
Rapid homology search with neighbor seeds∗

Miklós Csűrös† Bin Ma‡

December 8, 2005

Abstract

Using a seed to rapidly “hit” possible homologies for further scrutiny
is a common practice to speed up homology search in molecular se-
quences. It was shown that a collection of higher weight seeds have
better sensitivity than a single lower weight seed at the same speed.
However, huge memory requirements diminish the advantages of high
weight seeds. This paper describes a two-stage extension method,
which simulates high weight seeds with modest memory requirements.
By drawing upon the previously studied ideas of vector seed and mul-
tiple seeds, we introduce neighbor seeds, which are implemented using
two-stage extension. Neighbor seeds provide the flexibility to maximize
the independence between the seeds, which is a well-known criterion
for optimizing sensitivity. A major advantage of neighbor seeds is that
they all rely on the same pre-built database index. Based on consider-
ations of sensitivity and biological adequacy, different neighbor seeds
can be used for different queries without rebuilding the index. The pa-
per also discusses some other practical techniques to reduce memory
usage.

Key words: bioinformatics; local alignment; hit-and-extend.
∗This work was supported by grants from the Natural Sciences and Engineering Re-

search Council of Canada, the Fonds québécois de la recherche sur la nature et les tech-
nologies, and a Canada Research Chairs program. A preliminary version [1] was presented
at the COCOON conference, August 16–19, 2005, Kunming, China.

†Department of Computer Science and Operations Research, Université de Montréal,
C.P. 6128, succ. Centre-Ville, Montréal, Qué., Canada, H3C 3J7. E-mail:
csuros@iro.umontreal.ca.

‡Department of Computer Science, University of Western Ontario, London, Ont.,
Canada, N6A 5B7. E-mail: bma@csd.uwo.ca

1

1 Introduction

An important task in the analysis of molecular sequences is the search for
local alignments, formed by pairs of substrings from two sequences, which
score high according to some string similarity metric. Local alignments are
the “unit operations” in comparative genomics [2], where sequence conser-
vation and lack of it are used to reason about evolutionary relationships
and biological function. For instance, even alignments between different
species’ genomes [3, 4] rely on anchors, which are local alignments between
the genomes that restrict the search space for whole-genome alignments.

The importance of the local alignment problem led to a large body of
research, starting in the early 1980s with the algorithm of Smith and Wa-
terman [5], later improved by Gotoh [6]. The Smith-Waterman-Gotoh algo-
rithm uses dynamic programming to find all local alignments scoring above
a fixed threshold in O(|S| · |T |) time for two sequences S and T over a fi-
nite alphabet Σ. For genomic sequences, Σ is the DNA alphabet of size 4.
While its speed can be improved by a logarithmic factor [7], a full sensi-
tivity search that involves sequences with several million letters cannot be
carried out in a reasonable time frame. For large alignment problems, other
solutions are needed that may sacrifice some sensitivity for speed, i.e., that
may miss some local alignments but run reasonably fast. Heuristic search
programs such as FASTA [8] and BLAST [9] were introduced at the end of
the 1980s. They rely on the so-called hit-and-extend heuristic, which can
be implemented using hashing and lookup tables, introduced in this con-
text by Wilbur and Lipman [10]. The majority of modern local alignment
programs [11, 12, 13, 14, 15] exploit some variant of this idea. Some recent
alternatives are based on suffix trees [16, 17].

This paper concentrates on hit-and-extend methods. Hit-and-extend
methods rely on a hash function h : Σ` → {0, . . . ,H − 1}. Local alignments
are found by first identifying hits, which are pairs of positions (i, j) where
h(S[i..i+ `− 1]) = h(T [j..j + `− 1]). The most obvious choice for hashing is
to use the identity function, when hits are defined by identical substrings of
length `, called `-mers. In fact, this strategy is used by homology programs
such as BLAST. All the hits can be found efficiently by using a lookup
table that stores the occurrence lists Occ(g) = {i : h(S[i..i + `− 1]) = g} for
every key g. Subsequently, hits are detected and extended by consulting the
occurrence list for h(T [j..j + ` − 1]) in each position j. Figure 1 outlines
this concept. This strategy is often called “seeding” and the hash function
or its representation is called as a seed. The sensitivity of a seed measures
its ability to hit a homology, and the specificity of a seed characterizes its

2

Algorithm Hit-and-extend

Input sequences S, T ; hash function h : Σ` → {0, . . . ,H − 1}
H1 for i = 1, . . . , |S| − ` + 1 do

H2 set g ← h(S[i..i + `− 1])

H3 add i to the list Occ(g)

H4 end for

H5 for j = 1, . . . , |T | − `− 1 do

H6 set g ← h(T [j..j + `− 1])

H7 process hits (i, j) : i ∈ Occ(g)

H8 end for

Figure 1: Basic hit-and-extend procedure. Algorithm Hit-and-extend
outlines the method. Hits are extended in Line H7 by exploring the dynamic
programming table around the hits.

ability to filter out a random region.
It was recently discovered [14] that spaced seeds provide very good sen-

sitivity and specificity. A spaced seed is defined by a set S = {s1, . . . , sk} ⊆
{1, . . . , `}. In practice, a spaced seed is often denoted by the character-
istic vector for the set, defined as the length-` binary string in which the
bits at the positions specified by the seed have value 1. The correspond-
ing hash function concatenates the characters in positions specified by the
seed, and encodes the resulting string u[s1] · u[s2] · · ·u[sk] by an integer
in the range {0, . . . , |Σ|k − 1}. Such a seed is called an (`, k)-seed, and has
weight k. The initial discovery led to a number of results on selecting spaced
seeds [18, 19, 20] in various statistical or empirical alignment models. Ad-
ditional references with a thorough discussion are offered in [21]. Spaced
seeds or similar indexing constructs have been studied also in the contexts
of lossless filtration [22, 23] and sequencing by hybridization [24].

There exist several generalizations of spaced seeds, which include mul-
tiple seeds [15, 25], and vector seeds [12, 26]. Multiple seeds are a set of
carefully selected spaced seeds S1, . . . , SM . The set of hits for such a set
is the union of the hits found by every single seed: hm(S[i..i + ` − 1]) =
hm(T [j..j + ` − 1]) for at least one m = 1, . . . ,M . A vector seed is defined
by a vector of non-negative weights (w1, . . . , w`) and a threshold t: there is
a hit at (i, j) if t ≤

∑`
δ=1 wδI{S[i+ δ−1] = T [j + δ−1]}, where I{C} is 1 if

3

and only if condition C is true, otherwise it is 0. (The slightly more general
definition of [26] allows for a scoring matrix.) In Section 3 we will show that
a vector seed can be viewed as a well-structured set of multiple seeds.

The time complexity increase of using multiple seeds can be offset by
using higher-weighted seeds. It was shown that higher-weighted multiple
seeds and vector seeds may offer superior sensitivity [15, 26] to that of a
single seed at the same specificity. However, they can hardly reach their
theoretical potential due to their memory requirements. In case of multiple
seeds [15], a lookup table is constructed for every seed. Vector seeds rely
on a hash table for the spaced seed defined by the positions with non-zero
weights. As a consequence, memory usage is exponential in the number
of positive weights. Vector seeds with widely varying weighting schemes
proved prohibitive due to their demands on memory. In [26], vector seeds for
genomic sequences are restricted to those with weights 0, 1, or 2, permitting
at most two mismatches.

We first propose in Section 2 a novel two-stage extension procedure that
improves the efficiency of hit-and-extend methods. Rather than being a
trivial heuristic, extensive optimization is needed to maximize the sensitivity
of the two-stage extension. The concept of neighbor seeds is introduced in
Section 3. Neighbor seeds combine the advantages of the multiple seeds,
vector seed and two-stage extension; and allow us to attain or surpass the
sensitivity and speed of multiple and vector seeds, and pose only modest
demands on memory. Section 4 briefly explores some practical techniques of
space reduction, which include an implementation of 11-mer based hashing
with 1.5 bytes per base pair for the purposes of comparing mammalian-sized
genomes. Section 5 concludes the paper.

2 Two-stage extension

Since the introduction of spaced seeds, there has been much work on finding
variants of hit conditions and hash functions to gain better sensitivity and
specificity. In this section we scrutinize the extension instead.

2.1 Terminologies

Our goal is to detect local alignments [27] between two input sequences,
S and T . A local alignment involves two substrings S[i..i′] and T [j..j′]
which exhibit a large similarity, according to some similarity metric be-
tween strings. Often gaps are inserted to S and T to make the two strings
similar. In practice, however, a gapped alignment usually consists of several

4

Algorithm X-drop

Input S, T ; start (i, j); allowed drop X

X1 set s← 0;max← 0

X2 while s > max−X, i ≤ |S|, j ≤ |T | do

X3 if S[i] = T [j] then s← s + 1 else s← s− 1

X4 if s > max then set max← s

X5 set i← i + 1; j ← j + 1

X6 end while

X7 report max

Figure 2: X-drop is a popular extension algorithm, used in BLAST [9, 11]
and many other alignment programs. The extension is shown only in the
forward direction. An analogous extension process is carried out in the
backward direction where i and j decrease by 1 in every step.

long gapless alignment. Therefore, most homology search programs perform
gapped alignment only if a high-scoring gapless alignment is found. For this
reason, we restrict our attention to gapless local alignments in this study.

For simplicity, we consider the alignment scoring policy that rewards an
identity with +1 and penalizes a mismatch with −1. In other words, the
matching score of S[i..i+k] and T [j..j+k] is

∑k
l=0 µ(S[i+l], T [j+l]) where µ

is such that

µ(a, b) =

{
1 if a = b;
−1 if a 6= b.

Without loss of generality, each local alignment between S[i..i + n − 1]
and T [j..j + n − 1] can be thus represented by a 0-1 string R of length n,
where R[k] = 1 if and only if S[i+ k− 1] matches T [i+ k− 1]. Let n′ be the
number of ones in R, called the weight of R. Then the score of the alignment
is (2n′ − n); the similarity of the local alignment is the ratio n′/n.

If S[i..i+n−1] and T [j..j +n−1] are random unrelated sequences, then
the similarity is expected to be β =

∑
a∈Σ p(a)q(a), where p(a) and q(a)

are the background frequencies for the letter a in the two sequences. For
DNA sequences with alphabet size 4, β = 1

4 if the letter occurrences are
uniform random in at least one of S and T . For simplicity, we mostly focus
on such a model of random sequences. Nonetheless, the analyses can be
easily extended to arbitrary background frequencies.

5

A heuristic local alignment method can be assessed by evaluating its
specificity and sensitivity. Specificity is measured by the average running
time on random unrelated sequences. Sensitivity is measured by the proba-
bility of detecting a homology under a probabilistic model of homologies.

There are two commonly used probabilistic models of homologies. The
first such model, called the Bernoulli model was introduced in [14]: it im-
poses that local alignments are created by independent equiprobable sub-
stitutions. In other words, R is a sequence of independent and identically
distributed Bernoulli variables. Another random model of homology is the
uniform model : R is uniformly drawn from binary sequences of equal length
and equal number of ones.

For a given spaced seed, computing the probability that it generates a
hit in a homology region is NP-hard in the Bernoulli model [28], as well as
in the uniform model [29].

2.2 Time complexity of the classic hit-and-extend method

The usual extension method X-drop extends a hit in each of the two di-
rections along the diagonal until the score drops by a specified amount. In
each direction, the position where the maximum score is reached is recorded
and gives the boundary of the gapless local alignment. Figure 2 shows the
X-drop procedure in one direction.

If we ignore the border effects, the average running time of a hit-and-
extend method for random sequences is f × t × |S| × |T |, where f is the
probability of a hit at a fixed position pair (i, j), and t is the average time
spent on a hit extension. The probability f is called the false positive rate
in [26]. In what follows, we analyze t more closely for the X-drop algorithm
of Fig. 2. In Line X3, the score decreases with an expected value of (1−2β)
in each step. The extension should thus stop after around X/(1−2β) steps.
The following lemma formalizes this argument.

Lemma 1. Suppose that β < 1/2 holds for the match probability, and X-
drop is invoked with a positive integer X. Let N = min{|S|, |T |}. If τ
denotes the number of times the loop body X3–X5 is executed, then

lim
N→∞

Eτ =
X − β

(
1−

(β
1−β

)X
)

1− 2β
=

X −
∑X

t=1

(β
1−β

)t

1− 2β
. (1)

Proof. Let Y1, Y2, . . . be the series of ±1-valued random variables that track
the changes of the score s in Line X3 so that s =

∑t
δ=1 Yδ after t comparisons.

Formally, Yδ = 1 if S[i + δ − 1] = T [j + δ − 1], otherwise Yδ = −1, and

6

let s(t) =
∑t

δ=1 Yδ. Clearly, {Yδ} are independent and identically distributed
random variables with expected value EY = −(1 − 2β), and s(t) form a
simple random walk. Since the number τ is a stopping time for Y1, Y2, . . . ,
Wald’s Equation applies [30]:

Es(τ) = (EY)(Eτ). (2)

We need therefore to determine Es(τ), the expected final value of the score s
when the condition fails in Line X2. The key idea is to consider ladder points
[31] which are the places where max is updated in Line X4. Specifically, the
ladder points τ0 = 0, τ1, τ2, . . . are defined in the following manner. For
every m > 0, τm = min{t : s(t) = m}, with the convention that if s(t)
never reaches m, then τm = ∞. Let L be the maximum value of s(t)
before the score drops by X for the first time: L = min{m : s(t) = m −
X for some τm < t < τm+1}. The stopping time is τ = min{t : τL < t, s(t) =
L − X}. Consequently, s(τ) = L − X and the value max = L is returned
at the end of the extension. We need to compute EL to obtain Eτ through
Eq. (2). Consider the probability P{L > 0}. It equals the probability that
the random walk s(t) attains the value 1 before −X. By standard results
on random walks [30], this probability equals ρ = α−X−1

α−X−1−1
with α = β

1−β .
Since {Yδ} are independent, the distribution of L is a (shifted) geometric
distribution, and thus P{L = m} = (1 − ρ)ρm for all m ∈ N. Hence,
EL = ρ

1−ρ = α
1−α(1− αX). By Eq. (2),

Eτ =
X − EL

1− 2β
=

X − α
1−α(1− αX)
1− 2β

,

and Eq. (1) follows by plugging in the value of α.

Corollary 1. If the alphabet is of size 4 and one of the sequences is uniform
random, then β = 1

4 , and the expected number of comparisons at a hit is 4X−
2 + o(1).

Proof. Substituting 1
4 for β in Lemma 1, Eτ = 2X−1+3−X . Noticing that

the extension is done in both directions, the corollary is proved.

With a typical choice X = 16, a hit extension entails approximately 62
character comparisons on average.

2.3 Two-stage hit extension

In this section we propose the following two-stage extension process, and
show that this seemingly simple idea is in fact nontrivial and makes a big

7

difference to the sensitivity. Let S = {s1, . . . , sk} be an (`, k)-seed, and let
S′ = {s′1, . . . , s′m} be a set of positive integers with S∩ S′ = ∅. Furthermore,
let 0 < t ≤ m be a threshold. The triple (S, S′, t) defines a relaxed seed
employed in the following manner. Hits are found as if the spaced seed S

were used. When a hit is found, the positions of S′ are tested, and the full
extension is performed if at least t matches are found. In particular, let (i, j)
be a hit position. Full extension is performed only if S[i+s′−1] = T [j+s′−1]
for at least t choices of s′ ∈ S′. A relaxed seed may significantly increase
the specificity, which can be seen in Theorem 1. As we will see in Table 1,
the sensitivity of a relaxed seed varies very much for different choices of S′

even with the same size and threshold. Therefore, the optimization of the
positions in S′ should be done together with S.

Theorem 1. Suppose that the two-stage extension method is employed with
|S′| = m. Let b(m, t) =

∑m
i=t

(m
i

)
(1
4)i(3

4)m−i. The average number of
character comparisons performed during a bi-directional hit extension is
C =

(
m + b(m, t)(4X − 2)

)
+ o(1).

Proof. The preliminary test on S′ compares m pairs of characters. A full ex-
tension is performed with probability b(m, t) ≤ 1. A full extension performs
an average of 4X − 2 + o(1) comparisons by Corollary 1.

The sensitivity of a relaxed seed is assessed in the following manner.
Let R be a binary representation of a homology region. In order to have a
hit with the relaxed seed (S, S′, t), R has to contain a substring u such that
∀s ∈ S : u[s] = 1 and

∑m
j=1 u[s′j] ≥ t. The sensitivity is defined to be the hit

probability under a specific probabilistic model for homologies such as the
Bernoulli or uniform model. Since spaced seeds can be considered as special
cases of relaxed seeds, it is NP-hard to compute the sensitivity of a relaxed
seed.

Theorem 2. Computing the sensitivity of a relaxed seed is NP-hard in the
Bernoulli and uniform models.

Proof. Let (S, S′, t) be a relaxed seed with t = |S′|. Then the relaxed seed is
equivalent to the spaced seed S ∪ S′. Computing the sensitivity is NP-hard
in both models [28, 29].

We pose as an open problem to prove the NP-hardness of the problem
for a fixed threshold t < |S′|.

Known exponential-time algorithms for computing the sensitivity of spaced
seeds in the uniform [32] and in the Bernoulli [18, 20] models can be readily

8

Seed & threshold Sens. (u) Sens. (B) C T
111001001001010111 0.618 0.594 62 4
111010010100110111 0.451 0.467 62 1
1111111111 0.391 0.412 62 4
111xx1xx1x01010111x 3 0.555 0.551 14.50 0.94
x1110x10x10x1010111 2 0.550 0.548 20.22 1.30
111001001001010111xxxx 2 0.528 0.535 20.22 1.30

Table 1: Comparison of some relaxed and spaced seeds. Relaxed seeds are
encoded by 0–1–x strings: position i has 1 if it is in S, and it has x if it is
in S′. Sensitivity (Sens.) is calculated for homology regions of length 64 at
70% similarity in the Bernoulli (B) model, and with 19 mismatches in the
uniform (u) model. Column C shows the expected number of comparisons
in hit extension, when X = 16, and column T lists the expected time spent
on finding and extending hits, defined as C times the false positive rate. T is
normalized for weight-11 seeds. The two spaced seeds are the most sensitive
weight-10 and weight-11 seeds under Bernoulli models. (Notice that they
are much better than a 10-mer.) The table also lists some relaxed seeds.
Notice that the placement of relaxed positions has a non-negligible effect on
sensitivity.

adapted to relaxed seeds. As an alternative, one can convert a relaxed seed
to an equivalent set of multiple seeds and compute the sensitivity by em-
ploying the algorithm in [15] that calculates the sensitivity of an arbitrary
set of seeds.

Table 1 compares relaxed and spaced seeds. It turns out that the sen-
sitivity of a (k − 1)-weight seed can be approached while the running time
stays close to that of a weight-k spaced seed. It is noteworthy that the last
two seeds, x1110x10x10x1010111 and 111001001001010111xxxx have the
same S, same size |S′| and same threshold t. At the same time, they have
very different sensitivities. The example demonstrates that the two-stage
extension is not a trivial extension heuristic. Indeed, it can be fully profited
of only after a meticulous optimization step, in which the threshold and
the relaxed positions are selected. This observation is epitomized by the
extreme case of a relaxed seed (S, S′, t) where t = |S′|. This relaxed seed is
equivalent to the spaced seed S∪S′, and the necessity to optimize the spaced
seed is well-known [14].

Although no efficient algorithm is known to find the optimal spaced seed,
it was argued in [28] that finding one optimal spaced seed in the Bernoulli
model is unlikely to be NP-hard, because the language that defines the

9

problem is sparse. The same argument can show that finding the optimal
relaxed seed (S, S′, t) for Bernoulli or uniform homology regions is unlikely
to be NP-hard. However, the problem of finding the optimal S′ for given S,
|S′| and t does not correspond to a sparse language anymore and could be
intractable.

2.4 Implementation and memory usage

The data structure for the basic algorithm of Fig. 1 has to support the
operation Add(g, i) that records the position i as one belonging to Occ(g),
and the operation reportAll(g) that returns the list Occ(g). For a spaced
seed with weight k, a rather straightforward implementation was introduced
in [14]. An integer array, head, of length 4k was used to record the first
occurrence of each hash value. Then another integer array, next, of length
|S| is used to retrieve all the other occurrences. next[i] records the next
occurrence of the same hash value as position i. The two arrays head and
next form a hash table that requires memory for (4k + |S|) integers. In a
direct manner, a relaxed seed (S, S′, t) can be implemented by relying on the
hash table for the spaced seed S.

3 Neighbor seeds

In this section we propose the neighbor seeds idea which elegantly combines
the advantages of the multiple seeds [15], vector seeds [12, 26], and the
two-stage extension introduced in Section 2.

It has been known that a spaced seed performs better than a consecutive
seed with the same weight because the hit positions are more independent
for the spaced seed [14, 28]. That is, for spaced seeds, different positions do
not easily hit together (“wasting” hits) or fail together (missing the region
entirely). Multiple spaced seeds perform even better by adding another level
of independence between the hits of different seeds [15]. While significant
improvement on sensitivity was obtained, the necessity of producing multiple
hash tables and/or parsing the sequence multiple times greatly limited the
number of seeds a search can use.

Vector seeds were proposed in [26], independently from multiple seeds.
They are also very effective for improving sensitivity. Although the sensi-
tivity cannot compare with multiple seeds at the same specificity, vectors
seeds enjoy the advantage that only one hash table is needed.

We make the observation that every vector seed corresponds to a par-
ticular set of ordinary spaced seeds defined as follows. Let (w1, . . . , w`) be

10

the weights and t be the threshold of the vector seed. Let P = {δ : wδ > 0}
be the set of positively weighted positions. The vector seed is equivalent
to the set of seeds {S1, . . . , SM} where Si are the subsets of P in which
t ≤

∑
δ∈Si

wδ. When all vector weights are 0 or 1, the equivalent multiple
seeds are generated by removing up to (|P|− t) elements from P. In fact, an
equivalent set can be created by removing exactly that many positions. (In
the preliminary version of this paper [1], the seeds in the equivalent set are
called daughter seeds.) We also observe that some seeds in the equivalent set
are closer to each other than some other seeds in the set. In order to maxi-
mize the independence between hits of different seeds, we should primarily
rely on more distant seeds in the set. Our third observation is that the
independence between neighbor seeds can be further increased using two-
stage extension introduced in Section 2. Different neighbor seeds should be
allowed to have different check points (the S′) in the first extension stage.

These three observations lead to the following powerful idea. In what
follows, a parent seed is a spaced seed P. For a fixed integer ∆, a neighbor
seed D of P is such that |D\P| = |P\D| = ∆. When the seeds are represented
in the binary string form, the equations imply that each neighbor seed has
the same weight as the parent and is within Hamming distance 2∆ from the
parent.

It is easy to see that two neighbor seeds may differ at as many as 4∆
different positions. In practice, when ∆ = 2, the neighbor seeds are already
very different (and hopefully very independent) to each other. Selecting
multiple seeds from the neighbors of the same parent may achieve similar
performance as selecting from the complete seed space. Even if neighbor
seeds cannot outperform general multiple seed sets, the beauty of the neigh-
bor seeds is that they can share the same hash table in the following way.
Let P = {p1, p2, . . . , pk} be a parent seed with 0 < pj ≤ ` for all j. Given a
database DNA sequence T , a hash table H is built using P as described in
Section 2.4 to store the occurrence lists Occ(g) = {i : h(T [i..i + `− 1]) = g}.
Recall that for any length-` strings s and t, the hash function h is such
that h(s) = h(t) if and only if s[j] = t[j] for j ∈ P. In order to facilitate the
ensuing discussion, write HitsS(q) = {i : q[j] = T [i + j − 1] for j ∈ S} where
q ∈ Σ` is an arbitrary query string and S is any spaced seed. Using this
notation, HitsP(q) = Occ(h(q)), and HitsP(q) is efficiently retrieved using
the hash table H.

Let D = {d1, d2, . . . , dk} be a neighbor seed and |P \D| = |D \ P| = ∆.
Since the hash table H does not impose any limitation on the lower and
upper bounds of pj , we assume 0 < dj ≤ ` for all j, without loss of generality.
We assume furthermore that dj = pj for all j = ∆ + 1, . . . , k. We need to

11

show that HitsD(q) can be efficiently computed using the hash table H for
the parent seed. It is easy to see that

HitsD∩P(q)

=
⋃

t1,...,t∆∈Σ

{
i : T [i+pj−1] = tj for j ≤ ∆, T [i+pj−1] = q[pj] for j > ∆

}

Consequently, HitsD∩P(q) can be computed by forming the union of |Σ|∆
occurrence lists stored in H. For each i ∈ HitsD∩P(q), we further use two-
stage extension to check whether T [i + j − 1] = q[j] holds for all j ∈ D \ P.
If so, then we proceed to full hit extension; otherwise, we discard i. In this
way, HitsD is obtained using HitsP.

When the database sequence T is large and the parent seed has a reason-
able weight k (such as |T | ≥ 64× 106 and k = 13), all or almost all Occ(g)
are non-empty. In such a situation, the time of generating HitsD∩P is in-
significant.

If ∆ is reasonably small (∆ = 2 in our examples to follow), the time of
generating HitsD from HitsD∩P is quite modest compared to the full extension
of a hit. For each i ∈ HitsD∩P, up to ∆ more positions are examined to
produce HitsD. When these positions are checked one by one in random DNA
homology regions, the average number of comparisons is 1+4−1+. . .+4−∆ =
4
3×(1−4−∆). Because HitsD∩P is 4∆ times of the size of HitsD, this approach
of generating HitsD will cost 4

3 × (1 − 4−∆) × 4∆ = 4
3 × (4∆ − 1) extra

comparisons for each successful hit in HitsD (compared to generating hits in
HitsP). As discussed in Section 2.2, these extra comparisons are relatively
inexpensive in a typical setting, in view of the time spent in fully extending
a successful hit. For instance, when ∆ = 2, each hit of HitsD costs 20 extra
comparisons, whereas a typical X-drop extension would incur 62 comparisons
already. The number of comparisons increases only by 20/62 ≈ 32%.

When multiple neighbor seeds are used, the hits for each of them can
be generated using the above mentioned procedure. Subsequently, usual
extension is carried out for every hit in order to generate the local alignment.
Notice that as long as the neighbor seeds are from the same parent seed P,
the hash table H needs to be built only once and can be reused by every
neighbor seed. In contrast to general multiple seeds [15], not only do the
neighbor seeds require only one hash table, but also the number and the
choices of neighbor seeds can be decided after the hash table H is built.
This property is of great interest in practice because a program can index
the DNA database first. Only much later need the users decide on the

12

seed sensitivity
parent 1110110010110101111 -
1 11100110110010101111 0.2066
2 1101110110000110100111 0.3311
3 1011110010110111011 0.4234
4 11001110000010110101111 0.4913
5 10110111010110001111 0.5472
6 10101010110010100101111 0.5921
7 1110110001111101101 0.6279
8 11001110110010010001111 0.6590

Table 2: The first eight greedily selected neighbor seeds of
1110110010110101111. The optimization is done on 5 × 106 uniformly
drawn regions of length 64 with 45 matches. The accumulated sensitivity
is estimated by using 107 such regions.

actual neighbor seeds, depending on factors such as speed and sensitivity,
and whether the queries are protein-coding or non-coding sequences.

Similarly to the multiple seeds proposed in [15], the neighbor seed sets
need to be optimized in order to maximize sensitivity. The neighbor seeds
used in this paper are selected by first fixing a parent seed, and then using the
same greedy algorithm as in [15] to add neighbor seeds one by one, which
maximize the sensitivity of the set on target homology regions. Table 2
shows the first eight neighbor seeds selected by the greedy algorithm for the
parent seed 1110110010110101111 and ∆ = 2, along with their accumulated
sensitivities in uniform regions of length 64 with 45 matches (about 70%
similarity level).

Figures 3–5 plot the sensitivity of neighbor seeds in function of the sim-
ilarity, along with some other seeding techniques for comparison. In partic-
ular, single spaced seeds, a vector seed, and multiple seeds are compared to
weight-13 neighbor seeds.

Figure 3 compares multiple weight-13 neighbor seeds with optimized sin-
gle spaced seed of different weights. We note that sixteen neighbor seeds
have the same specificity as a single weight-11 spaced seed, while have much
higher sensitivity. Similarly, 64 neighbor seeds are comparable in specificity
to a single weight-10 spaced seed, while they achieve an outstanding sen-
sitivity. The plots also illustrate that the difference in sensitivity between
neighbor seeds and spaced seeds is about the same as the one between spaced
seeds and contiguous seeds (i.e., k-mers). For instance, at 45 matches, the
sensitivity for the 10-mer is 0.39; for the weight-10 spaced seed it is 0.62;

13

90%80%70%60% similarity

0.999

0.99

0.9

0.5

0

sensitivity 1248163264

neighbor sets

1211
10 spaced seeds

10-mer

Neighbor seeds vs. single seeds

Figure 3: Neighbor seeds compared to single spaced seeds. Sensitivity (Y
axis) is computed in the uniform model on regions of length 64 by Monte
Carlo approximation. (The Y axis is mapped using

√
1− log(1− sensitivity)

onto graphical coordinates for better visibility.) Numbers on the neighbor set
curves denote the set size; numbers on the single seed curves denote the seed
weight. The spaced seeds have maximum sensitivity among spaced seeds of
equal weight in the uniform model at 45 matches (cca. 70% similarity, shown
by the pale vertical line).

and for 64 neighbor seeds it is 0.96.
Figure 4 compares neighbor seeds with the vector seed VS-12-13 which

requires twelve matches in thirteen positions [26]. The vector seed is op-
timized for uniform regions with 45 matches out of 64. The specificity of
such a vector seed is 4−13 + 13× 3× 4−13 = 40× 4−13. This is identical to
the specificity of forty weight-13 neighbor seeds. However, twenty neighbor
seeds already have a better sensitivity than the vector seed.

Figure 5 compares neighbor seeds with multiple seeds. Because neighbor
seeds are selected from a special subset of the complete seed space, whereas
multiple seeds are selected freely, the performance of neighbor seeds cannot
be better. The curves in Figure 5 demonstrate this observation. However,
it is also clear that the neighbor seed set’s sensitivity is close to that of
equal-sized multiple seed sets. Considering the convenience that neighbor

14

90%80%70%60% similarity

0.999

0.99

0.9

0.5

0

sensitivity 102040

neighbor sets
VS-12-13 seed

Neighbor seeds vs. vector seed

Figure 4: Neighbor seeds compared to the vector seed VS-12-13. Sensitivity
(Y axis) is computed in the uniform model on regions of length 64 by Monte
Carlo approximation. Numbers on the neighbor set curves denote the set
size.

seeds can provide, i.e., the use of one hash table and the selection of seeds
after hashing, neighbor seeds are clearly a better choice in practice.

We also point out that according to our simulation on ten million regions,
64 weight-13 neighbor seeds can achieve better than 99.99% sensitivity in
a uniform region of 49 matches out of length 64 (76.5% similarity). It is a
theoretically interesting question to ask for the minimum number of neighbor
seeds or multiple seeds to achieve 100% sensitivity; alternatively, one can
ask the minimum of similarity for a group of neighbor seeds or multiple seeds
to achieve 100% sensitivity.

4 Two ideas for reducing memory usage

Neighbor seeds rely on a single hash table for the parent seed, and avoid
this way the impractical memory requirements of general seed sets. Further
memory reductions can be achieved by storing the hash table in a more
compact fashion. We need a data structure that supports the operation re-
portAll. If k-mers are used, then a suffix array can provide the function-

15

90%80%70%60% similarity

0.999

0.99

0.9

0.5

0

sensitivity 24816

neighbor sets
multiple seeds

Neighbor seeds vs. multiple seeds

Figure 5: Neighbor seeds compared to multiple seeds. Sensitivity (Y axis)
is computed in the uniform model on regions of length 64 by Monte Carlo
approximation. Numbers on the curves denote the set size.

ality, which can be implemented using O(|S|) bits [33] in addition to storing
the sequence S. Various self-indexing methods [34, 35] promise even better
compression by storing S and the indexing structure together. These latter,
however, are still impractical for genomic DNA sequence comparisons, since
the amount of time they spend on retrieving each hit is measured in mil-
liseconds [35]. More importantly, the suffix array approach cannot support
spaced seeds and suffer from the low sensitivity of using k-mers.

The data structure for the hashing is typically implemented using 32-bit
integers [14]. Consequently, a table for a k-weight key occupies 4(4k + |S|)
bytes. We describe a way of saving space without much sacrifice in either
speed or ease of implementation. In particular, we show how to replace 32-
bit integers with (2k)-bit integers. For seeds of weights 10–13, this means a
memory reduction of 37.5–18.75%. The idea is fairly simple: choose a large
integer Q and store the modulo Q remainders in both head and next. The
integer value Q is reserved for marking ends of lists, so dlog2(Q + 1)e-bit
integers suffice. Figure 6 shows the data structure. Since Add(g, i) is called
in increasing order of i (cf. Fig. 1), key occurrences are restored correctly.

Theorem 3. (a) reportAll of Fig. 6 correctly enumerates the occur-

16

Initialization

I1 allocate head[0..H − 1]

I2 for all g set head[g]← Q

I3 allocate next[1..|S| − ` + 1]

Add(g, i)

A1 next[i]← head[g]

A2 head[g]← i mod Q

reportAll(g)

R1 set Occ← ∅; i← head[g]

R2 if i = Q then return Occ

R3 set q ←
⌊
|S|−`−i+1

Q

⌋
R4 while i 6= Q do

R5 while h(S[qQ + i..qQ + i + `− 1]) 6= g do q ← q − 1

R6 Occ← Occ ∪ {qQ + i}
R7 j ← next[qQ + i]; if j ≥ i then q ← q − 1

R8 i← j

R9 return Occ

Figure 6: Data structure for occurrence lists that uses integers in the range
{0, . . . , Q}. The value Q represents a null pointer.

17

rences of a key g, provided that the calls Add(g, i) were made in in-
creasing order of i.

(b) Suppose that S is a uniform random string, and the hash function is
such that all keys occur with equal probability. If Q� 1 and |S| → ∞,
then the hash function is evaluated in the loop of Line R5 (1−e−Q/H)−1

times on average. If h is defined by a weight-k spaced seed, then,
for each occurrence of a key g, ReportAll(g) performs an expected
number of k + 4/3

eQ/H−1
character comparisons.

Proof. Claim (a) holds since g occurs in positions q1Q + head[g], q2Q +
next[head[g]], q3Q+next[next[head[g]]], . . . with q1 ≥ q2 ≥ · · · . The variable q
always stores the current value of qi until all the occurrences are enumerated.
In order to prove Claim (b), we use the fact that the set positions in which
a particular key occurs can be modeled using a Poisson process [27]. Let ∆
be the number of times the while condition is evaluated in Line R5 before
continuing with Line R6. Let X be the distance between the previously
found occurrence and the one the loop is looking for. Then P{∆ = q} =
P{X ∈ [1 + (q − 1)Q, qQ]} for all q = 1, 2, Using the Poisson process
approximation, P{∆ = q} = (1 − γ)γq−1 with γ ≈ (1 − H−1)Q ≈ e−Q/H .
Consequently, E∆ = 1

1−γ as claimed. For spaced seeds in particular, when
the loop condition evaluates to true, an expected number of 4/3 positions
are looked at, and when the condition finally fails, k comparisons are made.
The expected number of tested positions is therefore k + 4

3(E∆ − 1), as
claimed.

By Theorem 3, using Q = 4k−1 with a weight-k seed entails an expected
number of (k + 0.77) character comparisons. (One can even get away with
not comparing all k positions in Line R5 but only some k′ < k of them.
There is a small chance (0.25k′) that we switch to enumerating occurrences
of a different hash key g′. The key g′, however, matches key g in k′ positions,
and so the generated hits are not completely arbitrary. The advantage is
the lower number of comparisons per hit.) As an alternative to the (mod
Q) representation, one can avoid the character comparisons by using run-
length encoding [36] of the distances between consecutive occurrences, which
reduces the space equivalently at the price of having to handle bit vectors
of varying length.

Suffix trees or arrays can be employed to enumerate occurrences of k-
mers. To our knowledge, there is no efficient way of retrieving occurrences of
spaced seeds from a suffix array, and thus their use is limited to k-mers. At

18

table type chromosome genome
int32 modQ int32 modQ

11mers 33 22.69 32.07 22.04
every 2nd 12mer 20 14.375 16.25 11.68
every 4th 14mer 136 110.5 12 9.75
12mers 36 27 32.5 24.38
every 2nd 13mer 32 25 17 13.28

Table 3: Number of bits used per character when storing a k-mer table.
The traditional implementation uses 32-bit integers; the implementation of
Fig. 6 (modQ) uses 2k-bit integers. Note that (2k − 1) or (2k − 2) bits
suffice for storing occurrences restricted to every second or fourth position,
respectively. Sequence lengths are |S| = 227 for a chromosome, and |S| = 231

for a genome, based on the human genome.

the same time, suffix tree-based local alignment methods use at least 12.5–
15.6 bytes [17] per base pair. Here we describe a simple method of reducing
storage for hashing with k-mers in genome-size local alignments. The idea
is to use a hash table for longer (k + d)-mers sampled in every (d + 1)-th
position of S. The occurrences of a key g can be retrieved by listing the
occurrences of the keys a1a2 · · · ad · g, a1 · · · ad−1gad, . . . , ga1a2 · · · ad for
all choices of a1, . . . , ad ∈ Σ. With a judicious choice of d, the running
time remains essentially the same, while the memory usage is reduced. Ta-
ble 3 shows some numerical values, for a typical mammalian chromosome or
genome. For instance, about 1.5 bytes/nucleotide suffice for 11-mer based
alignment of a whole mammalian genome, if the sequence is stored in 2
bits/nucleotide and the table is stored in less than 10 bits/nucleotide. This
memory usage is better than that of the currently most space-efficient suffix
array representation [37], which uses 12 bits per nucleotide in addition to
the sequence storage. At the same time, the hash table takes considerably
less effort to implement.

5 Conclusion

We introduced novel ideas on selecting a structured set of spaced seeds
to gain superior sensitivity and speed in hit-and-extend methods of local
alignment. The neighbor seeds we proposed remarkably outperform spaced
seeds and vector seeds, and approach the performance of multiple spaced

19

seeds. At the same time, neighbor seeds use the same hash table of the
same parent seed, and therefore only require moderate amount of memory.
Our examples of 32 or 64 neighbor seeds have outstanding sensitivity: a
comparable multiple seed set would pose unrealistic memory demands for
current desktop computers. A very important feature of neighbor seeds
is that their selection can be done after the hash table of the database
sequence is built with the parent seed. This is of great interest in practical
homology search systems, as the same hash table can support a wide variety
of applications through different neighbor seeds which emphasize different
factors such as speed, sensitivity, and coding/non-coding regions.

We additionally described some easily implementable ways to lower mem-
ory demands. Memory usage is a key factor in the efficiency of homology
search algorithms, and is likely to become even more important in the fu-
ture. Both the number and total length of DNA sequences in Genbank
has doubled about every 17 months (http://www.ncbi.nih.gov/Genbank/
genbankstats.html) since 1983. This rate of increase is comparable to
the popular version of Moore’s law about computing power doubling every
18 months, and thus powerful heuristics are likely to remain highly valued in
the comparison of molecular sequences. Our methods are memory efficient
and offer practical solutions for the alignment of large genomic sequences in
terms of speed and sensitivity.

References

[1] Csűrös, M., Ma, B.: Rapid homology search with two-stage extension
and daughter seeds. In: Proc. 11th Int. Computing and Combinatorics
Conf. (COCOON). Volume 3595 of LNCS., Springer-Verlag (2005) 104–
114

[2] Miller, W., Makova, K.D., Nekrutenko, A., Hardison, R.C.: Compar-
ative genomics. Annual Review of Genomics and Human Genetics 5
(2004) 15–56

[3] Brudno, M., Do, C.B., Cooper, G.M., Kim, M.F., Davydov, E., Pro-
gram, N.C.S., Green, E.D., Sidow, A., Batzoglou, S.: LAGAN and
Multi-LAGAN: efficient tools for large-scale multiple alignment of ge-
nomic DNA. Genome Research 13 (2003) 721–731

[4] Couronne, O., Poliakov, A., Bray, N., Iskhanov, T., Ryaboy, D., Rubin,
E., Pachter, L., Dubchak, I.: Strategies and tools for whole-genome
alignments. Genome Research 13 (2003) 73–80

20

[5] Smith, T.F., Waterman, M.S.: Identification of common molecular
subsequences. Journal of Molecular Biology 147 (1981) 195–197

[6] Gotoh, O.: An improved algorithm for matching biological sequences.
Journal of Molecular Biology 162 (1982) 708–708

[7] Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic
sequence alignment algorithm for unrestricted cost matrices. In: Proc.
11th ACM-SIAM Symposium on Discrete Algorithms (SODA). (2002)
679–688

[8] Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences of the
USA 85 (1988) 2444–2448

[9] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic
local alignment search tool. Journal of Molecular Biology 215 (1990)
403–410

[10] Wilbur, W.J., Lipman, D.J.: Rapid similarity searches of nucleic acid
and protein data banks. Proceedings of the National Academy of Sci-
ences of the USA 80 (1983) 726–730

[11] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z.,
Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Research
25 (1997) 3389–3402

[12] Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardi-
son, R.C., Haussler, D., Miller, W.: Human-mouse alignments with
BLASTZ. Genome Research 13 (2003) 103–107

[13] Ning, Z., Cox, A.J., Mullikin, J.C.: SSAHA: A fast search method for
large DNA databases. Genome Research 11 (2001) 1725–1729

[14] Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive
homology search. Bioinformatics 18 (2002) 440–445

[15] Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: highly sen-
sitive and fast homology search. Journal of Bioinformatics and Com-
putational Biology 2 (2004) 411–439

[16] Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O.,
Salzberg, S.L.: Alignment of whole genomes. Nucleic Acids Research
27 (1999) 2369–2376

21

[17] Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., An-
tonescu, C., Salzberg, S.L.: Versatile and open software for comparing
large genomes. Genome Biology 5 (2004) R12

[18] Buhler, J., Keich, U., Sun, Y.: Designing seeds for similarity search in
genomic DNA. Journal of Computer and System Sciences 70 (2005)
342–363

[19] Choi, K.P., Zhang, L.: Sensitivity analysis and efficient method for
identifying optimal spaced seeds. Journal of Computer and System
Sciences 68 (2004) 22–40

[20] Keich, U., Li, M., Ma, B., Tromp, J.: On spaced seeds for similarity
search. Discrete Applied Mathematics 138 (2004) 253–263

[21] Brown, D.G., Li, M., Ma, B.: A tutorial of recent developments in the
seeding of local alignment. Journal of Bioinformatics and Computa-
tional Biology 2 (2004) 819–842

[22] Pevzner, P., Waterman, M.S.: Multiple filtration and approximate
pattern matching. Algorithmica 13 (1995) 135–154

[23] Burkhardt, S., Kärkkäinen, J.: Better filtering with gapped q-grams.
Fundamenta Informaticae 23 (2003) 1001–1008

[24] Frieze, A.M., Preparata, F.P., Upfal, E.: Optimal reconstruction of a
sequence from its probes. Journal of Computational Biology 6 (1999)
361–368

[25] Sun, Y., Buhler, J.: Designing multiple simultaneous seeds for DNA
similarity search. In: Proc. 8th Annual International Conference on
Computational Molecular Biology (RECOMB). (2004) 76–84

[26] Brejová, B., Brown, D., Vinař, T.: Vector seeds: An extension to
spaced seeds. Journal of Computer and System Sciences 70 (2005)
364–380

[27] Waterman, M.S.: Introduction to Computational Biology: Maps, Se-
quences and Genomes. CRC Press (1995)

[28] Li, M., Ma, B., Zhang, L.: Superiority and complexity of spaced seeds.
In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA).
(2006) To appear.

22

[29] Nicolas, F., Rivals, E.: Hardness of optimal spaced seed design. In:
Combinatorial Pattern Matching: 16th Annual Symposium. Volume
3537 of LNCS., Springer-Verlag (2005) 144–155

[30] Ross, S.M.: Stochastic Processes. Second edn. Wiley & Sons (1996)

[31] Ewens, W.J., Grant, G.R.: Statistical Methods in Bioinformatics: An
Introduction. Springer-Verlag (2001)

[32] Kucherov, G., Noé, L., Ponty, Y.: Estimating seed sensitivity on homo-
geneous alignments. In: Proc. 4th IEEE Symposium on Bioinformatics
and Bioengineering (BIBE). (2004) 387–394

[33] Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In: Proc. 32nd ACM
Symposium on Theory of Computing (STOC). (2000) 397–406

[34] Ferragina, P., Manzini, G.: Opportunistic data structures with applica-
tions. In: Proc. 41st Annual Symposium on Foundations of Computer
Science (FOCS). (2000) 390–398

[35] Mäkinen, V., Navarro, G.: Compressed compact suffix arrays. In:
Combinatorial Pattern Matching: 15th Annual Symposium. Volume
3109 of LNCS., Springer-Verlag (2004) 421–433

[36] Golomb, S.W.: Run-length encodings. IEEE Transactions on Informa-
tion Theory 12 (1966) 399–401

[37] Hon, W.K., Sadakane, K.: Space-economical algorithms for finding
maximal unique matches. In: Combinatorial Pattern Matching: 13th
Annual Symposium. Volume 2373 of LNCS. (2002) 144–152

23

