(i) and obtain a cover of[1, i−1]
that way.

The lemma implies a dynamic programming algorithm
that runs inO(n) time. In case of the two-state HMM, the
algorithm is equivalent to the Viterbi algorithm [20]. We
design a more general method that respects minimum segment
length constraints. Specifically, we want to find a cover that
maximizesw̃ with the stipulation that changed segments must
have lengths at leastm1 and unchanged segments must have
lengths at leastm0. In order to arrive at a solution by dynamic
programming, we consider covers of[1, i] in increasing order
of i. In contrast to Lemma 2, we need to track not only
whether i is included, but also whether the last segment
satisfies the minimum length requirements. As a consequence,
Lemma 3 below gives recursions for four variables per prefix.

For all j = 0, 1, m ∈ [1,mj ], and i ∈ [m,n], defineC
j
i,m

as covers of[1, i] that maximize w̃ while satisfying the
requirements for all segment lengths, except for the last one1:

1More precisely,Cj
i,m satisfy the following conditions. EitherC0

i,m = ∅,
or C0

i,m = {[a1, b1], . . . , [ak, bk]}, where0 < a1 ≤ b1 < a2 ≤ b2 <
· · · < ak ≤ bk ≤ i−m, ∀t ∈ [1, k] : bt ≥ at + m1 − 1, ∀t ∈ [2, k] : at >
bt−1 + m0, and a1 = 1 or a1 > m0. Either C1

i,m = ∅, or C1
i,m =

{[a1, b1], . . . , [ak, bk]}, where0 < a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤
bk = i, ∀t ∈ [1, k − 1] : bt ≥ at + m1 − 1, ak ≤ bk − m + 1, ∀t ∈
[2, k] : at > bt−1 + m0, anda1 = 1 or a1 > m0.

C0
i,m is a cover that ends with an unchanged segment of length

at leastm, andC1
i,m ends with a changed segment of length

at leastm. The following lemma shows the recursions for
calculating the weights of these covers.

Lemma 3:Let W 0
short(i) = w̃(C0

i,1), W 0
long(i) = w̃(C0

i,m0
),

W 1
short(i) = w̃(C1

i,1), and W 1
long(i) = w̃(C1

i,m1
). Then

W 0
short(1) = 0, W 1

short(1) = w1 − α, and the following
recursions hold.

W 0
short(i) = max{W 0

short(i− 1),W 1
long(i− 1)};

W 1
short(i) = wi + max{W 0

long(i− 1)− α, W 1
short(i− 1)};

W 0
long(i) = W 0

short(i−m0 + 1);

W 1
long(i) = W 1

short(i−m1 + 1) +
i∑

j=i−m1+2

wj .

Lemma 3 implies a dynamic programming algorithm (see
Fig. 4), which finds an optimal cover subject to length re-
strictions. The algorithm runs inO(n) time. The caseα = 0
is equivalent to the original problem of Fu and Curnow [5],
that of finding a segmentation that satisfies the length restric-
tions. The casem0 = m1 = 1 is the problem of finding
optimal complexity-penalized covers, and thusW 0

long(i) =
W 0

short(i),W
1
long(i) = W 1

short(i).
Proof: [Lemma 3] For simplicity, we assume the unique-

ness of the coversCj
i,m. The coverC0

i,1 either includes(i−1),
and thusC0

i,1 = C1
i−1,m1

, otherwiseC0
i,1 = C0

i−1,1. If the
coverC1

i,1 includes(i− 1), thenC1
i,1 is obtained by extending

the last segment ofC1
i−1,1. Otherwise,C1

i,1 = C0
i−1,m0

∪{[i, i]}.
It is clear that C0

i,m = C0
i−1,m−1 = · · · = C0

i−m+1,1

when i,m > 1. The coverC1
i,m is obtained fromC1

i−m+1,1

by extending the last segment with[i−m + 2, i].

C. A fast algorithm for finding a maximal cover

So far we concentrated on computing maximal covers using
Theorem 1 or selecting one cover using linear complexity
penalties. It is also possible to calculate maximal covers by
employing Theorem 2. The main idea is to find the cover
that comprises all runs of positive scores and then produce
smaller maximal covers consecutively. Below we develop the
idea formally. A segment[i, j] is apositive runif w([i, j]) > 0
and for all k ∈ [i, j], wk ≥ 0. A segment[i, j] is a negative
run if w([i, j]) < 0 and for allk ∈ [i, j], wk ≤ 0. When not all
scores are zero, we can decompose[1, n] into an alternating
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Algorithm M INLENGTH-COVER
Input: wi scores fori ∈ [1, n]; α > 0 complexity penalty;m0, m1 ≤ n minimum segment lengths
Output: zi indicators for a coverC that maximizesw(C)− α(|C|)

L1 Initialize t0(i), t1(i)← null for i = 2, . . . , n // (for traceback)
L2 U0(1)← 0; U1(1)← w1 − α // (Uj = W j

short in Lemma 3)
L3 if m0 > 1 then V0(1)← −∞ elseV0(1)← U0(1) // (Vj = W j

long in Lemma 3)
L4 if m1 > 1 then V1(1)← −∞ elseV1(1)← U1(1)
L5 if m1 > 1 then s← w1 elses← 0 // if m1 = 1 thens = 0 always
L6 for i = 2, . . . , n do
L7 s← s + wi

L8 if i ≥ m1 then s← s− wi−m1+1 // (s =
∑i

j=i−m1+2
wj)

L9 if U0(i− 1) > V1(i− 1) then U0(i)← U0(i− 1); t0(i)← 0 elseU0(i)← V1(i− 1); t0(i)← 1
L10 if V0(i− 1)− α > U1(i− 1) then U1(i)← wi + V0(i− 1)− α; t1(i)← 0 elseU1(i)← wi + U1(i− 1); t1(i)← 1
L11 if i ≥ m0 then V0(i)← U0(i−m0 + 1) elseV0(i)← −∞
L12 if i ≥ m1 then V1(i)← U1(i−m1 + 1) + s elseV1(i)← −∞
L13 end for
L14 if V0(n) > V1(n) then zn ← 0; m← m0 elsezn ← 1; m← m1

L15 for i← n− 1, n− 2, . . . , 1 do
L16 if m > 1 then zi ← zi+1; m← m− 1
L17 else if m = 1 andzi+1 = 0 then
L18 if t0(i + 1) = 0 then zi ← 0 elsezi ← 1, m← m1

L19 else if m = 1 andzi+1 = 1 then
L20 if t1(i + 1) = 1 then zi ← 1 elsezi ← 0, m← m0

L21 end for
L22 return (z1, . . . , zn)

Fig. 4. Algorithm MINLENGTH-COVER

series of negative and positive runs. LetT = (T1, T2, . . . , Tm)
be the resulting series. LetM be the number of positive
runs in T: M = dm/2e or M = bm/2c. Clearly, the set
{T ∈ T : w(T ) > 0} is a maximalM -cover. In fact,M
is the cover size until which the score of maximal covers
increases. After that point, maximal covers have the same
score as long as the positive runs can be split, and we arrive
to the cover{[i] : wi ≥ 0}. Further increases in the cover size
decrease the score, since negative scores need to be included.

The sequenceT can be calculated inO(n) time. Applying
Theorem 2, we produce maximal covers of size less thanM
one by one. In every step, we need to identify three consecutive
segmentsTi−1, Ti, Ti+1 that can be merged at the expense of
the smallest decrease in the cover score. Such a triple is found
by selectingi for which the absolute value|w(Ti)| is minimal.
Algorithm MAX COVER-FAST shown in Fig. 5 implements the
idea.

Lemma 4:Algorithm MAX COVER-FAST finds a maximal
K-cover if not all scores are zero, and it is invoked with a
K that is not larger than the numberM of maximal positive
runs. The algorithm can be implemented in such a way that it
terminates inO(n + M log M) time.
MAX COVER-FAST can be modified to find an optimal
cover C∗ for an arbitrary monotone increasing complexity
penalty function. Since maximal covers’ scores stop increasing
at M , |C∗| ≤ M . The algorithm has to track the cover score:
at each merging operation in Line F5, the score decreases
by |w([ai, bi])|. All maximal covers of size≤ M are inspected,
and the one maximizing̃w is reported at the end. Conse-
quently, the optimal cover can be found inO(n + M log M)
time.

It is worth pointing out, thatM = Θ(n) is not unlikely,
in which case the running time isO(n log n). For instance,

consider the maximum likelihood framework of §III-A and
assume thatp(σ) 6= q(σ) for all lettersσ ∈ Σ, and thus all
scores are non-zero. If all letters are drawn from the unchanged
distribution p, then the expected value ofM is (1 + 2(n −
1)µ(1− µ)) whereµ =

∑
σ : p(σ)>q(σ) p(σ) is the probability

of a negative score in an arbitrary position. In practice, it is
likely that µ(1−µ) is not negligible and thusM = Θ(n) with
high probability. In such a case MAX COVER-FAST may not
enjoy much advantage over MAX COVER. In the examples of
bacterial genome segmentations in Section V,n is in the range
of several hundreds of thousands to a few millions, andM/n is
typically 40–45%. At the same time, only up to a few hundred
segments are interesting. A practical intermediate solution is
to use one of the dynamic programming algorithms of §IV-B
with a fairly permissible penalty to identify a maximal cover,
and then use that cover as the starting pointT in Line F1.

Proof: [Lemma 4] An invariant that implies the correct-
ness is that in Line F4,T alternates segments with posi-
tive and negative scores. In order to see that, notice that∣∣∣w([ai, bi])

∣∣∣ ≤ min
{∣∣∣w([aj , bj ])

∣∣∣ : j = i ± 1
}

in Line F5.

Thus, w([ai−1, bi+1]), w([ai−1, bi−1]), and w([ai+1, bi+1])
have the same sign. The algorithm’s correctness now follows
from Theorem 2. A balanced search tree can be augmented
to track the segments inT. Elements ofT are stored at the
tree leaves, ordered by the absolute values of the scores.
In order to avoid selecting the first or the last segment in
Line F4, those two segments are stored with scores±∞,
preserving only their scores’ signs. In addition, leaves are
equipped with pointers to preceding and succeeding segments.
It is thus possible to perform Line F4 inO(log M) time, to
find neighboring segments inO(1) time, and to updateT
in Line F5 in O(log M) time. Hence the algorithm runs
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Algorithm MAX COVER-FAST
Input: wi scores fori ∈ [1, n], K cover size

F1 Let T be the sequence of alternating maximal runs
F2 while |{T ∈ T : w(T ) > 0}| > K do
F3 // at this pointT = ([a1, b1], [a2, b2], . . . , [am, bm]) whereai+1 = bi + 1
F4 Choose[ai, bi] from T with minimum |w([ai, bi])|, 1 < i < m
F5 SetT ← T ∪ {[ai−1, bi+1]} \ {[ai−1, bi−1], [ai, bi], [ai+1, bi+1]}
F6 return the set{T ∈ T : w(T ) > 0}

Fig. 5. Algorithm MAX COVER-FAST

in O(n + M log M) time.

V. NON-CODING RNA GENES INAT-RICH THERMOPHILES

A frequently used statistic for DNA sequences is theGC-
content, which is the relative frequency ofG (guanine) andC
(cytosine) in a region. In a recent application, GC-content
was used to detect non-coding RNA [21] genes in genomes
of thermophile Archaebacteria such asMethanocaldococcus
jannaschii [8], [22]. The GC-content of transfer and riboso-
mal RNA genes strongly correlates with the optimal growth
temperature of thermophile Prokaryotes [23]–[26]. The lin-
ear trend is broken at lower growth temperatures (around
60°C) [27], and there does not seem to exist a similar depen-
dence for the genome-wide GC-content [26].M. jannaschiiis
a prime candidate for identifying RNA genes by GC-content
alone, since while the GC-content of the genome is 31%,
known RNA genes have a much higher GC-content of 60–
70%. Klein et al. [8] trained a two-state HMM in which the
states modeled GC-poor and GC-rich regions. They computed
the most likely state sequence, in order to select a set of GC-
rich segments. After filtering out known genes, they selected
the segments with a minimum length of 50, which resulted in
nine candidate RNA genes, denoted Mj1–Mj9. They validated
four of them by showing that they are transcribed. They
identified a fifth gene Mj6a, missed by the HMM, based
on sequence similarity. Two candidates (Mj5 and Mj8) are
less likely to be RNA genes as they overlap with putative
protein coding regions. Schattner [22] also used GC-content
and other statistics to identify RNA genes inM. jannaschii.
He used a moving window, within which the log-likelihood
was calculated using essentially the same equations as in §III-
A. In each position, starting with a window of 25 nucleotides,
the window was extended as long as its score surpassed a
pre-defined threshold, up to a length of 100 characters. An
extended window was reported as a changed segment, if it
reached the length of 40 nucleotides. This approach identified
19 candidates, denoted cnr1–cnr19. Four of these candidates
correspond to those experimentally verified by [8], and two
additional ones are also found by the HMM screen. One
candidate (cnr10) is the RNase P RNA gene [28] ofM.
jannaschii.

We tested our algorithms onM. jannaschii (1.66 Mbp,
GenBank accessionNC_000909.1 ). Using Eq. (2), we em-
ployed the scoreswi = −0.66 if the corresponding nucleotide
was A (adenine),T (thymine), orW (weak), andwi = 0.72
for G, C, or S (strong). (An additional twelve positions with
ambiguous characters had score 0.) The scores are based on

the genome’s overall GC-content, and the 65% GC-content
in seven tRNA genes between positions 850000 and 870000.
This latter set was also used by [22] as the basis for the
parameter settings. Using MAX COVER, we computed maximal
k-covers: see Fig. 6. The smallest maximal cover that includes
all tRNAs has sizek = 38. That cover also includes all rRNAs,
as well as RNase P RNA and SRP 7S (Signal Recognition
Particle) genes. In addition, three novel genes of [8] are also
included. The false positive rate can be assessed by the fact
that only two intervals overlap with protein-coding genes: Mj5
and Mj8. The maximal46-cover contains all RNA genes of [8],
including Mj6a, not discovered by either the HMM or the
sliding windows of [22]. The46-cover intersects only one
more protein-coding gene than the38-cover.

We evaluated different penalty functionsr: r(k) = 2k log n
(MDL1) or r(k) = 2k(log n − log(2k)) (MDL2); Eq. 5b
(HMM2); and Eq. 4 for significance (P = 0.1 andP = 0.01).
As shown in Fig. 6, the MDL penalties are too severe, and even
HMM segmentation stops atP = 0.01. There is no need to be
very conservative in this case, as the gene candidates identified
by the segmentation are further analyzed by different methods.
Accordingly, we selectedα = 14 for the complexity penalty
(P-value0.11 by Eq. (4)), and imposed a minimum segment
length of 40. M INLENGTH-COVER finds a 48-cover, which
includes all known RNA genes (even Mj6a), five protein-
coding genes, and the segment [334439,334485] not identified
by either [22] or [8], which is classified as a pseudogene by
tRNAscan [29]. Eight candidates of [22] are not in the cover,
as they score below14 (three of them have a score less than
twelve, corresponding to a P-value of at least 0.6).

We carried out similar experiments with a number of ther-
mophile Prokaryotes. In the maximum likelihood framework
of §III-A, one can readily predict the success of gene finding.
A linear penalty α set by Eq. (4) can be compared to
expected scores of changed segments. A changed segment
of length ` has expected scoreE(`) = `D where D =∑

σ∈Σ q(Σ) log q(σ)
p(σ) is the relative entropy between the dis-

tributions. The threshold̀ min = α/D thus indicates the
minimum detectable gene length. By this reasoning, we found
that among thermophiles for which whole genome sequences
are available,N. equitans[30], S. tokodaii[31], S. solfataricus,
M. maripaludisand P. horikoshii have low `min values (see
Fig. 7), allowing for the detection of transfer RNAs and longer
RNA genes.

We summarize here some initial findings. We found

2If an HMM is used, thelog τ(1→1)
τ(0→0)

terms are negligible in Eq. (5a).
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Fig. 6. Segmentation ofM. jannaschii. The right-hand side shows maximalk-covers in increments of five. Horizontal grey bands correspond to covers,
and darker boxes indicate the segments. Vertical bars show RNA genes with known function (bottom) and those in [8] (top). (Distances between loci are
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Tmar – T. maritima, Tten – T. tengcongensis, Tthe – T. thermophilus, Tvol
– T. volcanium. We calculated GC-contents forN. equitans, M. kandleri,
M. maripaludis, P. aerophilum, P. torridus, S. tokodaii, T. elongatus, and
T. thermophilusfrom public genome sequences and annotations, and used
the values computed by [26] for others. Lines show GC-content pairs for
`min = 75, 150, 300 at P = 0.1 and genome size of 2 Mbp.

that a maximal 58-cover of theN. equitans genome
(NC_005213.1 ) includes all tRNAs found by tRNAscan [29]
(even pseudogenes), all rRNAs, four protein-coding genes, and
12 unannotated segments. Seven of the unannotated segments3

3The following segments: [221790,221843], [308960,309006],
[339411,339562], [427536,427595], [487434,487490], [487645,487722],
[488412,488458].

produce no significant BLAST hits in Genbank. TheS. sol-
fataricus genome (NC_002754.1 ) contains many repetitive
elements with a high GC-content. Our segmentation by a 116-
cover includes 68 transposons or transposases, and two hypo-
thetical protein-coding genes. All other segments are annotated
as RNA genes. TheS. tokodaii genome (NC_003106.2 )
contains many repetitive sequences. Its segmentation iden-
tifies all annotated RNA genes (including a tRNA that is
missed by tRNAscan), and includes 24 transposition-related
sequences, and six hypothetical protein-coding genes. There
are eight unannotated segments, four of which are repeated
more than once in the genome. BLAST finds no similarities
between the remaining four4 segments and known archaeal
DNA sequences. We hypothesize that they correspond to
non-coding RNA genes. A fifth segment [326016,326321]
overlaps in only 11 bp with a hypothetical protein-coding
gene. Based on a structural alignment to known RNase P RNA
genes in Crenarchaea [28], it is very likely to be the so far
unpublished RNase P RNA gene inS. tokodaii(J. W. Brown,
personal communication). Figure 8 shows its alignment to the
corresponding gene inS. solfataricus.

ML segmentation ofM. maripaludis (NC_005791.1 )
gives only 16 GC-rich regions, one of which is unannotated,
but further inspection [29] reveals that it is likely to be
a Selenocysteine tRNA gene. Other structural RNA genes
such as RNase P [28] and SRP [32] can be located in
other thermophiles with a larger̀min, based on GC-content
alone. For instance, a segmentation of theT. tengcongensis
genome (NC_003869.1 ) includes the unannotated region
[1699151,1699436] which corresponds to the RNase P RNA

4Segments [1322116,1322329] [2020954,2021005], [2089025,2089145],
and [2091849,2092094].

9



P6

U

U A U
G G G A U C C C U A G

C

G

G

G

G

G
U

A
ACGGGG

C

C A G
A

A

GCCGGGUUAUGCUAGGGAUCCC
UA

C A G U A

GUCCC
A

A

A

C C U C

A

A

A

G

G

A

G

G

C

C

U

C

C
C

U

C

C

C

C

U

G

U

C

G

A

A

G

C

U

U

A

U
A

G
A U

A

U
C

C

U

U
C

A

U

A

G
G

G

A
G

GU G

C
A

A
UG

A GG G

C C C A

A

U U

A

G

U
U

U
C

C

A
A

A
G

C
C

GU

A

A

A
C

C
G

G

U
G

G

A

G
G

U A

A

G

G

A A

U

C
C

U
C

G
G

C
C

A

AU
C A CC U

G A U G

U
U

G
A

AAC
G

A
G

C
A

A
A

G

A
C

A A

C

G

U

C

C

C

A

U

A

A

C

G

G

G

G

U

A

U

U

A

A
U

A G A

AGU
A

G

U

GAA
A

A U
A

G

A
U

A

CG

U
U

G

C
A

G
UA

A U GG A U C G U U

C U AC U A C A AG
G

U

A
A

P4

P1

P2

A

A

G

G

G

U
U

GA

A
G

A

CG

P3

P5

P15

P7
P8

P9

P12

Sulfolobus solfataricus P2 RNase P RNA

conserved position

helix

pseudoknot

80

160

P4

P6

A

A
A G G G G A G C C C U A G

A

U

U

G

G

G
C

U
ACGG

G
U

U

C A G
A

A

GCCGGGUUAUGCUAGGGCUCCCCU

A A A U A

A

G

G

A
GUC

G

C U CC

C

U

C

C

C

A

A

G

U

C

A

A

A

G

C

U

A

A

G
A

A

G

C
A

A
UG

A GG G

A
A

U

C
C

C
U

G

G
G

G
A

C
C

GU

A

A

A
C

C
G

G

U
G

G

A

G
G

G
G

U

C
C

C
C

G
A

C
U

U

AA
C A CC U

G A U G

U
U

G
A

AAC
G

A

G

A
C

A

A

G

C
AA

G U

C

C

G

G

U

A

G

U

A

G

C

C

A

A

U

C

A

U

G

C

G

G
A

A
G

A

A
G

U

A

A
G

C

U

U

G
A

G

GU A

C

C

A

C

A

A

C

G

G

A

P7

P8

U

P5

P3

P9

A

P12

AA A

UU

C C AU U U G G G U

U A AG G G C C AC
G

U

A
A

U

A U

A

U

P1

P2

C U G GC C
C

C

C
U

U

C

U
U

AA

U G

G

A
A

A

G
G

A

G

GA

AG

A
G

G

G

A

C

C
C

P15

Sulfolobus tokodaii strain7 RNase P RNA

20

40

60

U

A

G A C

100

120

140

180

200

220

G

260

280

300

Fig. 8. Comparison ofS. solfataricusandS. tokodaiiRNase P RNA genes.S. solfataricussequence and structure are from the RNase P RNA database [28].
The S. tokodaiisequence is the segment [326014,326323] in the genome, found by ML segmentation. Secondary structure forS. tokodaiiis predicted from
alignment and covariation.

gene of the organism mentioned in the article [26].

VI. D ISCUSSION

We presented algorithms that calculate optimal covers ac-
cording to different criteria, in linear orO(n log n) time for
an input of sizen. A relatively recent review [3] of DNA
segmentation methods considered the cover selection problem,
based on [5], as one that can only be solved inO(n2)
time. Such a running time may be a serious drawback in
the analysis of long DNA sequences. In fact, optimal cover
problems with arbitrary, even non-additive, segment scoring
can be solved inO(n2) time. For instance, [33] considers
the problem of finding a cover with minimum total variance.
A k-cover with maximum score can be found by dynamic
programming inO(n2k) time usingO(nk) space if a general
segment scoring function is used [33], [34].

A related problem, that of finding a maximalchain of
covers, can be solved in linear time. A chain of covers is
formed by C0,C1, . . . where everyCk is a k-cover, and
Ck ⊂ Ck+1 for all k. A maximal chain of coversC∗0,C

∗
1, . . .

is defined recursively:C∗0 = ∅, and for everyk > 0, C∗k is
a k-cover that has maximum score satisfyingC∗k−1 ⊂ C∗k.
In other words, successive elements are generated using only
Case (1) of Theorem 1. Ruzzo and Tompa [7] describe a linear-
time algorithm that finds the lastC∗k in which all segments
have positive scores. In the maximal likelihood framework
of §III-A, looking for a maximal chain may give unsatisfactory

results. Specifically, it may be the case that two changed
segments with large scores are separated by a short unchanged
segment, and all three get lumped together in one of the covers.
Subsequent covers do not change the situation, regardless
of the middle segment’s score. For instance,C∗1 includes all
positive scores in the example of Fig. 2. Theorem 3 shows that
maximal covers may give more sound segmentation results
than do maximal chains. It is also worth pointing out that
looking for a coverC that maximizesw(C) − α|C|, wherew
is set according to log-likelihood ratios, gives a symmetric
solution in the sense that the role of changed and unchanged
segments can be reversed. With the possible exception of
segments at the extremities of[1, n] that can have scores
between(−α) andα, an equally good segmentation is found
whether we use the scoreswi of Eq. (2) or(−wi). Maximal
chains do not exhibit a similar symmetry.

In addition to maximal chains, results related to maximal
covers are described by Huang [35], Linet al. [36] and Zhang
et al. [10]. A linear-time algorithm for finding a segment with
maximum score satisfying a minimum length requirement is
given in [35]. A linear-time algorithm for finding a segment
with maximum score that satisfies both minimum and maxi-
mum length restrictions is described in [36]. Linet al. [36]
give an algorithm that finds a segment with maximum average
score of some minimum lengthL in O(n log L) time. The
algorithm can be employed to find a chain of covers in which
segments have large average scores [37].
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Zhang et al. [10] examine the problem of producing
pairwise sequence alignments without low-scoring regions.
An alignment is viewed as a sequence ofn columns, each
assigned a score. The score of a subalignment, defined by
a segment[a, b] ⊆ [1, n] is the sum of its columns scores.
Disjoint subalignments thus form a cover. Standard alignment
procedures [38] have essentially the same shortcomings as
maximal cover chains in that they may include subalignments
of arbitrarily low score (termed the “mosaic effect” in [39]). In
order to avoid such situations, Zhanget al. [10] propose that
low-scoring regions should be removed from the alignment.
In particular, they aim to find a coverC, for which no
subsegment of aS ∈ C has score less than−X for a
thresholdX ≥ 0. They prove that such covers for decreasing
values ofX form a hierarchy similar to that of maximal covers
described by Theorems 1 and 2. They also provide a linear
time algorithm implied by the hierarchy that finds such a
cover for a givenX. In light of Theorem 3, such covers are
succinctly characterized by a linear penalty functionr(k) =
Xk. We pointed out the connection between the thresholdX
and various statistical notions of complexity, as well as the
interpretation of the optimal cover as the most likely state
sequence in a Markov model. The dynamic programming
algorithm of Lemma 2 offers a simple, efficient alternative
to the algorithm of [10] for eliminating low-scoring regions
from alignments. MINLENGTH-COVER additionally provides
the option of imposing minimum subalignment lengths.

In the context of Hidden Markov Models, Algorithms MAX -
COVER and MINLENGTH-COVER find most likely state se-
quences under restrictions on the number of state changes,
and on state durations, respectively. At first sight, it seems
that the HMM approach has the advantage over the maximum
likelihood approach of §III-A in that the model’s parameters
can be set by a training algorithm. There is no reason, however,
for not doing the same in conjunction with ML segmentation.
For instance, Viterbi training can be imitated, by alternating
a parameter estimation step and a segmentation step. In the
former, the character frequencies are calculated in changed
and unchanged segments, andα is set based on statistical
significance from Equation (4). In the segmentation step, a
segmentation is computed using the newly set parameters.

From a practical viewpoint, our algorithms complement
each other. The fast dynamic programming algorithms of §IV-
B can identify a plausible maximal cover, while the algorithms
MAX COVER, MAX COVER-FAST enable the exploration of
maximal covers in the neighborhood with increasing or de-
creasing sizes, respectively. The experiments of Section V
illustrate that our algorithms used in a maximum likelihood
framework yield higher sensitivity and flexibility for DNA
segmentation than does a two-state HMM, while matching
the speed of the latter. They are very space efficient at the
same time. The scores can be computed on demand from the
input sequence. The dynamic programming algorithms need
to store only the traceback values, as the few values ofW i

that are accessed can be tracked in a small data structure.
Every nucleotide can be stored in two bits (or four to allow
for ambiguities), and the data encoding the cover and the
traceback values can be stored in three bits per position. Thus

MAX COVER and the algorithms of §IV-B can segment a DNA
sequence of lengthn usingn + O(1) bytes.

Acknowledgments:I am very grateful to James W. Brown
for confirming the identification of theS. tokodaiiRNase P
gene and for computing its secondary structure. I found a
simpler version of Theorem 1 in collaboration with Réka
Szab́o: it appeared first, along with the MAX COVER algorithm,
in my Masters thesis, written under the direction of Gábor
Lugosi at the Technical University of Budapest in 1994.
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