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Abstract. We examine the problem of finding maximal-scoring sets of
disjoint regions in a sequence of scores. The problem arises in DNA and
protein segmentation, and in post-processing of sequence alignments.
Our key result states a simple recursive relationship between maximal-
scoring segment sets. The statement leads to an algorithm that finds such
a k-set of segments in a sequence of length n in O(nk) time. We describe
linear-time algorithms for finding optimal segment sets using different
criteria for choosing k, as well as an algorithm for finding an optimal
set of k segments in O(n log n) time, independently of k. We apply our
methods to the identification of non-coding RNA genes in thermophiles.

1 Introduction

Suppose that w1, w2, . . . , wn ∈ R is an arbitrary sequence of scores with n > 0.
A segment S is a set of consecutive integers: S = [a, b] = {a, a + 1, . . . , b}. The
score of a segment S is the sum of the scores indexed by the segment’s elements:
w(S) =

∑
i∈S wi. A classic example of algorithm design is Jon Bentley’s Pro-

gramming Pearl [1] for finding a segment with maximum score. Such a segment
can be found in linear time by scanning the scores once. This paper considers
a natural generalization of the maximum-scoring segment problem. Namely, we
are interested in finding k disjoint segments with maximum total score. A k-
cover C = {S1, . . . , Sk} is a non-intersecting family of segments. The score of a
k-cover C is the sum of its elements’ score: w(C) =

∑
S∈C w(S). It is useful to

define the indicator vector (z1, . . . , zn) of a cover C: zi = 1 if i ∈ ∪S∈CS and
zi = 0 otherwise. Using this notation, w(C) =

∑n
i=1 wizi. A k-cover is maximal

if it has maximum score among all k-covers. We define the 0-cover as the empty
set with score 0.

A cover may define a segmentation, which alternates high- and low-scoring
regions, i.e., segments within and outside the cover. Segmentation methods have
been extensively used in the analysis of protein and DNA sequences [2]. Various
scoring schemes permit the identification of charge clusters and hydrophobic pro-
files for proteins [3], determination of isochores in DNA sequences [4, 5], discovery
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of CpG islands [5, 6], and even gene finding [7]. Different methods include max-
imum likelihood estimation [4], Hidden Markov Models [8, 7], entropy-based [5],
and various “moving window” techniques. Segmentation methods are also used
to remove low-scoring regions from sequence alignments [9].

Our key result is Theorem 1, which states the incremental nature of maximal
covers. This theorem leads to an algorithm that finds a k-cover with maximum
score for k ≤ K in O(nK) time where K is an upper bound on the cover size.
Section 3 describes the algorithms for finding maximal covers using different opti-
mality criteria, as well as an algorithm for finding a maximal k-cover in O(n log n)
time. Section 4 deals with the problem of identifying GC-rich regions in AT-rich
genomes, which coincide with non-coding RNA genes in thermophiles. Section 5
discusses related results and concludes the paper.

Theorem 1. Let Ck be a maximal k-cover for k ∈ [0, n − 1]. There exists a
maximal (k + 1)-cover Ck+1 which satisfies one of the following conditions.

(1) There exists such a segment [a, b] that Ck+1 = Ck ∪ {[a, b]}; or
(2) there exist a, b, c, d ∈ [1, n] for which a ≤ c < d ≤ b, and Ck+1 = Ck ∪

{[a, c], [d, b]} \ {[a, b]}.

Theorem 2. Let Ck be a maximal k-cover for k ∈ [1, n]. There exists a maximal
(k − 1)-cover Ck−1 which satisfies one of the following conditions.

(1) There exists such a segment [a, b] ∈ Ck that Ck−1 = Ck \ {[a, b]}; or
(2) there exist a, b, c, d ∈ [1, n] for which a ≤ c < d ≤ b, and Ck−1 = Ck∪{[a, b]}\

{[a, c], [d, b]}.

Theorem 1 shows that Ck+1 is obtained either (1) by adding a new segment to Ck,
or (2) by removing the middle of a segment in Ck. By Theorem 2, the converse
is also true: a maximal (k − 1)-cover can be created from a k-cover by merging
two segments, or by removing one. Theorem 2 implies also that all maximal
covers can be produced by consecutive applications of operations (1) and (2) of
Theorem 1. The theorems’ proofs are omitted here due to space constraints. The
theorems have two immediate consequences. First, Corollary 1 below shows that
the score of maximal k-covers is a concave function of k. Secondly, Theorem 1
implies a simple algorithm for calculating successive maximal covers, which we
describe in §3.1.

Corollary 1. Let 1 < k < n. Let Ck−1, Ck, and Ck+1 be maximal (k − 1)-, k-,
and (k + 1)-covers, respectively. Then w(Ck+1)− w(Ck) ≤ w(Ck)− w(Ck−1).

Proof. Omitted. ut

2 Scores based on probabilistic models

2.1 Maximum likelihood estimation of segments

Let X1, . . . , Xn be a sequence of independent random letters from an alpha-
bet Σ = {σ1, . . . , σr}. The distribution of every Xi is one of two known dis-
tributions, specified by the probabilities p(σj) and q(σj). A changed segment



is a segment [a, b] of indices where P{Xi = σj} = q(σj) for all i ∈ [a, b]. A
segment [a, b] is unchanged if P{Xi = σj} = p(σj) for all i ∈ [a, b]. Maximum
likelihood estimation of changed segments turns into a maximal cover problem.
Let xi : i ∈ [1, n] be the observed values of Xi. Let C be a non-intersecting set
of hypothetical changed segments. Let z = (z1, . . . , zn) be the indicator vector
for C. The likelihood function is f

(
x

∣∣ z,p,q
)

=
∏n

i=1(p(xi))1−zi(q(xi))zi . Define

wi = log(q(xi))− log(p(xi)). (1)

(Throughout the paper, log denotes natural logarithm.) The log-likelihood can
be written as log f

(
x

∣∣ z,p,q
)

=
∑n

i=1 log p(xi) +
∑n

i=1 wizi. The first term is
the log-likelihood of the null hypothesis that there are no changed segments. The
second term is the log-likelihood ratio (LLR) of the alternative hypothesis defined
by C. Accordingly, a maximal k-cover maximizes the LLR among hypotheses
with k changed segments if the scores are set by Eq. (1).

-++++++--++++---++++--++++++-

k=3

k=2

Fig. 1. Maximal k-covers with minimum segment lengths m1 = 6 and m0 = 1. A ’+’
denotes wi = 1 and ’-’ denotes wi = −1. An equivalent scoring scheme is realized when
Σ = {0, 1}, and p(0) = 1− q(0) in Eq. (1).

Fu and Curnow [4] examine the problem of finding a k-set of changed seg-
ments that maximizes the LLR with restrictions on the minimum lengths of
changed and unchanged segments specified by thresholds m1 and m0, respec-
tively. Fu and Curnow state a theorem (with an incomplete proof) that is similar
to Theorem 1: “Given one set of best k segments [k-cover in our terminology],
we can find one set of best (k + 1) segments if it exists, by either adding the
best segment which does not overlap with any of the k best segments or by
splitting and expanding one of the best k segments.” Their claim, however, does
not seem to hold in general, as the relationship between maximal covers may be
complicated if a minimum length is imposed on the segments. Figure 1 shows
an example where more than one segment change between consecutive maximal
covers. Alternatively, if segments can be of arbitrary length, then by Theorem 1,
there is no need for expansions.

2.2 Selecting the cover size: complexity penalties

Unless it is warranted by the problem at hand, the reason for restricting segment
lengths is to avoid overfitting: the cover {[i, i] : wi > 0} maximizes the likelihood
but it hardly captures any meaningful pattern in the data. We suggest that one



should instead penalize the cover size. Define the complexity-penalized score of a
cover C by w̃(C) = w(C)− r(|C|) where r : N 7→ [0,∞) is a monotone increasing
penalty function. The optimal cover has maximum complexity-penalized score.
First we describe a penalty based on the minimum description length (MDL).
According to the MDL principle [10], one favors the cover C which minimizes the
length of encoding the data and C. Let z be the indicator vector for C. Given z,
every xi can be encoded in b(zi, xi) bits on average, where b(0, σ) = − log p(σ)
and b(1, σ) = − log q(σ). The cover itself can be specified by the endpoints
of its segments using 2|C| log2 n bits. The total codelength equals `(x,C) =∑n

i=1 b(zi, xi) + 2|C| log2 n = `(x, ∅)− w(C)−2|C| log n
log 2 . The MDL cover thus max-

imizes w(C) − 2|C| log n, and corresponds to the penalty r(k) = 2k log n. (A
more efficient encoding can rely on the fact that there are

(
n
2k

)
possible k-covers.

When k = o(n), a k-cover can be encoded in log2

(
n
2k

)
≈ 2k log2 n− 2k log2(2k)

bits. The corresponding penalty equals r(k) = 2k(log n− log(2k)).)

2.3 A penalty based on statistical significance

As an alternative to the MDL approach, a penalty can be defined based on sta-
tistical significance, measured by the probability that a segment has a large score
under the null hypothesis that there are no changed segments. The distribution
of the maximum segment score, i.e., the score w(1) of the maximal 1-cover, under
the null hypothesis has been extensively studied [11, 12]. Karlin et al. [12] prove
that w(1) → log n almost surely as n →∞, and that for all x,

lim
n→∞

P
{
w(1) − log n ≤ x

}
= exp

(
−Ce−x

)
, (2)

where C is independent of n and x, and is defined by a rapidly converging
infinite sum. (For the general case of assigning score uj to every letter σj with∑r

j=1 p(σj)uj < 0, w(1) → λ−1 log n where λ is the unique positive solution of∑r
j=1 p(σj) exp(λuj) = 1. When uj = log q(σj)

p(σj)
, λ = 1 is a solution.) This result

provides a means to select α, in order to search for the cover C that is optimal
according to a penalty function r(k) = αk. The following theorem characterizes
the segment scores in C.

Theorem 3. Fix α > 0, and let C = {[a1, b1], . . . , [ak, bk]} be a cover that max-
imizes w̃(C) = w(C)− α|C|. If C 6= ∅, then the following holds. For all i ∈ [1, k],
w([ai, bi]) ≥ α, and there does not exist a, b with ai < a ≤ b < bi and w([a, b]) <
−α. For all i ∈ [1, k − 1], if bi + 1 < ai+1, then w([bi + 1, ai+1 − 1]) ≤ −α.
For all i ∈ [0, k], there does not exist a, b for which bi < a ≤ b < ai+1 and
w([a, b]) > α, where b0 = 0 and ak+1 = n + 1.

Proof. Straightforward. ut

By Theorem 3, every changed segment in C has score at least α and no
subsegment of an unchanged segment has a score above α. Consequently, by
setting α = x + log n with an appropriately chosen x we can ensure that every



changed segment has significant statistical support, and that a maximal set of
such segments is selected. In particular, Eq. (2) implies that for large n, C is non-
empty with probability 1−exp(−Cne−α) under the null hypothesis. Accordingly,
for a given [small] 0 < p < 1, we can use

α ≥ log n + log
C

− log(1− p)
≈ log n + log

C

p
, (3)

in order to get a non-empty optimal cover with at most p probability. By switch-
ing the roles of changed and unchanged segments, a similar argument can be
made to measure the statistical support for unchanged segments.

2.4 Two-state Hidden Markov Models

Our last example of penalizing cover size is that of segmentation by a Hidden
Markov Model (HMM). Extending the maximum likelihood framework, we im-
pose that the random sequence X1, . . . , Xn is generated by a two-state HMM [8,
7]. The two states correspond to changed and unchanged segments. A run of the
HMM results in a state sequence Z1, . . . , Zn forming a Markov chain, and the
sequence of emitted characters X1, . . . , Xn. If Zi = 0, then Xi is drawn accord-
ing to the unchanged segments’ distribution p, otherwise it is drawn according
to q. The most likely state sequence z = (z1, . . . , zn) for a given observation
sequence x = (x1, . . . , xn) defines a segmentation of [1, n] into changed and
unchanged segments, i.e., segments where zi = 1 vs. segments where zi = 0.
Clearly, z is the indicator vector for a cover. The likelihood function equals
f
(
x

∣∣ z
)

= π(z1)
(∏n

i=1(p(xi))1−zi(q(xi))zi

)(∏n
i=2 τ(zi−1 → zi)

)
, where π are

the starting probabilities and τ are the transition probabilities for the states’
Markov chain. There exists a well-known method for finding the most likely
state sequence, known as the Viterbi algorithm [13], but formulating it as a
maximal cover problem enables us to consider further variations with restric-
tions on the number of state changes (§3.1) or on state durations (§3.2). The
LLR of a state sequence z (viewed as indicator for a cover C) with respect to
the null hypothesis that all zi = 0 can be written in the form

∑n
i=1 wizi − α|C|,

where

wi = log
q(σ)
p(σ)

+ log
τ(1 → 1)
τ(0 → 0)

+ δi; (4a)

α = − log
τ(0 → 1)
τ(0 → 0)

− log
τ(1 → 0)
τ(0 → 0)

+ log
τ(1 → 1)
τ(0 → 0)

, (4b)

and δi = 0 for every i ∈ [2, n − 1], otherwise it hides correction terms: δ1 =
− log τ(0→1)

τ(0→0) + log π(1)
π(0) and δn = − log τ(1→0)

τ(0→0) . Consequently, segmentation by
the most likely state sequence in a two-state HMM is an instance of finding an
optimal cover using linear complexity penalties.



3 Algorithms

3.1 An algorithm for finding a maximal cover

By Theorem 1, a maximal (k + 1)-cover can be found by updating a maximal
k-cover. For each k, one needs to find the segment that can be either added or
removed to increase the cover score by the largest amount. The idea is employed
by the algorithm MaxCover, which is an adaptation of Bentley’s algorithm [1].
(In fact, Bentley credits Joseph Kadane of CMU with the design.)

Algorithm MaxCover
Input: wi scores for i ∈ [1, n], K maximum cover size
Output: indicator vector for a k-cover with maximum score for 0 ≤ k ≤ K

C1 initialize zi ← 0 for i = 1, . . . , n
C2 for k ← 1, . . . , K do
C3 set i0 ← 1; w ← 0; S ← null; wmax ← 0
C4 for i← 1, . . . , n do
C5 if i > 1 and zi−1 6= zi then i0 ← i; w ← 0
C6 w ← w + wi //current candidate is [i0, i] with score w
C7 if (zi = 0 and w ≤ 0) or (zi = 1 and w ≥ 0) then i0 ← i + 1; w ← 0
C8 else if |w| > wmax then wmax ← |w|; S ← [i0, i]
C9 if wmax = 0 then return (z1, . . . , zn) else set zi ← 1− zi for all i ∈ S
C10 return (z1, . . . , zn)

The algorithm scans the scores wi once for every k ∈ [1,K] in Lines C4–
C8. For every k, the algorithm calculates the maximum increase wmax in cover
score that can be achieved by removing a sub-segment or adding a segment (the
segment S).

Lemma 1. The algorithm MaxCover finds a cover that has maximum score
among covers with at most K segments in O(nK) time.

Proof. The proof of the running time is straightforward. The proof of correctness
is analogous to that of [1]; it is omitted due to space constraints. ut

3.2 Algorithms for linear complexity penalties

Suppose that we want to find the cover C that maximizes the penalized score
w̃(C) = w(C)−α|C| with some α ≥ 0. The MDL approach of §2.1 sets α = 2 log n;
the statistical significance framework (setting α by Eq. (3)), and the HMM
approach of §2.4 also use linear penalty functions.

Let C0 = ∅,C1,C2, . . . be a series of maximal k-covers. By Corollary 1, a
cover C∗ maximizing w̃ is the first Ck for which w(Ck+1) − w(Ck) < α. It is
easy to modify MaxCover to find C∗. The only necessary change is in Line C9,
where z needs to be returned if wmax ≤ α. MaxCover then finds C∗ in O(nK)
time if it is invoked with K ≥ |C∗|. In what follows we develop a faster algorithm.

For all i ∈ [1, n], define W 0(i) as the maximum of w̃ for covers of [1, i] which
do not include i. Define W 1(i) as the maximum of w̃ for covers of [1, i] which do
include i.



Lemma 2. For all i > 1, W 0(i) = max{W 0(i − 1),W 1(i − 1)}, and W 1(i) =
wi + max{W 0(i− 1)− α, W 1(i− 1)}.

Proof. Straightforward by using the definition. ut

The lemma implies a dynamic programming algorithm. In case of the two-
state HMM, the algorithm is equivalent to the Viterbi algorithm [13]. We de-
sign a more general method that respects minimum segment length constraints.
Specifically, we want to find a cover that maximizes w̃ with the stipulation that
changed segments must have lengths at least m1 and unchanged segments must
have lengths at least m0.

For all j = 0, 1, m ∈ [1,mj ], and i ∈ [m,n], define C
j
i,m as covers of [1, i] that

maximize w̃ while satisfying the requirements for all segment lengths, except for
the last one: C0

i,m is a cover that ends with an unchanged segment of length at
least m, and C1

i,m ends with a changed segment of length at least m.

Lemma 3. Let W 0
short(i) = w̃(C0

i,1), W 0
long(i) = w̃(C0

i,m0
), W 1

short(i) = w̃(C1
i,1),

and W 1
long(i) = w̃(C1

i,m1
). For all i > 1, W 0

short(i) = max{W 0
short(i−1),W 1

long(i−
1)} and W 1

short(i) = wi+max{W 0
long(i−1)−α, W 1

short(i−1)}. For all i ∈ [m0, n],
W 0

long(i) = W 0
short(i − m0 + 1), and for all i ∈ [m1, n], W 1

long(i) = W 1
short(i −

m1 + 1) +
∑i

j=i−m1+2 wi.

Proof. Straightforward by using the definition. ut

Lemma 3 implies a dynamic programming algorithm (referred to as MinLength-
Cover), which finds an optimal cover subject to length restrictions. The algo-
rithm runs in O(n) time. The case α = 0 is equivalent to the original problem
of Fu and Curnow [4], that of finding a segmentation that satisfies the length
restrictions.

3.3 A fast algorithm for finding a maximal cover

So far we concentrated on computing maximal covers using Theorem 1 or select-
ing one cover using linear complexity penalties. It is also possible to calculate
maximal covers by employing Theorem 2. The main idea is to find the cover that
comprises all runs of positive scores and then produce smaller maximal covers
consecutively. Below we develop the idea formally. A segment [i, j] is a positive
run if w([i, j]) > 0 and for all k ∈ [i, j], wk ≥ 0. A segment [i, j] is a negative
run if w([i, j]) < 0 and for all k ∈ [i, j], wk ≤ 0. When not all scores are zero, we
can decompose [1, n] into an alternating series of maximal negative and positive
runs. Let T = (T1, T2, . . . , Tm) be the resulting series. Let M be the number of
positive runs in T. Clearly, the set {T ∈ T : w(T ) > 0} is a maximal M -cover.
In fact, M is the cover size until which the score of maximal covers increases.

The sequence T can be calculated in O(n) time. Applying Theorem 2, we
produce maximal covers of size less than M one by one. In every step, we need
to identify three consecutive segments Ti−1, Ti, Ti+1 that can be merged at the



expense of the smallest decrease in the cover score. Such a triple is found by se-
lecting i for which the absolute value |w(Ti)| is minimal. Algorithm MaxCover-
Fast shown here implements the idea.

Algorithm MaxCover-Fast
Input: wi scores for i ∈ [1, n], K cover size

F1 Let T be the sequence of alternating maximal runs
F2 for M = |{T ∈ T : w(T ) > 0}| downto K do
F3 // at this point T = ([a1, b1], [a2, b2], . . . , [am, bm]) where ai+1 = bi + 1
F4 Choose [ai, bi] from T with minimum |w([ai, bi])|, 1 < i < m
F5 Set T ← T ∪ {[ai−1, bi+1]} \ {[ai−1, bi−1], [ai, bi], [ai+1, bi+1]}
F6 return the set {T ∈ T : w(T ) > 0}

Lemma 4. Algorithm MaxCover-Fast finds a maximal K-cover if not all
scores are zero, and it is invoked with a K that is not larger than the number M
of maximal positive runs. The algorithm can be implemented in such a way that
it terminates in O(n + M log M) time.

Proof. (Sketch.) An invariant that implies the correctness is that in Line F4, T

alternates segments with positive and negative scores. In order to see that, notice
that

∣∣∣w([ai, bi])
∣∣∣ ≤ min

{∣∣∣w([aj , bj ])
∣∣∣ : j = i±1

}
in Line F5. Thus, w([ai−1, bi+1]),

w([ai−1, bi−1]), and w([ai+1, bi+1]) have the same sign. The algorithm’s correct-
ness now follows from Theorem 2. A balanced search tree can be augmented to
track the segments in T. Elements of T are stored at the tree leaves, ordered by
the absolute values of the scores. In order to avoid selecting the first or the last
segment in Line F4, those two segments are stored with scores ±∞, preserving
only their scores’ signs. In addition, leaves are equipped with pointers to preced-
ing and succeeding segments. It is thus possible to perform Line F4 in O(log M)
time, to find neighboring segments in O(1) time, and to update T in Line F5
in O(log M) time. Hence the algorithm runs in O(n + M log M) time. ut

MaxCover-Fast can be modified to find an optimal cover C∗ for an arbi-
trary monotone increasing complexity penalty function. Since maximal covers’
scores stop increasing at M , |C∗| ≤ M . The algorithm has to track the cover
score: at each merging operation in Line F5, the score decreases by |w([ai, bi])|.
All maximal covers of size ≤ M are inspected, and the one maximizing w̃ is
reported at the end. Consequently, the optimal cover can be found in O(n log n)
time.

4 Non-coding RNA genes in AT-rich thermophiles

A frequently used statistic for DNA sequences is the GC-content, which is the
relative frequency of G and C in a region. In a recent application, GC-content
was used to detect non-coding RNA genes [7, 14] in genomes of thermophile Ar-
chaebacteria such as Methanocaldococcus jannaschii. The optimal growth tem-
perature of thermophile Prokaryotes strongly correlates with the GC-content of



transfer and ribosomal RNA genes [15–17]. (For the genome-wide GC-content,
however, there does not seem to exist a similar dependence [17].) M. jannaschii
is a prime candidate for identifying RNA genes on GC-content alone, since while
the GC-content of the genome is 31%, known RNA genes have a much higher
GC-content of 60–70%. Klein et al. [7] trained a two-state HMM in which the
states modeled GC-poor and GC-rich regions. They computed the most likely
state sequence, in order to select a set of GC-rich segments. After filtering out
known genes, they selected the segments with a minimum length of 50, which
resulted in nine candidate RNA genes, denoted Mj1–Mj9. They validated four
of them by showing that they are transcribed. They identified a fifth gene Mj6a,
missed by the HMM, based on sequence similarity. Two candidates (Mj5 and
Mj8) are less likely to be RNA genes as they overlap with putative protein cod-
ing regions. Schattner [14] also used GC-content and other statistics to identify
RNA genes in M. jannaschii. He used a moving window, within which the log-
likelihood was calculated using essentially the same equations as in §2.1.

We tested our algorithms on M. jannaschii (1.66 Mbp, GenBank accession
NC_000909.1). Using Eq. (1), we employed the scores wi = −0.66 if the corre-
sponding nucleotide was A or T, and wi = 0.72 for G or C. The scores are based
on the genome’s overall GC-content, and the 65% GC-content in seven tRNA
genes between positions 850000 and 870000. Using MaxCover, we computed
maximal k-covers: see Fig. 2. The smallest maximal cover that includes all tR-
NAs has size k = 38. That cover also includes all rRNAs, as well as RNase P
RNA and SRP 7S (Signal Recognition Particle) genes. In addition, three novel
genes of [7] are also included. The false positive rate can be assessed by the fact
that only two intervals overlap with protein-coding genes: Mj5 and Mj8. The
maximal 46-cover contains all RNA genes of [7], including Mj6a, not discovered
by either the HMM or the sliding windows of [14].

We evaluated different penalty functions r: r(k) = 2k log n (MDL1) or r(k) =
2k(log n− log(2k)) (MDL2); Eq. 4b (HMM1); and Eq. 3 for significance (P = 0.1
and P = 0.01). As shown in Fig. 2, the MDL penalties are too severe, and even
HMM segmentation stops at P = 0.01. There is no need to be very conservative
in this case, as the gene candidates identified by the segmentation are further an-
alyzed by different methods. Accordingly, we selected α = 14 for the complexity
penalty (P-value 0.11 by Eq. (3)), and imposed a minimum segment length of 40.
MinLength-Cover finds a 48-cover, which includes all known RNA genes (even
Mj6a), five protein-coding genes, and the segment [334439,334485] not identified
by either [14] or [7], which is classified as a pseudogene by tRNAscan [18].

We carried out similar experiments with a number of thermophile Prokary-
otes. In the maximum likelihood framework of §2.1, one can readily predict the
success of gene finding. A linear penalty α set by Eq. (3) can be compared
to expected scores of changed segments. A changed segment of length ` has
expected score E(`) = `D where D is the relative entropy between the distribu-
tions. The threshold `min = α/D thus indicates the minimum detectable gene
lengths. By this reasoning, we found that among thermophiles for which whole

1 If an HMM is used, the log τ(1→1)
τ(0→0)

terms are negligible in Eq. (4a).
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Fig. 2. Segmentation of M. jannaschii. The right-hand side shows maximal k-covers
in increments of five. Horizontal grey bands correspond to covers, and darker boxes
indicate the segments. Vertical bars show RNA genes with known function (bottom)
and those in [7] (top). (Locations are mapped to display coordinates by a piecewise
logarithmic function.) The left-hand side plots the score increase ∆w(k) = w(Ck) −
w(Ck−1). The optimal cover for a linear penalty α is the last one with ∆w(k) ≥ α.

genome sequences are avaiilable, N. equitans [19], S. tokodaii [20], S. solfatari-
cus, M. maripaludis and P. horikoshii have low `min values. The analysis of the
results is in progress, and is beyond this paper’s scope. We summarize here some
initial findings. We found that a maximal 58-cover of the N. equitans genome
(NC_005213.1) includes all tRNAs found by tRNAscan [18] (even pseudogenes),
all rRNAs, four protein-coding genes, and 12 unannotated segments. Seven of
the unannotated segments2 produce no significant BLAST hits in Genbank. The
S. tokodaii genome (NC_003106.2) contains many repetitive sequences. Its seg-
mentation identifies all annotated RNA genes (including a tRNA that is missed
by tRNAscan), and includes 24 transposition-related sequences, and six hypo-
thetical protein-coding genes. There are eight unannotated segments, four of
which are repeated more than once in the genome. BLAST finds no similari-
ties between the remaining four3 segments and known archaeal DNA sequences.
We hypothesize that they correspond to non-coding RNA genes. A fifth seg-
ment [326016,326321] overlaps in only 11 bp with a hypothetical protein-coding
gene. Based on a structural alignment to known RNase P RNA genes in Cre-
narchaea [21], it is the so far unpublished RNase P RNA gene in S. tokodaii
(J. W. Brown, personal communication).

2 The following segments: [221790,221843], [308960,309006], [339411,339562],
[427536,427595], [487434,487490], [487645,487722], [488412,488458].

3 Segments [1322116,1322329] [2020954,2021005], [2089025,2089145], and
[2091849,2092094].



5 Discussion

We presented algorithms that calculate optimal covers according to different
criteria, in linear or O(n log n) time for an input of size n. Even a recent review [2]
of DNA segmentation methods considered the cover selection problem, based
on [4], as one that can only be solved in O(n2) time. Such a running time may
be a serious drawback in the analysis of long DNA sequences.

A related problem, that of finding a maximal chain of covers, can also be
solved in linear time. A chain of covers is formed by C0,C1, . . . where every Ck

is a k-cover, and Ck ⊂ Ck+1 for all k. A maximal chain of covers C∗0,C
∗
1, . . .

is defined recursively: C∗0 = ∅, and for every k > 0, C∗k is a k-cover that has
maximum score satisfying C∗k−1 ⊂ C∗k. In other words, successive elements are
generated using only Case (1) of Theorem 1. Ruzzo and Tompa [6] describe a
linear-time algorithm that finds the last C∗k in which all segments have positive
scores. In the maximal likelihood framework of §2.1, looking for a maximal chain
may give unsatisfactory results. Specifically, it may be the case that two changed
segments with large scores are separated by a short unchanged segment, and all
three get lumped together in one of the covers. Subsequent covers do not change
the situation, regardless of the middle segment’s score. In Fig. 1, all positive
scores are included in C∗1. Theorem 3 shows that maximal covers may give more
sound segmentation results than do maximal chains.

Zhang et al. [9] examine the problem of producing pairwise sequence align-
ments without low-scoring regions. An alignment is a sequence of n columns, each
assigned a score. The score of a subalignment, defined by a segment [a, b] ⊆ [1, n]
is the sum of its columns scores. Disjoint subalignments thus form a cover. Stan-
dard alignment procedures [22] have essentially the same shortcomings as maxi-
mal cover chains in that they may include subalignments of arbitrarily low score.
In order to avoid such situations, Zhang et al. [9] propose that low-scoring regions
should be removed from the alignment. In particular, they aim to find a cover C,
for which no subsegment of a S ∈ C has score less than−X for a threshold X ≥ 0.
They prove that such covers for decreasing values of X form a hierarchy similar
to that of maximal covers described by Theorems 1 and 2. They also provide
a linear time algorithm implied by the hierarchy that finds such a cover for a
given X. In light of Theorem 3, such covers are succinctly characterized by a
linear penalty function r(k) = Xk. We pointed out the connection between the
threshold X and various statistical notions of complexity, as well as the interpre-
tation of the optimal cover as the most likely state sequence in a Markov model.
Penalized-Cover offers a simple, efficient alternative to the algorithm of [9]
for eliminating low-scoring regions from alignments. MinLength-Cover also
provides the option of imposing minimum subalignment lengths.
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