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Abstract—We examine the problem of finding maximum- K in O(nK) time whereK is an upper bound on the cover
scoring sets of disjoint segments in a sequence of scores. Thesjze. Section Il examines maximal cover problems arising
problem arises in DNA and protein segmentation, and in post- ;i gatistical contexts where probabilistic principles guide the

processing of sequence alignments. Our key result states a simple hoi f ; nd cover siz Section IV describes th
recursive relationship between maximum-scoring segment sets, C0ICE OF Scores and cover sizes. Sectio escribes the

The statement leads to fast algorithms for finding such segment @lgorithms for finding maximal covers using different optimal-

sets. We apply our methods to the identification of non-coding ity criteria, as well as an algorithm for finding a maxinial

RNA genes in thermophiles. _ o ~cover inO(nlogn) time. Section V deals with the problem of

Key words: segmentation, change point estimation, noncoding jqentifying GC-rich regions in AT-rich genomes, which often

RNA, thermophiles . . . . ! .
coincide with non-protein-coding RNA genes in thermophiles.
Section VI discusses related results and concludes the paper.

I. INTRODUCTION

Suppose thatv;, ws, ..., w, € R is an arbitrary sequence |l. RELATIONSHIPS BETWEEN CONSECUTIVE MAXIMAL
of scores withn > 0. A segmentS is a set of consecutive COVERS
integers: S = [a,b] = {a,a + 1,...,b}. The score of @  |n this section we examine characteristics of maximal cov-

segments is the sum of the scores indexed by the segmentss, and prove that there is a simple recursive relationship
elements:w(S) = > ;cqw;. A segment of maximum scorepetween them. Theorem 1 shows that a maxittiak- 1)-
can be found in linear time [2] by scanning the scores onc&ver can be obtained from any maximatover, either (1)
This paper considers a natural generalization of the maximupy adding a new segment to it, or (2) by removing the
scoring segment problem. Namely, we are interested in fingkiddle of a segment in it. By Theorem 2, the converse is
ing & disjoint segments with maximum total score. also true: a maximalk — 1)-cover can be created from any
A k-cover € = {S1,...,Sk} is a non-intersecting set maximal k-cover by merging two segments, or by removing
of segments. The score of kxcover C is the sum of its one. Theorem 2 further implies thall maximal covers can be
elements’ scoresw(C) = > g w(S). It is useful to define produced by consecutive applications of operations (1) and (2)
the indicator vector (z1,...,2,) of a coverC: z; = 1 if of Theorem 1. Figure 1 illustrates these relations between
i € UgeeS and z; = 0 otherwise. Using this notation, syccessive maximal covers.
w(€) =32 wizi. A k-cover ismaximalif it has maximum  Theorem 1:Let €, be a maximak-cover fork € [0,n—1].
score among alk-covers. We define the 0-cover as the emptyhere exists a maximédk -+ 1)-coverC,,_., which satisfies one
set with score 0. of the following conditions.

A cover may define a segmentation, which alternates hig 1) There exists such a segmefntb] that € — .U
and low-scoring regions, i.e., segments within and outside the {[a,0]}; or a ¥

cover. Segmentation methods have been extensively used in E?? there exista, b, ¢,d € [1,n] for whicha < ¢ < d < b
analysis of protein and DNA sequences [3]. Various scoring™ _ Chrt = é;;u’{[a d 7[d B3\ {[a, b} - -7

schemes permit the identification of charge clusters and hy'Theorem 2:Let €, be a maximalk-cover for k € [1,7]

drophobic profiles for proteins [4], determination of isochore§here exists a maximalk — 1)-cover @ which satisfies
in DNA sequences [5], [6], discovery of CpG islands [6]0ne of the following coer(:dition)s. kol

[7], and even gene finding [8]. Different methods include .
maximum likelihood estimation [5], Hidden Markov Models(l) There exists such a segmentt] € Cy that Cp—y =
[8], [9], entropy-based [6], and various “moving window” Gk\{[a,@]}; or :
techniques. Segmentation methods are also used to remégl there exista,b,c,d € [1,n] for whicha < ¢ < d < b,
low-scoring regions from sequence alignments [10]. and Cy_1 = €4 U {[a, 8]} \ {[a, ], [d, O]}

Our key result is Theorem 1 of Section I, which states the, Proof: [Theorem 1 For k = 0, _the theorem hc_)Ids
incremental nature of maximal covers. This theorem Ieadsia”a"y' Let k > 0. Let €, be a maximalk-cover. Define

1

an algorithm that finds &-cover with maximum score fdr < = max{w([a,b]): [a,8] N Usee, = 0}, and Ay =
max{ (w([a, ¢]) + w([d,b]) — w([a,b])): [a,b] € Cr,a < ¢ <
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Fig. 1. Relations between maximal covers (Theorems 1 and 2).

We show that then it is possible to construdt-aoverC) with a contradiction.

larger score than that df,, which contradicts the maximality In the second case€) is produced front),_; by splitting

of Ck. the segmenin’, v']: €, = C;._,U{[d’, bi], [ai+1, '] }\{[e', ']}
Since there are more segment@}grl than inCy, it must be Clearly,

the case that either there exists a segnnt €., which

does not overlap any segment @f, or that there exists a w([a’, bi]) +w([ai1,V]) — w([a’,0])

segmenta, b] € C, which overlaps two consecutive segments= w([a;, b;]) + w([air1,biv1]) — w([a;, bir1]) > Ay > A.

[a',c],[d,V'] € € . In the first case, thei-cover C; is

obtained from€j_, , by removingS’. Necessarilyw(S’) < Hence,
A; <A, and thus w(C) = w(C_,)
w(€) = w(Chpy) —w(S) = w(€hyy) — A>w(Cr), + (w([a', b)) + w[air1, b']) — w(la’,0']))
a contradiction. > w(Ch_1) + A > w(Cy),
In the second cas€;, is produced fron€) _; by fusing the again a contradiction. -

two segmentst), = €}, U{[a’,t']}\{[d’,c],[d,b']}. Clearly,  The theorems have some important consequences. First,
Theorem 1 implies a simple algorithm for calculating succes-
i / / /
w(la’, ) + w([d, b']) — w(la’, b)) sive maximal covers, which we describe in §IV-A. Secondly,

= w([a,c]) + w([d,b]) —w([a,b])  Theorem 2 allows for a fast algorithm that finds a maximal
< Ay <AL cover inO(nlogn) time, described in §IV-C. Finally, Corol-
H lary 1 below shows that the score of maximiatovers is a
ence, i
concave function of.

w(C,) = w(Cy ;) Corollary 1: Let 1 < k < n. Let €,_1, G, and Cry 1 be

— (w([d’, ¢]) + w([d,b]) — w([a’, b)) maximal (k — 1)-, k-, and (k + 1)-covers, respectively. Then
> w(Chpq) — A > w(Cy), w(Cri1) — w(Cr) < w(Cx) — w(Cr-). 1

Proof: Without loss of generality, we can assume that
he covers satisfy the relationships described by Theorem 1.
et G, = {[al,bl],...,[ak,bk]} with a1 < by < as < by <
e < ag < by.
Case 1.1:There exista,b € [1,n] andi € [1,k] such
thatCr_1 = C \ {[as, b;]} andCy1 = CrU{][a, b]}. We need
to prove thato([a;, b;]) < w([a,b]). SinceCy41 contains both

w([ai,bi_,_l]): 1 € [1,k' — 1] . Define A = min{Al,Ag}.
Lo : Y segments, they may not overlap. Hence Eq. (1) must hold,
The theorem implies that a maxim@t — 1)-cover has score otherwiseCy_1 U {[a, b]} is a betterk-cover thanCy,

w(Cy) — A. For the sake of contradiction, suppose that there . e 'y
exists a(k — 1)-cover,_, with w(C,_,) > w(€y) — A. We Case 1.2:There exist, j € [1, k] andb, a € [a;, b;] such
. . ! ia thatCp_; :(?k\{[al,bl]} andeH :Gku{[aj,b],[a,bj}}\
show that then it is possible to construct:acover C; with g } -
larger score than that @y, which contradicts the maximality {[aj’bj]}' Clearly, if i 7 J then Eg. (1) must be satisfied
' otherwise Cr4+1 \ {[a:,b;]} is a betterk-cover thanCy. If

of Cy. .
Since there are more segmentsCipthan in€)_,, it must ' {’hthlgh Uf[E][%b_D + w([al; bi]) — w([alz‘; bi]) < w([tzi_, b))
be the case that either there exists a segnseat C;, which must hold: otherwisew([a;, b]) > w(las, bil) or w(la, ’].) >
w([a;, b;]) and thusCr_1 U {[a;, b]} or Cx_q1 U {[a,b;]} is a

does not intersect any segment ®f_,, or that there exists higher-scorinds-cover thane
a segmentla’,b’] € €j._, which overlaps two consecutive g gk: o
' Case 2.1: There existi € [1,k — 1] and a,b € [1,n]
segments|a;, b;], [ai+1,b;+1]. In the first case, the:-cover h thate _ ey b bl e b
e, is obtained frome,_, by addingS. Necessarilyw(s) > >uo! fatbe-1 = L {las,bigal} \ {las, bil, [aiga, bia]}
A: > A. and thus andCj41 = €, U{[a, b]}. If [a,b] does not overlaga;, b;+1],
L= then Eq. (1) must hold, or els®,_; U {[a,b]} is a betterk-
w(C) = w(C_y) +w(S) > w(Cf_1) + A > w(Cy), cover thanC,. Suppose tha, b] intersectga;, b; 1] and thus

again a contradiction.

Proof: [Theorem P The proof uses the same logic as th
previous proof. Consider > 1, otherwise the claim is trivially
true. LetC, = {[a1,b1],..., [ak, bx]} be a maximalk-cover
with a1 < as < -+ < ai. Let Ay = min{w([ai,bi]): i€
[1,k‘}}, and letA, = mln{}w([a“bl]) + w([ai+1,bi+1]) —



b; < a <b< ajy+1. We need to prove that b et

w([a,b]) < w([ai, bi]) + w(lait, biya]) — w(lai, biya]). (%) @ " EE—
Now, w([a;;0]) <  w(las,b]) and w(la,bip,]) < . . e S

w([ai+1,biv1]), otherwise[a;,b;] can be replaced bya;, b]

or [aHl’le] can be replaced b)[’% le] in G, result- Fig. 2. Max’in?al k-covers with mir}i[num segment lengths; =6
. . hiah B dding the two inequalities Wandmo = 1. A’'+ denotesw; = 1 and '-’ denotesw; = —1. An equivalent
Ing In a higher score. by a g q ! &oring scheme is realized wheh= {0, 1}, andp(0) = 1—¢(0) in Eq. (2).

get w([a;, b)) + w(la, bit1]) < w([as, bi]) + w(laiv1, biv1]).
The left-hand side equals([a;, bi+1]) + w([a,b]), and thus
w([a, bi1]) +w([a, b]) < w([ai, bi]) +w([ait1, bita]), which

, The first term is the log-likelihood of the null hypothesis that
is tantamount to (*).

C 29 Th . i , i there are no changed segments. The second term is the log-
dt ase c.o ) ere ﬁx'i“ (96 [1’_ (; 1], j Eb (LKl ikelihood ratio (LLR) of the alternative hypothesis defined
and b,a € [a;,b;] such thatCr_, = €y U {lai,bina]} \ v @ Accordingly, a maximalk-cover maximizes the LLR

{lai,bil, [ait1, bia]} @nd Cryy = € U {lay, b, [a,b;]} \ among hypotheses with changed segments if the scores are
{la;,b;]}. Similarly to Case 1.1, the removal of the subse%-et by Eq. (2)
hmoelgts can be carried out in any order, and thus Eq (1) musE\Iotice that the framework is easily extended to infinite

REMARK. Kearnset al. [11] consider a problem in a aI?:habeZs,cor even to contmuoui d|str|tl))|ut|on?.f. di
machine learning context, which turns out to be a specia# u and Curnow [5] examine the problem of finding: &et

case of finding maximal covers. They consider empiricgl changed segments that maximizes the LLR with restrictions

error minimization for a learning sample with one-dimension&” the minimum lengths of changed and unchanged segments

observations, which is equivalent to finding a maximal covéPecified by thresholds,, andmo, respectively. They aim to
aximize the LLR by using scores defined by Equation (2),

when all scores equall or —1. Theorem 2 for this special m - ) _
case, and an implied algorithm similar to that of §IV-C, appedd by finding &-cover{[ay, b1}, ..., [ax, by]} for whichvi
k]:bi—ai+12m1,V26[Q,k]:ai—bi_l—FlZmo,

in [11]; our proof is an adaptation of theirs to general scores:’ . !
[11] P P 9 and eithera; = 1 or a; > mg, and eitherb, = n or n —

Ill. SCORES BASED ON PROBABILISTIC MODELS br > mgo. Fu and Curnow state a theorem (with an incorrect

In this section we consider the case when scores are baBEPf) that is similar to Theorem 1: “Given one set of best
on probabilistic models. First, §11I-A shows that in a statisticd] S€gments A-cover in our terminology], we can find one
context, maximal likelihood estimation of change points [5Fet Of bestk +1) segments if it exists, by either adding the
[12] leads to a maximal cover problem. Secondly, §liI- est segment which _dpes not overlap _Wlth any of theest
examines the problem of cover size selection, based on §fIMeNts, or by splitting and expanding one of the Hest
minimum description length principle, and other statisticsiegments.” Their claim, however, does not seem to hold in
notions of complexity. We continue by arguing for a covegeneral, as the relationship between maximal covers may be
size selection method based on statistical significance in gif@mplicated if a minimum length is imposed on the segments.

C. Finally, §I1I-D shows how Hidden Markov Model-based 19Uré 2 shows an example where more than one segment
segmentation fits into the framework of maximal covers. change between consecutive maximal covers. Alternatively, if
segments can be of arbitrary length, then by Theorem 1, there

A. Maximum likelihood estimation of segments is no need for expansions.

Let X4,..., X, be a sequence of independent random
letters from an alphabef = {o4,...,0,}. The distribution
of every X; is one of two known distributions, specified b
the probabilitiesp(o;) and g(o;). A changed segmens a  Unless it is warranted by the problem at hand, the rea-
segment|a, b] of indices whereP{X; = o;} = q(0;) for son for restricting segment lengths is to avoid overfitting:
all i € [a,b]. A segmenta, t] is unchangedf P{X; = o;} = the cover{[i,i]: w; > 0} maximizes the likelihood but
p(o;) for all i € [a,b]. Maximum likelihood estimation of it hardly captures any meaningful pattern in the data. We
changed segments turns into a maximal cover problem. lfggest that one should instead penalize the cover size. Define
z;: 1 € [1,n] be the observed values of;. Let C be a the complexity-penalized scoref a cover G by @(€) =
non-intersecting set of hypothetical changed segments. Lgte) — r(|¢|) where 7: N — [0,00) is a monotone in-

yB. Selecting the cover size: complexity penalties

z = (z1,...,2n) be the indicator vector fo€. The likelihood creasing penalty function. The optimal cover has maximum
function is f(x | zp.a) = [TiLi(p(z:)'"* (a(2:))*.  complexity-penalized score. First we describe a penalty based
Define on minimum description length (MDL). According to the
w; = log(q(z;)) — log(p(z:)). (2) MDL principle [13], [14], one favors the cove€ which
(Throughout the papeiog denotes natural logarithm.) TheMinimizes the length of encoding the data andLet z be
log-likelihood can be written as the indicator vector fo€. Givenz, everyz; can be encoded
n n in b(z;, z;) bits on average, wher&0, o) = — log, p(o) and
log f(x | z,p,q) =S logp(ai) + > wiz. b(l,0) = —log, q(a). The cover itself can be specified by
g /(x| ) ; 2p(z) ; the endpoints of its segments usi2(@| log, n bits. The total



codelength equals A consequence of Theorem 3 is that by setting= = +

n log n with an appropriately chosenwe can ensure that every
((x,C) = Zb(zi’xi) + 2|€C|logy n changed segment has significant statistical support, and that
i=1 maximal set of such segments is selected. In particular, Eq. (3)
%0 w(C) — 2|C|log n implies that for largen, € is non-empty with probabilityl —
=(x,0) - log 2 : exp(—Cne~®) under the null hypothesis. Accordingly, for a

The MDL cover thus maximizes(C) —2|C|logn, and corre- given0 <p <1, we can use

sponds to the penalty(k) = 2k log n. A more efficient encod- C C

ing can rely on the fact that there af&'') possiblek-covers a = logn +log — log(1 —p) ~ logn + log Y (4)
in which segments do not abut. @f= {[a1,b1],...,[ar, bs]} ' .

with b < a;_; for all i = 1,...,k — 1, then there is I order to get a non-empty optimal cover with at m@st

a one-to-one correspondence between combinationgkof probability. By _sw_itching the roles of changed and unchanged

points from|[1,n + 1] and selections ofay, by + 1, az,bo + segmgnts, a similar argument can be made to measure the

1,...,a, by +1}.) Whenk = o(n) andn > 1, ak-cover can statistical support for unchanged sggments. .

be encoded ifog, (n2+kl) ~ 2k log, n — 2k log, (2k) bits. The Proof: [Theorem B !f there existsS € C for Wh!Ch

corresponding penalty equaték) = 2k(log n — log(2k)). w(S) < « then by removing that segment froBp we obtain a
Other MDL-related penalties such as Akaike’s AIC [15] otk —1)-coverC” with @(€’) > @(€), which is a contradiction.

the Bayesian Information Criterion (BIC) of Schwarz [16] leadf there existsh;+1 = a; 1 orw([bi+1, a;+1—1]) > —a, then

to similar penalty functions that are linear in the cover siz8Y replacinga;, b;] and[a; 1, bi41] with [a;, b;+1], we obtain

For a model of dimensiod, AIC recommends using, and & (k — 1)-cover that has larger penalized scarghan@(C).

BIC recommends using logn as penalty. In our case, the If for somei there exista; < a < b < b; with w([a,b]) <

model dimension igl = 2k, the number of parameters needed . then the cove€’ = CU{[a;,a—1], [b+1,b;]}\{[a;, b;]} is

to specify ak-cover. Notice that BIC gives half as large of & (k+1)-cover with scoreu(€’) > w(C)+a, and thusi(€’) >

penalty as MDL does. w(C), which is a contradiction. If for somethere existh; <
a <b < a1 With w([a,b]) > «, then the covef’ = CU
C. A penalty based on statistical significance {[a,b]} is a(k+1)-cover with scorev(C’) > w(€)+a, which

As an alternative to the MDL approach, a penalty can again a contradiction. -

be defined using statistical significance, measured by the
probability that a segment has a large score under the ngll Two-state Hidden Markov Models

hypothesis that there are no changed segments. The distri-O | le of lizi e is th ¢
bution of the maximum segment score, i.e., the scof® ur last example of penalizing cover size is that of seg-

of the maximal 1-cover, under the null hypothesis has beBHEntation by al_'k’”?gend'\/:cafkov M?(del (HMM). EXtﬁndinr?
extensively studied [17]-[19]. It is known [17], [18] that!'® Maximum likelihood framework, we impose that the

w® — log n almost surely as — oo, and that for allz, random sequenceXy,..., X, iS generated by a two-state
HMM [8], [9]. The two states correspond to changed and
nlggoﬂ”{w(l) —logn <z} =exp(—Ce™®), (3) unchanged segments. A run of the HMM results in a state
sequenceZy, ..., Z, forming a Markov chain, and the se-

where C is independent ofr and x, and is defined by a

rapidly converging infinite sum. (For the general case @ ence of emitted charactess;, ..., X, If Z; =0, then X;
pialy gng R ” 9 is drawn according to the unchanged segments’ distribgtion
assigning score; to every letters; with 3%, p(o;)u; <0,

1) 1 : . LS , otherwise it is drawn according tq. The most likely state
w'’ = A7 logn where is the unique p(?((S,'jt)'V‘e solution of geqence; = (z4,...,2,) for a given observation sequence
2 =1 poj) exp(huy) = 1. Whenu; =log o, A=110sa 5 — (5 . 4,) defines a segmentation df n] into changed
solution.) This result provides a means to setecin order to 5, unchanged segments, i.e., segments where 1 vs.

search for the covef that is optimal according to a penaltysegments where; = 0. Clearly, z is the indicator vector for
function (k) = ak. The following theorem characterizes; cover. The likelihood function equals

the segment scores i@ every changed segment éhscores

at leasta, no subsegment of an unchanged segment score 2 . N\ (T

abovea, and every unchanged segment attains a score off§‘ | z) = 7T(Zl)(ll_l(p(wi))l “a(@)) ) (H T(zim1 — Zi))’

most (—a), and no subsegment of a changed segment scores =1 =2

below (—a). wherer are the starting probabilities andare the transition
Theorem 3:Fix o > 0, and letC = {[a1,b1],...,[ax,br]} probabilities for the states’ Markov chain. There exists a well-

be a cover that maximize®(C) = w(C) — «|C|. If € # 0, known method for finding the most likely state sequence,

then the following holds. For all € [1,%], w([a;,b;]) > «, known as the Viterbi algorithm [20], but formulating it as

and there does not exist, b with a; < a < b < b, and a maximal cover problem enables us to consider further

w(la,b]) < —a. Foralli € [1,k —1], b; +1 < a;4+1, and variations with restrictions on the number of state changes

w([b; + 1,a;41 — 1]) < —a. For alli € [0, k], there does not (§8IV-A) or on state durations (8IV-B). The LLR of a state

exist a,b for which b; < a < b < a;4+1 andw([a,b]) > «, sequence (viewed as an indicator for a cov&) with respect

whereby =0 andag.1 =n+ 1. to the null hypothesis that all; = 0 can be written in the




form >°" | w;z; — a|€|, where maximal (k — 1)-coverC for ak € [1, K — 1] at the beginning

(o) (11 of the loop onk in Line C3.
q\o -

w; = log ——= + log T ) + 0;; (5a) We start with a few observations on how the algorithm
p(o) (0 —0) works. Line C5 ensures thd,,i] is a viable segment in
_ T(0—1) (1 —0) T(1—1) Lines C6-C8 in the sense thaly,i] is entirely within a
a = —log — log +log ——=, . :
7(0 — 0) 7(0 — 0) 7(0 — 0) segment ofC or it does not intersect any segment ©f

(5b) Lines C5 and C6 track the score 6§, i, so that in Line C8,
ands; = 0 for everyi e @2, n—1], otherwise it hides correction ;ﬁ} EUF‘;([%” Zc]:)c')r;;l%jgg?ye?ftﬁznaﬁ’got'i?g;t%%:ansLAZ‘: t(é?rr?irrlgte
terms:é; = —log Z0—4 + log 7} and4,, = —log Ze—0) ; ’

7(0—0) (0 . 7(0—0)" in Line C9, then it creates h-cover.
Consequently, segmentation by the most likely state sequencg v we prove that the algorithm creates a maxinal

in a two-state HMM is an instance of finding an optimal COV€over. Define the set of segmenits that do not intersect any

using_linea_lr complexity penalties. element ofC. Let w™ = max{w(T): T € AT}. Similarly,
At first sight, it may seem that the scores and the compIeX||té(t A~ be the set of subsegments of the segments,in

penalty do not depend on. In practice, however, the state, 4 letw— — max{—w(T): T € A~}. Clearly, w" is the
transition parameters often incorporate such a dependence;naximum score increase that can be achieved by adding a
For example, Viterbi training [20] alternates an expectatio&agn,lent andu— is the maximum score increase that can

and a minimization step until convergence is reached. inrstbe achieved by splitting a segment. We claim thatyif —

is calculated given the model parameters, then the parametrtralgbsx{uﬁr w1} >0, thenw — w(S) = w* in Line C9,
are readjusted given. Let ¢ = > | z; be the total length Let [ag, by] € A™ be the segment for whichy([ao, bo]) —

of changed segments, and letbe the number of changedw+, bo is minimal, and there does not exist, bo] with a >

segments when a fix point is reached in the optimization. Fgg and w([a, bo]) = w*. Similarly, let [a1,b,] € A~ be the
simplicity, assume that, = z, = 0. The state transition ’ ' ’

. P segment for whichw([a1,b1]) = —w™, by is minimal, and
probabilities are estimated at) — 1) = ;== 7(0 = 0) = here does not exit, by ] with a > a; andw([a,b1]) = —w~.

ekl (1 - 0) =4, andr(1 — 1) = GE If k < £ < e show thatS — [ag, bo] if wt = w™ andby < by, or if
n, then the complexity penalty is ~ logn +log¢ — 2logk. ,+ < =, It is clear that ific = ag andi = by in Line C8,
The formula depends on the total length of segments, and thisy, g is set tofag, bo], Wmax IS Set tow™ and their values do
does not fit our framework in which penalties depend solejy,; change anymore until finishing with the loop arHence
on the number of segments in the cover. Nevertheless, it ShQys nave to show that, = ao wheni = by. Wheni = ao,
that HMM penalties fall between MDLo(= 21log n) and BIC io < i after Line C5. In fact, we must havig = ao, or else
penalties ¢ = log n). wlig, ap — 1] > 0 and the segmeriiy, by] would have a score
w([io, bo]) = w([io, a0 — 1]) + w([ag, bo]) > w™. Moreover,
IV. ALGORITHMS ip cannot change whiley < i < by since thenw([ag, ig]) <
0 right beforei, is updated the first time in Line C5, and
thus wheni = by, we havew([ig,i]) > w™ contradicting the
By Theorem 1, a maximalk + 1)-cover can be found by definitions ofag, b.
updating a maximak-cover. For eachk, one needs to find One can prove in an analogous manner that [a1, 1]
the segment that can be either added or removed to incrediset = w~ andb; < by, or if w= > w*. Therefore,C is
the cover score by the largest amount. The idea is employgodated in Line C9 correctly for everty if there is ak-cover
by the algorithm M\x CoVER, shown in Figure 3, which is that has a larger score than the maxinjal— 1)-cover. By
an adaptation of Jon Bentley’s classic algorithm [2]. (In facGorollary 1, we can stop the first time that there does not
Bentley credits Joseph Kadane of CMU with the design.) exist such a cover. ]
The algorithm scans the scores once for everys € [1, K]
in Lines C4—C8. For every, the algorithm calculates the max-B. Algorithms for linear complexity penalties
imum increasewn.y in cover score that can be achieved by Suppose that we want to find a cov@rthat maximizes
removing a sub-segment or adding a segment (the segf)entthe penalized score(C) = w(C) — a|C| with somea > 0.
Lemma 1:The algorithm MAXCOVER finds a cover that The MDL approach of §llI-A sets = 2log n; the statistical
has maximum score among covers with at massegments  significance framework (setting by Eq. (4)), and the HMM

A. An algorithm for finding a maximal cover

in O(nK) time. approach of 8§llI-D also use linear penalty functions.
Proof: First we prove the bound on the running time. Let Gy = (,€;,Cs,... be a series of maximat-covers.
Line C1 initializes(z,. .., z,) in O(n) time. The loop body By Corollary 1, a coverC* maximizing w is the first €,

C5-C8 is executed irO(1) time for everyk = 1,...,K for which w(Cri1) — w(Cy) < a. It is easy to modify
andi = 1,...,n. The else branch of Line C9 is executed MAx CoVvER to find C*. The only necessary change is in
in O(n) time for everyk. Line C9, wherez needs to be returned vy < a.
Concerning the algorithm’s correctness, in the trivial casd Ax CoveR then findsC* in O(nK) time if it is invoked
whenw,; < 0 for all 4, the algorithm return® = ) correctly. with K > |€*|. In what follows we develop a faster algorithm.
We prove the lemma for non-trivial cases by induction. The For all i € [1,n], defineW?(i) as the maximum ofi for
induction hypothesis is thafzi,...,z,) correspond to a covers of[1,i] which do not includei. Define W (i) as the



Algorithm MAxCOVER
Input: w; scores fori € [1,n], K maximum cover size
Output: indicator vector for a-cover with maximum score fab < k < K
Cl initialize z; — O fori=1,...,n
C2 for k«—1,...,K do
C3 setig «— 1; w «— 0; S « null; wmax < 0
C4 for i <—1,...,ndo
C5 if i >1andz;_1 # z; thenip — i; w — 0
C6 w—w+ w; /lcurrent candidate igio, ¢] with scorew
C7 if (zi =0andw <0)or(z=1andw > 0)thenig «— i+ 1w 0
(] else if |w| > wmax then wmax «— |w|; S < [io, 1|
C9 if wmax = 0 then return (z1,...,z,) elsesetz; — 1 —z; forall: € S
C10 return (z1,...,2n)

Fig. 3. Algorithm Max CoVER.

maximum ofw for covers of[1,4] which do includei. The G?}m is a cover that ends with an unchanged segment of length
following lemma shows the recursions for calculating (i). at leastm, and G}’m ends with a changed segment of length
Lemma 2:For all i > 1, at leastm. The following lemma shows the recursions for
. , . calculating the weights of these covers.

WD) = max{WH(i — 1), Wi = 1) Lemma 3:Let WY, (1) = 0(€0,), Wiy (i) = (€0, )

W (i) = w; + max{W°(i — 1) —a, W' (i — 1)}. Who.(i) = @(el)), and ngng’() @(€L,, ). Then
Proof: Let i > 1 be arbitrary and consider the covergyo | rt( ) =0, Wslhort(l) = w; — «a, and the fo||0Wing
realizing W°(i — 1) and W(i — 1). Since both of them are recursions hold.
covers of[1,i] and do not include, W°(i) > max{W?°(i — 0 _ L

1),Wl(i — 1)}. However, strict inequality is not possible Whort (1) = max{ Wi, (i — 1), Wigng (i = 1)}

since the cover realizing°(i) is a cover of[1,i — 1], and ~ W3, (i) = w; + maX{Wlong(i 1) — o, Wio(i— 1}

thus its penalized score cannot be larger than the maX|munW%ng(-) =W, (i — mo + 1);

of w among covers ofl,i — 1]. In a similar spirit, consider ;

the covers off1,] obtained by addindi,i| to a cover re- 1oy 4

alizing W°(i — 1), and by extending the last interval of a Wiong (1) = Whort (0 = 1 +1) Jr] 12"; ij'

cover realizingl* (i — 1). Since their penalized scores equalemma 3 implies a dynamic progra_mrl‘mng algorithm (see

(w; + WO(i — 1) — @) and (w; + W'(i — 1)), respectively, Fig. 4), which finds an optimal cover subject to length re-

W(i) > w; + max{W°(i—1)—a,W'(i—1)}. Again, strict strictions. The algorithm runs i®(n) time. The casex = 0

inequality is not possible since one can remavifom the is equivalent to the original problem of Fu and Curnow [5],

cover of[1, {] that realized¥ ! (i) and obtain a cover dt,i—1] that of finding a segmentation that satisfies the length restric-

that way. B tions. The caseny = m; = 1 is the problem of finding
The lemma implies a dynamic programming algorithraptimal complexity- penallzed covers, and thusong(‘) =

that runs inO(n) time. In case of the two-state HMM, theyyQ (i )7W10ng( i) = W2 . ().

algorithm is equivalent to the Viterbi algorithm [20]. We Proof: [Lemma 3 For simplicity, we assume the unique-

design a more general method that respects minimum segmes¥s of the covers? , . The cover@ol either includegi — 1),

length constraints. Specifically, we want to find a cover thahd thus@o el otherW|se€°1 = eZ 11- If the

i—1,mq?

maximizesw with the stipulation that changed segments mugbver C} . |nC|udeS(z —1), then€! 118 obtained by extending
have lengths at least; and unchanged segments must havyge Iast segment i 11 Otherwseﬁll — el . mOU{[Z i}.

lengths at leastuy. In order to arrive at a solution by dynamic |t is clear that@o = Y L = e = ey 11
programming, we consider covers [df 4] in increasing order wheni,m > 1. The covere}m is obtalned fromeZ 11
of 7. In contrast to Lemma 2, we need to track not onlgy extending the last segment with— m + 2, i]. ™

whether i is included, but also whether the last segment

satisfies the minimum length requirements. As a consequenge, p fast algorithm for finding a maximal cover

Lemma 3 below gives recursions for four variables per prefix.
For all j = 0,1, m € [1,m;], andi € [m,n], deflne(?jym

as covers of[1,i] that maximizew while satisfying the

requirements for all segment lengths, except for the last:on

So far we concentrated on computing maximal covers using
Theorem 1 or selecting one cover using linear complexity
genalnes It is also possible to calculate maximal covers by
employing Theorem 2. The main idea is to find the cover

IMore precisely,e! , satisfy the following conditions. Eithe£?, = 0, that comprises all runs of positive scores and then produce

1,M

or € = {[a1,b1], ..., [ak, bx]}, where0 < a1 < b1 < az < by < SMaller maximal covers consecutively. Below we develop the
<y <by <i-m, Ve [L,k]: b > ar +-m1 —1,V¢ € [2,k]: ar > idea formally. A segmenf, j] is apositive runif w({i, j]) > 0

?f[—l ;}mo, "’E”d il]fv\}h‘e’:e‘g: o f'tier ez:,< , <@ °rS _ andfor allk € [i,j], wy > 0. A segmentf, j] is a negative
1,01y, Ak, Ok] 1, air = 01 az 2 Qg . . ..

by — i, ¥t € [Lk—1]:b > ar+m1 —1, ap < b —m +1,vt ¢ runifw([i,j]) <0andforallk € [i, j], wy, < 0. When not all

[2,k]: ar > by—1 4+ mo, anday = 1 or a1 > mo. scores are zero, we can decomp@ke:] into an alternating



Algorithm MINLENGTH-COVER

Input: w; scores for: € [1,n]; a > 0 complexity penalty;no, mi1 < n minimum segment lengths

Output: z; indicators for a covef that maximizesw(C) — a(|C|)
L1 Initialize to(i),t1(¢) < null fori =2,...,n /I (for traceback
L2 Uo(1) « 0; U1(1) — w1 — « I (Uj = W o in Lemma 3
L3 if mo > 1 then V5(1) « —oo elseVp(1) I (v; =Wy, in Lemma 3
L4 if my > 1 then V1(1) «— —oo elseVi(1)
L5 if m1 > 1 then s < w elses < 0 // if m1
L6 for i =2,...,n do
L7 s — s+ w; )
L8 if > mqthens«— s— wi—m,+1 Il (s = Z;:i—m1+2 wj)
L9 if U()(Z — 1) > Vl(l — 1) then U()(Z) — UU(Z — 1), to(i) —0 e|SeU0(i) — V1(Z — 1), to(i) — 1
L10 if Vo(’i — 1) —-a > Ul(i — 1) then Ul(l) — w; + %(Z — 1) — Q, t1(’i) —0 eIseUl(i) — w; + Ul(i — 1); t1(’i) — 1
L11 if 4 > mgo then V()(Z) — U()(Z — mo + 1) elseVU(i) — —00
L12 if 2 > m then Vl(’L) — Ul(i —m1 + 1) + s E|SeV1(i) — —00
L13 end for
L14 if Vo(n) > Vi(n) then z, <« 0; m <« my elsez, «— 1; m «— my
L15 for i+~ n—1,n—2,...,1do

— Uo(1)
— U (1)
= 1 thens = 0 always

L16 if m>1thenz, « ziy1;, m—m-—1

L17 else ifm =1 andz;11 = 0 then

L18 if to(i+ 1) =0 then z; — 0 elsez; «— 1, m «— my
L19 else ifm =1 andz;+1 = 1 then

L20 if t1(i+1)=1then z; «— 1 elsez; «— 0, m <— mo
L21 end for

L22 return (z1,...,%n)

Fig. 4. Algorithm MINLENGTH-COVER

series of negative and positive runs. et (71,75, ...,T,,) consider the maximum likelihood framework of 8llI-A and
be the resulting series. Let/ be the number of positive assume thap(o) # ¢(o) for all letterso € 3, and thus all
runs inJT: M = [m/2] or M = |m/2]. Clearly, the set scores are non-zero. If all letters are drawn from the unchanged
{T € T: w(T) > 0} is a maximal M-cover. In fact,M distribution p, then the expected value @f is (1 + 2(n —

is the cover size until which the score of maximal covers)u(1 — p)) wherep =3- 0>>q(g)p(0) is the probability
increases. After that point, maximal covers have the samfa negative score in an arbitrary position. In practice, it is
score as long as the positive runs can be split, and we arriikely that ;(1— ) is not negligible and thud/ = ©(n) with

to the cover{[i]: w; > 0}. Further increases in the cover sizéigh probability. In such a case Ak COvER-FAST may not
decrease the score, since negative scores need to be includeby much advantage over M COVER. In the examples of

The sequencd can be calculated i®(n) time. Applying bacterial genome segmentations in Sectiom V5 in the range
Theorem 2, we produce maximal covers of size less than of several hundreds of thousands to a few millions, Afyth is
one by one. In every step, we need to identify three consecutiypically 40-45%. At the same time, only up to a few hundred
segments;_1,T;, T;1 that can be merged at the expense afegments are interesting. A practical intermediate solution is
the smallest decrease in the cover score. Such a triple is fodadise one of the dynamic programming algorithms of §IV-B
by selecting for which the absolute valuey(75;)| is minimal. with a fairly permissible penalty to identify a maximal cover,
Algorithm MAx CovER-FAST shown in Fig. 5 implements the and then use that cover as the starting pgirih Line F1.
idea.

Lemma 4: Algorithm MaAx COVER-FAST finds a maximal Proof: [Lemma 4 An invariant that implies the correct-
K-cover if not all scores are zero, and it is invoked with 8€SS is that in Line FAJ alternates segments with posi-
K that is not larger than the numb@f of maximal positive tive and negative scores. In order to see that, notice that
runs. The algorithm can be implemented in such a way that’i‘?([ai,bi])’ < min{ w([aj,bj])‘: j=i+ 1} in Line F5.
terminates inO(n + M log M) time. Thus, w([a;_1,b;41]), w([a;_1,b;—1]), and w([a;y1,bir1])
MAXCOVER-FAST can be modified to find an optimalhave the same sign. The algorithm’s correctness now follows
cover C* for an arbitrary monotone increasing complexitfrom Theorem 2. A balanced search tree can be augmented
penalty function. Since maximal covers’ scores stop increasitw track the segments ifi. Elements ofJ are stored at the
at M, |€*| < M. The algorithm has to track the cover scoreree leaves, ordered by the absolute values of the scores.
at each merging operation in Line F5, the score decreasesorder to avoid selecting the first or the last segment in
by |w([a;, b;])|. Al maximal covers of size< M are inspected, Line F4, those two segments are stored with scates,
and the one maximizingo is reported at the end. Consepreserving only their scores’ signs. In addition, leaves are
quently, the optimal cover can be found@(n + M log M) equipped with pointers to preceding and succeeding segments.
time. It is thus possible to perform Line F4 i@ (log M) time, to

It is worth pointing out, thatdM = ©(n) is not unlikely, find neighboring segments i®(1) time, and to updater
in which case the running time ©(nlogn). For instance, in Line F5 in O(log M) time. Hence the algorithm runs



Algorithm MAXCOVER-FAST
Input: w; scores fori € [1,n], K cover size
F1 Let7 be the sequence of alternating maximal runs
F2 while {T' € T7: w(T) > 0}| > K do
F3 Il at this pointT = ([a1, bi1], [az, b2, . - ., [@m, bm]) Wherea; 41 =b; + 1
F4 Choosdas, b;] from T with minimum |w([a:, b:])], 1 <i < m
F5  SetT — TU{[ai—1,bit1]} \ {[ai-1, bi1], [ai, bi], [aig1, bita ]}
F6 return the set{T' € T: w(T) > 0}

Fig. 5. Algorithm Max COVER-FAST

in O(n + M log M) time. m the genome’s overall GC-content, and the 65% GC-content

in seven tRNA genes between positions 850000 and 870000.

V_ NON'COD|NG RNA GENES |NAT'R|CH THERMOPHILES Th|5 Iatter set was aISO used by [22] as the baSiS f0r the
- _ parameter settings. UsingA% COVER, we computed maximal

A freque_ntly_ used statl_stlc for DNA sequences 1s ®e- k-covers: see Fig. 6. The smallest maximal cover that includes
conter_lt Wh.'Ch IS th? relative frequency @c. (gqamne) and all tRNAs has sizé: = 38. That cover also includes all rRNAs,

(cytosine) in a region. In a recent application, GC—contegg well as RNase P RNA and SRP 7S (Signal Recognition

V\;ashused trc])'lde;\ec';l noS-codlpg RN:&SL genesldm g‘:"nomlgﬁrticle) genes. In addition, three novel genes of [8] are also
of thermophile Archaebacteria suc thanocaldococeus oy qed. The false positive rate can be assessed by the fact

jannaschii[8], [22]. The GC-content Of. transfer a_md rIbOSO'hat only two intervals overlap with protein-coding genes: Mj5
mal RNA genes strongly correlates with the optimal growt nd Mj8. The maximal6-cover contains all RNA genes of [8],

temperature of thermophile Prokaryotes [23]-[26]. The Iir]h luding Mj6a, not discovered by either the HMM or the

ear trend is broken at lower growth temperatures (aroug ding windows of [22]. The46-cover intersects only one
60°C) [27], and there does not seem to exist a similar depep- protein-coding gene than the-cover

dence for the genome-wide GC-content [2d]. jannaschiiis We evaluated different penalty functionsr (k) = 2k log n

a prime _candlda'Fe for identifying RNA genes by GC-_conte(r;JleLl) or r(k) = 2k(logn — log(2k)) (MDL2); Eq. 5b
alone, since while the GC-content of the genome is 31 AIMM2): and Eq. 4 for significancel{ = 0.1 and P = 0.01)
known RNA genes have a much higher GC-content of GCS?—_| » and =q. 9 A R
: . . : As shown in Fig. 6, the MDL penalties are too severe, and even
70%. Klein et al. [8] trained a two-state HMM in which the M seamentation stons @ — 0.01. There is no need to be
states modeled GC-poor and GC-rich regions. They compu{é'yl g ation stop R . . .
\@_ry conservative in this case, as the gene candidates identified

the most likely state sequence, in order to select a set of Gbg the segmentation are further analyzed by different methods.
rich segments. After filtering out known genes, they Selea?xccordingly we selected — 14 for the complexity penalty
the segments with a minimum length of 50, which resulted i valued ﬁ by Eq. (4)), and imposed a minimum segment
nine candidate RNA genes, denoted Mj1-Mj9. Th(_ey Valid"’lt(%yngth of 40. MINLI.ENGT,H-COVER finds a 48-cover, which
four of them by showing that they are transcribed. TheI cludes all known RNA genes (even Mj6a) fivé protein-
identified a fifth gene Mj6a, missed by the HMM, base !

on sequence similarity. Two candidates (Mj5 and Mjg) ar%Odmg genes, and the segment [334439,334485] not identified

o

. : - Dy either [22] or [8], which is classified as a pseudogene by
less likely to be RNA genes as they overlap with pUtatIVt%NAscan [29]. Eight candidates of [22] are not in the cover,

protein coding regions. Schattner [22] also used GC-conte
and other statistics to identify RNA genes i jannaschii as they score below4 (three of them have a score less than

He used a moving window, within which the Iog-likelihoodtwelve' corresponding to a P-value of at least 0.6).

was calculated using essentially the same equations as in §IIIWe carried out similar experiments with a number of ther-

A. In each position, starting with a window of 25 nucleotideé,nOphIIe Prokaryotes. I.n the maximum likelihood framewprk
the window was extended as long as its Sscore surpasse f 8l11-A, one can readily predict the success of gene finding.

pre-defined threshold, up to a length of 100 characters. faxpléftae:j F;ig?gg Oéf ngar?gegqéeéﬁeﬁ?sn Recﬁgr:gzzre;jegﬁlent
. h X )
extended window was reported as a changed segment, i ]J length ¢ has expected scor&(f) = (D where D —

reached the length of 40 nucleotides. This approach identifi (o) . .
19 candidates, denoted cnrl—cnr19. Four of these candid » 4(%)log 5 is the relative entropy between the dis-

correspond to those experimentally verified by [8], and twiiPutions. The thresholdmi, = «/D thus indicates the
additional ones are also found by the HMM screen. OABINIMUM detectable gene length. By this reasoning, we found

candidate (cnrl0) is the RNase P RNA gene [28]\of that among thermophiles for which whole genome sequences
jannaschii are availableN. equitang30], S. tokodaii31], S. solfataricus

We tested our algorithms oM. jannaschii (1.66 Mbp M. maripaludisand P. horikoshii have low/,,;, values (see
GenBank accessioNC_000909.1 ). Using Eq. (2), we err'1- Fig. 7), allowing for the detection of transfer RNAs and longer
ployed the scores); = —0.66 if the corresponding nucleotide RNA genes. S
was A (adenine),T (thymine), orw (weak), andw; = 0.72 We summarize here some initial findings. We found
for G, C, or S (strong). (An additional twelve positions with
ambiguous characters had score 0.) The scores are based ®han HMM is used, theog :E}):é; terms are negligible in Eq. (5a).
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Fig. 6. Segmentation dfl. jannaschii The right-hand side shows maximidcovers in increments of five. Horizontal grey bands correspond to covers,

and darker boxes indicate the segments. Vertical bars show RNA genes with known function (bottom) and those in [8] (top). (Distances between loci are
not drawn to scale: physical genomic coordinates are mapped to display coordinates by a piecewise logarithmic function.) The left-hand side plots the score
increaseAw(k) = w(Cx) —w(Cr—_1). The optimal cover for a linear penaltyis the last one wittAw(k) > «. Penalty policies: (MDL1) (k) = 2klogn,

(MDL2) r(k) = 2k(log n — log(2k)), (HMM) r defined by Eq. 5b, (BIC)(k) = klogn, (P=z) significance levelc.

Detectable segment lengths at P=0.1 produce no significant BLAST hits in Genbank. TBe sol-
fataricus genome RNC_002754.1 ) contains many repetitive
elements with a high GC-content. Our segmentation by a 116-
cover includes 68 transposons or transposases, and two hypo-
thetical protein-coding genes. All other segments are annotated
as RNA genes. Thes. tokodaiigenome KC_003106.2 )
contains many repetitive sequences. Its segmentation iden-
tifies all annotated RNA genes (including a tRNA that is
missed by tRNAscan), and includes 24 transposition-related
‘ sequences, and six hypothetical protein-coding genes. There
03 04 05 06 07 are eight unannotated segments, four of which are repeated
enome . . . . .
’ more than once in the genome. BLAST finds no similarities
Fig. 7. Length of detectable RNA genes in thermophiles. Genome G%Etween the remaining fohrsegments and known archaeal
content is shown on the X-axis, and tRNA GC-content is shown on the WNA sequences. We hypOth_eS|29 that they correspond to
axis. Organisms: Aaeo A. aeolicus Aful — A. fulgidus Aper —A. pernyx  non-coding RNA genes. A fifth segment [326016,326321]
Mjan — M. jannaschij Mkan — M. kandleri Mmar — M. maripaludis i i ; in- i
Mthe — M. thermoautotrophicumNequ —N. equitans Paby —P. abyssi overlaps in only 11 bp with .a hypothetical protein-coding
Paer —P. aerophilum Phor —P. horikoshij Ptor — P. torridus Ssol — 9€ne. Based on a structural a.“g'nment to known RNase P RNA
S. solfataricus Stok —S. tokodaii Taci - T. acidophilum Telo —T. elongatus  genes in Crenarchaea [28], it is very likely to be the so far
Tmar —T. maritimag Tten —T. tengcongensijsTthe —T. thermophilus Tvol unpublished RNase P RNA gene $h tokodaii(J. W. Brown
— T. volcanium We calculated GC-contents fd¥. equitans M. kandlerj .. . . . !
M. maripaludis P. aerophilum P. torridus S. tokodaii T. elongatus and Personal communication). Figure 8 shows its alignment to the
T. thermophilusfrom public genome sequences and annotations, and usedrresponding gene i8. solfataricus
the values computed by [26] for others. Lines show GC-content pairs for \j segmentation ofM. maripaludis (NC_005791.1 )
fmin = 75,150,300 at P = 0.1 and genome size of 2 Mbp. . . ; Lo )
gives only 16 GC-rich regions, one of which is unannotated,
but further inspection [29] reveals that it is likely to be
a Selenocysteine tRNA gene. Other structural RNA genes

that a maximal 58-cover of theN. equitans genome :
. such as RNase P [28] and SRP [32] can be located in
(NC_005213.1 ) includes all tRNAs found by tRNAscan [29] other thermophiles with a largef,,, based on GC-content

(even pseudogenes), all IRNAs, four protein-coding genes, ABne. For instance, a segmentation of thetengcongensis

12 unannotated segments. Seven of the unannotated Seé’m%ﬁome KIC_003869.1 ) includes the unannotated region

[1699151,1699436] which corresponds to the RNase P RNA
3The following segments: [221790,221843], [308960,309006],
[339411,339562], [427536,427595], [487434,487490], [487645,487722],*Segments [1322116,1322329] [2020954,2021005], [2089025,2089145],
[488412,488458]. and [2091849,2092094].
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Fig. 8. Comparison 08. solfataricusandS. tokodaiiRNase P RNA genes. solfataricusequence and structure are from the RNase P RNA database [28].
The S. tokodaiisequence is the segment [326014,326323] in the genome, found by ML segmentation. Secondary strugtuokddaiiis predicted from
alignment and covariation.

gene of the organism mentioned in the article [26]. results. Specifically, it may be the case that two changed
segments with large scores are separated by a short unchanged
VI. DISCUSSION segment, and all three get lumped together in one of the covers.

. ) Subsequent covers do not change the situation, regardless
We presented algorithms that calculate optimal COVers ag-he middle segment's score. For instan€é,includes all
cording to different criteria, in linear aO(nlogn) time for qiive scores in the example of Fig. 2. Theorem 3 shows that

an input of sizen. A relatively recent review [3] of DNA ayimal covers may give more sound segmentation results
segmentation methods considered the cover selection problgmy. 4o maximal chains. It is also worth pointing out that

based on [5], as one that can only be solved@n®) |,oking for a cover€ that maximizesw(C) — a|C|, wherew

time. Such a running time may be a serious drawback il st according to log-likelihood ratios, gives a symmetric
the analysis of long DNA sequences. In fact, optimal COVehtion in the sense that the role of changed and unchanged
problems with arbitrary, even non-additive, segment Scor”%%gments can be reversed. With the possible exception of
can be solved inO(n?) time. For instance, [33] ConSiderSsegments at the extremities ¢f, n] that can have scores
the problem pf finding a cover with minimum total Varianc%etween(—a) anda, an equally good segmentation is found

A k-cover with maximum score can be found by dynamig, .iher we use the scores of Eq. (2) or(—w;). Maximal
programming inO(n?k) time usingO(nk) space if a general chains do not exhibit a similar symmetry.

segment scoring function is used [33], [34].

A related problem, that of finding a maximahain of In addition to maximal chains, results related to maximal
covers, can be solved in linear time. A chain of covers movers are described by Huang [35], léhal. [36] and Zhang
formed by Gy, Cy,... where everyCy is a k-cover, and et al.[10]. A linear-time algorithm for finding a segment with
Cr C Cr4q for all k. A maximal chain of cover€j, Cy,... maximum score satisfying a minimum length requirement is
is defined recursively; = 0, and for everyk > 0, C; is given in [35]. A linear-time algorithm for finding a segment
a k-cover that has maximum score satisfyiGg_, C C;. with maximum score that satisfies both minimum and maxi-
In other words, successive elements are generated using anlym length restrictions is described in [36]. Lat al. [36]
Case (1) of Theorem 1. Ruzzo and Tompa [7] describe a linegive an algorithm that finds a segment with maximum average
time algorithm that finds the last} in which all segments score of some minimum length in O(nlogL) time. The
have positive scores. In the maximal likelihood framewor&lgorithm can be employed to find a chain of covers in which
of §llI-A, looking for a maximal chain may give unsatisfactorysegments have large average scores [37].
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Zhang et al. [10] examine the problem of producingMAXx CovER and the algorithms of 8IV-B can segment a DNA
pairwise sequence alignments without low-scoring regiorsequence of length usingn + O(1) bytes.
An alignment is viewed as a sequencerofcolumns, each Acknowledgmentst am very grateful to James W. Brown
assigned a score. The score of a subalignment, definedfbry confirming the identification of th&. tokodaiiRNase P
a segmenta,b] C [1,n] is the sum of its columns scoresgene and for computing its secondary structure. | found a
Disjoint subalignments thus form a cover. Standard alignmesitnpler version of Theorem 1 in collaboration withélk
procedures [38] have essentially the same shortcomings Szald: it appeared first, along with the Ak CovER algorithm,
maximal cover chains in that they may include subalignmerits my Masters thesis, written under the direction oak®r
of arbitrarily low score (termed the “mosaic effect” in [39]). InLugosi at the Technical University of Budapest in 1994.
order to avoid such situations, Zhargal. [10] propose that
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