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Abstract

Pooled Genomic Indexing (PGI) is a novel method for physical mapping of clones onto known se-
quences. PGI is carried out by pooling arrayed clones, and generating shotgun sequence reads from the
pools. The shotgun sequences are compared to a reference sequence. In the simplest case clones are
placed on an array and are pooled by rows and columns. If a shotgun sequence from a row pool and
another shotgun sequence from a column pool match the reference sequence at a close distance, they are
both assigned to the clone at the intersection of the two pools. Accordingly, the clone is mapped onto the
region of the reference sequence between the two matches. A probabilistic model for PGI is developed,
and several pooling designs are described and analyzed, including transversal designs and designs from
linear codes. The probabilistic model and the pooling schemes are validated in simulated experiments
where 625 rat BAC clones and 207 mouse BAC clones are mapped onto homologous human sequence.
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1 Introduction

We propose a novel method for physical mapping of clones onto known macromolecular sequences, called
Pooled Genomic Indexing (PGI). Figure 1 illustrates a basic application of PGI to BAC1 clone mapping.
Starting with a BAC array, DNA is pooled together from clones in the same row (or column). A subclone
library is prepared from every row and column pool. Random shotgun sequences (reads) are collected from
each subclone library. The shotgun sequences are used to map individual clones to homologous sequences
of a related organism. Specifically, shotgun sequences are compared to a database of reference sequences
using standard alignment techniques: if a shotgun sequence from a row pool and a shotgun sequence from
a column pool match the same reference sequence at a close distance, then both sequences are assigned
(deconvoluted) to the clone at the intersection of the given row and column. Simultaneously, the clone is
mapped onto the region of the reference sequence between the matches. Known reference sequences are thus
turned into indexes to unsequenced homologous clones across species.

[Figure 1 about here.]

PGI indexes can guide the targeted sequencing of homologous regions, thereby making them available for
comparative sequence analysis methods. Comparative sequence analysis has proven useful for the discovery
of conserved regulatory regions, genes, and gene structure. PGI has two advantages over other targeted
approaches to comparative sequencing (Thomas et al. 2002). First, PGI does not require diverse experimental
procedures such as overgo probe design and hybridization. The shotgun sequencing of BAC pools provides all
the necessary information for comparative mapping. Secondly, the depth of shotgun sequencing in PGI can
be adjusted to a large range of evolutionary distances between organisms. In contrast, BAC-end sequencing
for instance permits mapping across closely related organisms (Fujiyama et al. 2002).

Our reason for proposing PGI is motivated by recent advances in sequencing technology that allow
shotgun sequencing of BAC pools. The Clone-Array Pooled Shotgun Sequencing (CAPSS) method (Cai
et al. 2001) relies on clone-array pooling and shotgun sequencing of the pools. CAPSS assembles shotgun
sequences from different pools into contigs. Contigs that contain shotgun sequences from a particular row
pool and a particular column pool are deconvoluted to the clone at the intersection of the row and the
column. In a clone-by-clone sequencing strategy (IHGSC 2001), the shotgun reads are collected for each
clone separately. When pooling is used, the individual shotgun reads are not directly associated with the
clones. The clone association information is recovered by comparing the shotgun sequences to each other
(CAPSS) or to reference sequences (PGI). Despite the distinction between PGI and CAPSS, the methods are
compatible and, in fact, can be used simultaneously on the same data set. Moreover, the advanced pooling
schemes that we present here in the context of PGI are also applicable to and increase the performance of
CAPSS, indicating that improvements of one method are generally applicable to the other.

The purpose of this paper is three-fold. First, we introduce PGI, and argue that the pooling approach
leads to a viable comparative mapping strategy. Secondly, we describe and analyze combinatorial methods
for the pooling. Thirdly, we describe a probabilistic model in which different pooling schemes can be com-
pared. Along with simulation results, the model can guide the selection of pooling designs and experimental
parameters in mapping projects.

The paper is structured as follows. Section 2 describes a probabilistic model for the PGI method,
and points out possible shortcomings due to redundancies among the clones, which cannot be resolved
by the basic array-based pooling design. Section 3 discusses different experiment designs. In one line
of extending the basic pooling design, §3.1 examines designs involving one array in which positions are left
empty systematically in order to reduce problems caused by clone redundancies. In another way of extending
the basic design, §3.2 and §3.3 propose the introduction of several arrays containing the same clone set in
different layouts. Random layouts are discussed in §3.2, and deterministic layouts are analyzed in §3.3. A
natural extension of the latter, designs based on error-correcting codes are examined in §3.4. Section 3
ends with a comparison of pooling designs and experiment parameters, based on our probabilistic analysis.
Section 4 compares the pooling designs in simulated experiments involving 207 mouse and 625 rat clones,
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mapped to human sequences. Section 5 concludes the paper with a discussion of the results and an outlook
to further research directions.
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2 Probabilistic analysis

In order to study the efficiency of the PGI strategy formally, define the following values. Let N be the total
number of clones on the array, and let m be the number of clones within a pool. For simplicity’s sake, assume
that every pool has the same number of clones, that clones within a pool are represented uniformly, and
that every clone has the same length L. Let F be the total number of random shotgun reads, and let ` be
the expected length of a read. Define the read coverage c = F`

NL . Assuming uniform coverage and a m×m

array, the number of reads coming from a fixed pool equals R = cmL
2` .

2.1 Closely related species

PGI may be applied to map BACs of one species onto the genomic sequence of a closely related reference
species. At low evolutionary distances, extremely low levels of pool shotgun coverage may suffice. At low
levels of shotgun sequencing the question is whether or not a BAC is sampled at all. Moreover, in order for
a clone to be indexed via PGI, informative reads originating from the clone must be sampled in multiple
pools. We propose a simple model of clone indexing.

The probability that a particular BAC is sampled by at least one of the R reads in a pool equals

psample = 1−
(

1− 1
m

)R

≈ 1− e−
R
m = 1− e−c L

2` . (1)

The expected number of sampled BACs in a pool thus equals

D = mpsample = m
(
1− e−

R
m

)
.

The fraction of sampled BACs (psample) exponentially approaches 1 as the ratio of reads per pool vs. pool
complexity (R/m) increases. The following table gives a number of representative values.

R/m 0.75 1.0 1.25 1.5 1.75 2.0 3.0 4.0
psample 0.53 0.63 0.71 0.78 0.83 0.86 0.95 0.98

PGI deconvolution also requires that reads identify their homologous or orthologous (or both) positions
across species. To estimate the probability of recognizing an orthologous position, we define the variable S
as the fraction of randomly selected sequence fragments of a certain length that uniquely identify a position
in the genome.

Similarly to Equation (1), we can obtain the probability that a particular BAC is sampled in a pool by
an informative read:

phit = 1− e−
SR
m = 1− e−c SL

2` . (2)

A particular BAC can be mapped if it is sampled by informative reads in both pools it is included in. The
following proposition follows from Equation (2).

Proposition 1. The probability that a clone is mapped equals approximately

pS ≈
(

1− e−
SR
m

)2

=
(

1− e−c SL
2`

)2

.

Calculated from Proposition 1, the following table shows representative values for the fraction of mapped
BACs as function of read coverage and similarity.

R/m = 0.75 1 1.25 1.5 1.75 2 3 4 8
S =88% pS = 0.233 0.342 0.445 0.537 0.617 0.686 0.862 0.942 0.998
80% 0.204 0.303 0.400 0.488 0.568 0.637 0.827 0.920 0.997
70% 0.167 0.253 0.340 0.423 0.499 0.568 0.770 0.882 0.993
60% 0.131 0.204 0.278 0.352 0.423 0.488 0.697 0.827 0.984
50% 0.098 0.155 0.216 0.278 0.340 0.400 0.604 0.748 0.964
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In order to establish some range of possible values for S as a function of evolutionary distance, the
following simulated experiment was performed on the GoldenPath Human genome assembly (IHGSC 2001):
random sequences of certain lengths (ranging from 100 to 200 to 500bp) were selected and randomly mutated
at a specified mutation level (4, 6, 8, 10%); one thousand randomly selected mutated sequences were then
used to search GoldenPath assembly (April 2001 version) using BLAT search (Kent 2002); the percentage
of the cases S in which the top hit was the original position from which the sequence was selected is shown
in the following table.

read length `=100 200 500
percent difference = 4% S = 85% 87% 88%

6% 75% 79% 81%
8% 64% 70% 72%

10% 50% 58% 58%

In another experiment, we selected 521 chimpanzee (Pan troglodytes) BAC clones (all finished genomic
sequences with length at least 50kbp in GenBank), simulated shotgun sequencing, and compared the shotgun
sequences to the human genome sequence, in order to verify how correct our simple model of ”informative
reads” is. Shotgun sequences of expected length 100bp were generated as described in Section 4, mutating
random substrings of the clones with a 1% substitution error. Each clone was sampled by 4 shotgun sequences
on average. Shotgun sequences were compared to the human genome sequence (NCBI Build 34, after
discarding alternative assembly of chromosome 7), using BLAST (Altschul et al. 1997) with the parameters
of Section 4: minimum 40 bp match, minimum 60 score, maximum 10−5 E-value. Reads generating more
than 12 matches were discarded, and so were matches involving the same human genome segment and more
than 3 chimpanzee clones. (The latter criterion corresponds to resolvable ambiguities in two-array designs,
see §3.3.) We found that 1543 (74%) of the reads were informative, in accordance with the table above
given that the divergence between human and chimpanzee genomes is 5% (Britten 2002), and we corrupted
the shotgun sequences with an additional 1% error. We further analyzed the matches to see if this ratio
of “informative reads” is uniform across clones. While it is obviously an approximation, we argue that it
is a fairly accurate one: we use a quartile-based statistical test for this purpose. For α = 25%, 50%, 75%,
we calculated the number of clones that had at least α fraction of their reads mapped to the genome. If
every read can be mapped to the human genome with a uniform p = 1543/2084 ≈ 0.74 probability, then the
expected number of clones with at least α fraction of mapped reads is

Nα = N

∞∑
k=0

(
N

k

)
qk(1− q)N−k

k∑
j=dαke

(
k

j

)
pj(1− p)k−j ,

where N = 521 is the number of clones, and q = 4/N , the probability that a given read originates from
a given clone. Hence N0.25 = 493, N0.5 = 459, and N = 292. These expected values were compared to
the actual number N̂α of clones that have ≥ α fraction of mapped reads. In the experiments we measured
N̂0.25 = 482, N̂0.5 = 441, and N̂0.75 = 289, which are fairly close to the predicted values.

2.2 Distantly related species

When mapping, for instance, one mammalian genome onto another, PGI relies on finding similarities between
conserved regions. In such an application, a significant portion of the shotgun reads, namely those that do
not match any reference sequence, will not be useful for the purposes of comparative mapping. Furthermore,
since reads are randomly distributed along the clones, it is not certain that homologies between reference
sequences and clones are detected. However, this probability increases rapidly with the number of shotgun
sequences. Consider the particular case of detecting homology between a given reference sequence and a
clone. A shotgun sequence of length λ from this clone is aligned locally to the reference sequence and if
a significant alignment is found, the homology is detected. Such an alignment is called a hit. Let M(λ)
be the number of positions at which a shotgun sequence of length λ can begin and produce a significant
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alignment. The probability of a hit for a fixed length λ equals M(λ) divided by the total number of possible
start positions for the fragment, (L− λ + 1).

When L � `, the expected probability of a shotgun sequence matching the reference sequence equals

phit = E
M(λ)

L− λ + 1
≈ M

L
, (3)

where M is a shorthand notation for EM(λ). The value M measures the homology between the clone and
the reference sequence. We call this value the effective length of the (possibly undetected) index between
the clone and the reference sequence in question. For typical definitions of significant alignment, such as an
identical region of a certain minimal length, M(λ) is a linear function of λ, and thus EM(λ) = M(`).

Example 1: let the reference sequence be a subsequence of length h of the clone, and define a hit as
identity of at least o base pairs. Then M = h + `− 2o.

Example 2: let the reference sequence be the transcribed sequence of total length g of a gene on the
genomic clone, consisting of e exons, separated by long (� `) introns, and define a hit as identity of at least
o base pairs. Then M = g + e(`− 2o).

If there is an index between a reference sequence and a clone in the pool, then the number of hits in the
pool is distributed binomially with expected value

(
cmL
2`

)(
phit
m

)
= cM

2` . Propositions 2, 3, and 4 rely on the
properties of this distribution, using Poisson approximation techniques.

Proposition 2. Consider an index with effective length M between a clone and a reference sequence The
probability that the index is detected equals approximately

pM ≈
(

1− e−c M
2`

)2

.

Proof. The number of random shotgun reads from the row pool associated with the clone equals cmL
2` . By

Equation (3), the probability that at least one of them aligns with the reference sequence equals

p≥1 = 1−
(

1− phit

m

) cmL
2`

= 1−
(

1− M

mL

) cmL
2`

≈ 1− e−c M
2` . (4)

The probability that the row and column pools both generate reads aligning to the reference sequence
equals p2

≥1, as claimed.

By Proposition 2, the probability of false negatives decreases exponentially with the read coverage, as
1− pM → e−c M

` . The number of hits for a detected index can be calculated similarly.

Proposition 3. The expected number of hits that comprise a detected index with effective length M equals
approximately

EM ≈ c
M

`

(
1− e−c M

2`

)−1

.

Proof. The number of hits for an index coming from a fixed row or column pool is distributed binomially
with parameters n = cmL

2` and p = M
mL . Let ξr denote the number of hits coming from the clone’s row pool,

and let ξc denote the number of hits coming from the clone’s column pool. By the independence of the pools,

EM = E
[
ξr + ξc

∣∣∣ ξr > 0, ξc > 0
]

= E
[
ξr

∣∣∣ ξr > 0
]

+ E
[
ξc

∣∣∣ ξc > 0
]
.

In order to calculate the conditional expectations on the right-hand side, notice that if ξ is a non-negative
random variable, then Eξ = E

[
ξ

∣∣∣ ξ > 0
]
P
{
ξ > 0

}
. Since P

{
ξc > 0

}
= P

{
ξr > 0

}
= p≥1,

EM = 2E
[
ξr

∣∣∣ ξr > 0
]

=
2np

p≥1
.

Resubstituting p and n, the proposition follows from Equation (4).
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Notice that Proposition 3 provides a means to estimate the unknown effective length of a detected index.
In what follows we concentrate on the case of large distances. Nevertheless, the results apply immediately

to the case of short distances if we recognize that the effective length of an index plays the same rôle in the
former as the percentage of informative reads in the latter. Consequently, by substituting (SL) for M in the
formulas we obtain the corresponding results for short distances. In addition to mapping genomic clones to
a reference genome sequence, the focus on effective length captures more general cases such as the mapping
of genomic clones to transcribed reference sequences, and the mapping of cDNA clones.

2.3 Ambiguous indexes and false positives

The success of indexing in the PGI method depends on the possibility of deconvoluting the local alignments.
In the simplest case, a homology between a clone and a reference sequence is recognized by finding alignments
with shotgun sequences from one row and one column pool. It may happen, however, that more than one
clone are homologous to the same region in a reference sequence (and therefore to each other). Typical cases
include when the clones overlap, contain similar genes, or contain similar repeat sequences. Subsequently,
close alignments may be found between a reference sequence and shotgun sequences from more than two
pools. If, for example, two rows and one column align to the same reference sequence, an index can be
created to the two clones at the intersections simultaneously. However, alignments from two rows and two
columns cannot be deconvoluted conclusively, as illustrated by Figure 2a.

[Figure 2 about here.]

In addition to the problem of ambiguous deconvolution, multiple homologies may also lead to incorrect
indexing at low coverage levels. Referring to the example of Figure 2b, assume that the clones B12 and B21

contain a particular homology. If the read coverage is low, it may happen that the only homologies found
are from row R1 and column C1. In that case, the clone B11 gets indexed erroneously. Such indexes are
false positives. The probability of false positive indexing decreases rapidly with the coverage level as shown
by the following result.

Proposition 4. Consider an index between a reference sequence and two clones with the same effective
length M . If the two clones are not in the same row or same column, the probability of false positive
indexing equals approximately

pFP ≈ 2e−c M
`

(
1− e−c M

2`

)2

. (5)

Proof. Let n = cmL
2` be the number of reads from a pool and p = M

` the probability of a hit within a pool
containing one of the clones. Then a false positive occurs if there are no hits in the row pool for one clone
and the column pool for the other, and there is at least one hit in each of the other two pools containing the
clones. The probability of that event equals

2
(
(1− p)n

)2(
1− (1− p)n

)2

.

Using the same approximation technique as in Proposition 2 leads to Equation (5).
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3 Pooling designs

Clearly, in order to reduce the number of ambiguous indexes and false positives, we need to depart from the
idea of using a simple single-array design. In a general setting, let B = {B1, B2, . . . , BN} be the set of clones,
and P = {P1, P2, . . . , PK} be the set of pools. A pooling design is described by the pooling matrix M, which
is an N ×K matrix that represents the incidence structure of the pooling. The entry M[i, j] equals one if
clone Bi is included in Pj , otherwise it is 0. The development of incidence structures with various properties
is an active research area of combinatorics (Beth et al. 1999), and in particular, combinatorial group testing
(Du and Hwang 2000). Clone pooling designs have been successfully used for hybridization-based physical
mapping (Barillot et al. 1991; Bruno et al. 1995; Balding et al. 1996). However, PGI raises different issues
on evaluating pooling designs from those encountered in hybridization. In particular, the probabilities of
false positives and negatives (erroneous and failed indexing of a clone, respectively) depend on the design,
while analysis of pooling for the purposes of hybridization generally assumes fixed probabilities (Bruno et al.
1995).

Laboratory technology involved in pooling and cloning have implications on the practicality of different
pooling designs. First, it is useful if the design can be implemented in a simple way using clone arrays, by
pooling rows and columns together as it reduces errors in protocols carried out either by humans or by robots.
Secondly, it is advantageous to strive to minimize pool sizes, and the number of pools a clone is represented
in, in order to obtain uniform clone representations by the shotgun sampling. With the exception of designs
introduced in §3.4, all described pooling schemes are implemented by row and column pooling of arrayed
clones.

The simplest conceptual improvement to the basic array-based pooling design is to distribute the clones
on more than one array, which reduces ambiguities resulting from overlapping clones on the same array.
Sparse arrays, presented in §3.1, provide a pooling design with a single array, in which specific cells are left
empty. Another possibility is to repeat the pooling using different rearrangements on arrays of the same
size. Random shuffling, presented in §3.2, can be used with arrays of any geometry. Transversal designs,
presented in §3.3, provide an optimal way of rearranging the clones on square arrays. Generalizing transversal
designs, §3.4 discusses designs based on linear error-correcting codes. Finally, §3.5 compares the different
pooling designs in light of their characteristics for indexing success and ambiguity resolution.

3.1 Sparse arrays

In order to examine how to avoid ambiguities when using only one array, we introduce a graph representation.
The array layout of clones can be represented by an edge-labelled graph G in the following manner. Edges in G

are bijectively labelled with the clones. The pooling is defined by incidence, so that each vertex corresponds
to a pool, and the incident edges define the clones in that pool. If G is bipartite, then it represents arrayed
pooling with rows and columns corresponding to the two sets of vertices, and cells corresponding to edges.

[Figure 3 about here.]

Ambiguities originating from the existence of homologies and overlaps between exactly two clones cor-
respond to cycles of length four in G. If G is bipartite, and it contains no cycles of length four, then
deconvolution is always possible for two clones. Such a graph represents an array in which cells are left
empty systematically, so that for all choices of two rows and two columns, at most three out of the four
cells at the intersections have clones assigned to them. An array with that property is called a sparse array.
Figure 3 shows two sparse arrays. A sparse array is represented by a bipartite graph G∗ with given size N
and a small number K of vertices, which has no cycle of length four. This is a specific case of a well-studied
problem in extremal graph theory (Bollobás 1995). It is known (Lovász 1993) that if N > K

4 (1 +
√

4K + 3),
then G∗ does contain a cycle of length four, hence cKK3/2 ≥ N where 1

2 ≤ cK ≤ c3 = 3−
1
2 and cK → 1/2.

To design optimal sparse arrays, we use an idea of Reiman (1958) that relies on finite combinatorial
geometries. Using a projective or affine plane, rows are associated with points, and columns are associated
with lines. A clone can be placed in a cell if the corresponding row’s point is incident to the corresponding
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column’s line. By the properties of the combinatorial geometries, each pair of points is incident to one line,
end every pair of lines intersect at at most one point, producing a sparse array.

For the sake of completeness, we describe in detail how an affine plane defines the pooling. Let m is a
prime power. We design a m2 × m2 sparse array for placing N = m3 clones, achieving the K = Θ(N2/3)
density. The number m is the size of a pool, i.e., the number of clones in a row or a column. Number the
rows as Ra,b with a, b ∈ {0, 1, . . . ,m−1}. Similarly, number the columns as Cx,y with x, y ∈ {0, 1, . . . ,m−1}.
Place a clone in each cell (Ra,b, Cx,y) for which ax+ b = y, where the arithmetic is carried out over the finite
field Fm. Figure 3b shows an example with m = 7.

3.2 Random shuffling

The principal advantage of PGI is the reduced cost of library preparations due to pooling. The number
of pools can be further reduced by departing from the two-dimensional structure of arrayed pooling, as
proposed by Barillot et al. (1991). A three-dimensional pooling strategy, for instance, can be based on a set
of m ×m arrays, arranged in m layers. In this case, in addition to row and column pools, layer pools are
also defined, so that each clone is included in three pools. Specifically, the clone in row i and column j in
layer l is included in row pool i, column pool j, and layer pool l. Such a cube-like design combines m3 clones
in 3m pools, an improvement over simple arrayed pooling in terms of number of libraries. However, this
reduction comes at the price of decreased indexing success: in order to deconvolute an index to a clone, one
needs hits from all the three pools. Applying the technique of Proposition 2, the probability of that event

can be approximated as pM ≈
(

1 − e−c M
3`

)3

. Figure 5 shows that in order to achieve the same indexing

success as with arrayed pooling, the read coverage c must be increased by a factor of two to three. Moreover,
three-dimensional pooling aggravates the problems of false positives and ambiguities. Finally, the number of
pools is not reduced as dramatically as it would seem at first sight: using 48× 48 arrays in 48 layers, about
110,000 clones are pooled in 144 pools. The same number of clones can be laid out on a 333 × 333 array,
resulting in 666 pools.

A useful idea is to repeat the pooling with the clones reshuffled on two or more arrays of the same size.
Taking the example of Figure 2a, it is unlikely that the clones B11, B12, B21, and B22 end up again in
the same configuration after the shuffling. Deconvolution is possible if after the shuffling, clone B12 is in
cell (R′

1, C
′
2) and B21 is in cell (R′

2, C
′
1), and alignments with fragments from the pools for Ri, Ci, R′

i, and C ′
i

are found, except if the clones B11 and B22 got assigned to cells (R′
1, C

′
1) and (R′

2, C
′
2). Figure 4 shows the

possible placements of clones in which the ambiguity is not resolved despite the shuffling. Our aim is to find
shufflings in which ambiguities depicted in Figure 4 do not occur. We prove that ambiguities caused by two
clones can be resolved with high probability when using random layouts.

Define the following notions. A rectangle is formed by the four clones at the intersections of two arbitrary
rows and two arbitrary columns. A rectangle is preserved after a shuffling if the same four clones are at the
intersections of exactly two rows and two columns on the reshuffled array, and the diagonals contain the
same two clone pairs as before (see Figure 4).

Proposition 5. Let R(m) be the number of preserved rectangles on a m×m array after a random shuffling.
Then, for the expected value ER(m),

ER(m) =
1
2
− 2

m

(
1 + o(1)

)
.

Moreover, for all m > 2, ER(m + 1) > ER(m).

[Figure 4 about here.]

Proof. Let R be an arbitrary rectangle in the array. We calculate the probability that R is preserved after
a random shuffling by counting the number of shufflings in which it is preserved. There are

(
m
2

)
choices for

selecting two rows for the position of the preserved rectangle. Similarly, there are
(
m
2

)
ways to select two
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columns. There are eight ways of placing the clones of the rectangle in the cells at the four intersections in
such a way that the diagonals are preserved (see Figure 4). There are (m2−4)! ways of placing the remaining
clones on the array. Thus, the total number of shufflings in which R is preserved equals

8
(

m

2

)2

(m2 − 4)! = 8
(

m(m− 1)
2

)2

(m2 − 4)!.

Dividing this number by the number of possible shufflings gives the probability of preserving R:

p =
8
(
m
2

)2

(m2)(m2 − 1)(m2 − 2)(m2 − 3)
. (6)

For every rectangle R, define the indicator variable I(R) for the event that it is preserved. Obviously,
EI(R) = p. Using the linearity of expectations and Equation (6),

ER(m) =
∑
R

EI(R) =
(

m

2

)2

p =
1
2
· m4(m− 1)4

m2(m2 − 1)(m2 − 2)(m2 − 3)
. (7)

Thus,

ER(m) =
1
2

(
1− 4

m

(
1 + o(1)

))
,

proving the claim. Equation (7) also implies that ER(m+1)
ER(m) > 1 for m > 2, and thus ER(m) is increasing

monotonically.

Consequently, the expected number of preserved rectangles equals 1
2 asymptotically. Proposition 5 also

implies that with significant probability, a random shuffling produces an array with at most one preserved
rectangle. Specifically, by Markov’s inequality, P

{
R(m) ≥ 1

}
≤ ER(m), and thus

P
{

R(m) = 0
}
≥ 1

2
+

2
m

(
1 + o(1)

)
.

In particular, P
{

R(m) = 0
}

> 1
2 holds for all m > 2. Therefore, a random shuffling will preserve no

rectangles with at least 1
2 probability. This allows us to use a random algorithm: pick a random shuffling, and

count the number of preserved rectangles. If that number is greater than zero, repeat the step. The algorithm
finishes in at most two steps on average, and takes more than one hundred steps with less than 10−33

probability.
Practical considerations may constrain pooling designs to those that can be implemented using arrays of

certain sizes such as the standard 8 × 12 geometry or its multiples. Proposition 5 can be extended to non-
square arrays without much difficulty. Let R(mr,mc) be the number of preserved rectangles on a mr ×mc

array after a random shuffling. Then, for the expected value ER(mr,mc),

ER(mr,mc) =
1
2
− mr + mc

mrmc

(
1 + o(1)

)
.

Consequently, random shuffling can be used in conjunction with non-square arrays.

3.3 Transversal designs

Random shufflings can be used to avoid ambiguities caused by two overlapping clones, as shown in 3.2. For
higher order ambiguities, we consider collinear clones. A clone pair is called collinear if they are placed in
the same row or column on one of the arrays. A pooling design based on shuffled arrays satisfies the unique
collinearity condition, if every pair of clones appears in the same row or same column at most once.
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A simple argument (e.g., Du and Hwang 2000) shows that if one uses d shuffled arrays with the unique
collinearity condition, every set of up to (2d− 1) identical or overlapping clones is uniquely identified by the
pools they are included in, and thus indexes to (2d − 1) identical clones can be deconvoluted. Let B be a
set with at most (2d− 1) identical or overlapping clones, and let B′ be an arbitrary clone that is not in B.
The clone B′ is collinear at most once with every element of B, and thus at least one of the 2d pools B′ is
included in contains no clone from B. Hence, B′ must be excluded from deconvolution of an index to B.
Similarly, for an arbitrary subset B′ ⊂ B, a clone B ∈ B−B′ appears in at least one pool that contains no
element of B′, and thus B must be included in the deconvolution. Consequently, every clone of B is uniquely
indexed when using d arrays.

Shuffled arrays with the unique collinearity condition were proposed by Barillot et al. (1991) for
hybridization-based clone mapping. It is known (Du and Hwang 2000) that the existence of d > 1 ar-
rays of size m×m is equivalent to the existence of 2(d−1) of mutually orthogonal Latin squares (Beth et al.
1999) of order m. Accordingly, an affine plane of order q can be used to produce up to q/2 arrays of size q×q
satisfying unique collinearity (Raghavarao 1971). For completeness’ sake, we describe here such a design in
detail. Let q be a prime power. Based on results of design theory (Beth et al. 1999), the following method
can be used for producing up to q/2 reshuffled arrays, each of size q × q, for pooling q2 clones. Let Fq be a
finite field of size q. Pools are associated with elements of F2

q, numbered as Px,y : x, y ∈ Fq. Define the pool
set Pi = {Pi,y : y ∈ Fq} for all i. Clones are also associated with elements of F2

q, numbered as Ba,b : a, b ∈ Fq.
Pool Px,y contains clone Ba,b if and only if y = a + bx holds.

Proposition 6. The pooling design described above has the following properties.

1. each pool belongs to exactly one pool set;

2. each clone is included in exactly one pool from each pool set;

3. for every pair of pools that are not in the same pool set there is exactly one clone that is included in
both pools.

(Proven by Raghavarao (1971) among others.)
Let d ≤ q/2. This pooling design can be used for arranging the clones on d reshuffled arrays, each one

of size q × q. Select 2d pool sets, and pair them arbitrarily. Based on Properties 1–3 of the design, every
pool set pair can define an array layout, by setting one pool set as the row pools and the other pool set as
the column pools. Moreover, this set of reshuffled arrays gives a pooling satisfying the unique collinearity
condition by Property 3 since two clones are in the same row or column on at most one array.

A transversal design is a pooling design for which pools are partitioned into pool sets satisfying Properties
1–3 of Proposition 6. Transversal designs with an even number of pool sets correspond to shuffled arrays
with unique collinearity and vice versa. For a pooling design with n pool sets, every clone is included in n
pools, and any subset with at least 2 of those pools uniquely identifies the clone. The success of indexing in
the general case is shown by the following claim.

Proposition 7. Consider an index with effective length M between a clone and a reference sequence. If the
clone appears in n pools, and a set of at least k ≤ n of these pools uniquely determines the clone, then the
probability that the index is detected equals

pM =
n∑

t=k

(
n

t

)
(1− p0)tpn−t

0 (8)

where p0 ≈ e−c M
n` .

Proof. This proof generalizes that of Proposition 2. The number of random shotgun reads from one pool
associated with the clone equals cmL

n` . By Equation (3), the probability that at least one of them aligns with
the reference sequence equals

p≥1 = 1−
(

1− phit

m

) cmL
n`

≈ 1− e−c M
n` . (9)
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The probability that at least k pools generate reads aligning to the reference sequence equals
n∑

t=k

(
n

t

)
pt
≥1(1− p≥1)n−t,

proving the claim with p0 = 1− p≥1.

3.4 Designs from linear error-correcting codes

Here we discuss pooling designs based on linear error-correcting codes, relying on results of Kautz and
Singleton (1964). Our goal is to define pooling designs in which each clone is included in n pools, with the
property that any k-subset of those pools uniquely identifies the clone. In other words, we aim to generalize
the “2-out-of-n” property of transversal designs to “k-out-of-n.”

An error-correcting code (MacWilliams and Sloane 1977) over a finite field Fq is a set C of vectors over Fq

with length n; i.e., C ⊆ Fn
q . The elements of C are called codewords, and the length n of the codewords

is called the code length. The code C has minimum distance d if two codewords always differ in at least d
coordinates.

An arbitrary code C over a finite field Fq with length n can be employed to define a pooling design in the
following manner. Pools are associated with elements of {1, . . . , n}×Fq, denoted by Pi,x : i ∈ {1, . . . , n}, x ∈
Fq. Clones are associated with the codewords. The clone corresponding to the codeword c is included in
pool Pi,x if the i-th coordinate of c equals x. Obviously, each clone is included in exactly n pools. If C has
minimum distance d, then any subset with at least k = n − d + 1 of those n pools uniquely identifies the
clone. This method defines a pooling with K = qn pools for N = |C| clones. Looking at the rows of the
corresponding pooling matrix M, this pooling method relies on a mapping f : Fn

q 7→ Fqn
2 of q-ary vectors

onto binary vectors, by which the row vectors are obtained from the codewords.
A possible shortcoming of this mapping is that it may happen that the pools have unequal sizes, or, in

other words, that the columns of M have different binary weights. However, for a class of codes, called linear
codes, the pool sizes are balanced. A linear code of dimension k is defined by a k×n generator matrix G with
entries over Fq in the following manner. For each row vector u of length k over Fq, a codeword c is generated
by calculating c = uG. The code is the set of all codewords obtained in this way. Such a linear code with
minimum distance d is called a [n, k, d] code. It is assumed that the rows of G are linearly independent, and
thus the number of codewords equals qk. Linear codes can lead to designs with balanced pool sizes as shown
by the next claim.

Proposition 8. Let C be a [n, k, d] code over Fq with generator matrix G, and let f : Fn
q 7→ Fqn

2 denote
the mapping of codewords onto binary vectors as defined above. Let u(1),u(2), . . . ,u(qk) be the lexicographic
enumeration of length k vectors over Fq. For an arbitrary 1 ≤ N ≤ qk, let the pooling matrix M be defined
by mapping the first N codewords {c(i) = u(i)G : i = 1, . . . , N} onto binary vectors via f . If the last row
of G has no zero entries, then every column of M has

⌈
N
q

⌉
or

⌊
N
q

⌋
ones, i.e., every pool contains about

m = N
q clones.

Proof. Let u(t),u(t+1), . . . ,u(t+q−1) be length k vectors that are consecutive in the lexicographic enumeration,
and differ only in their last coordinates. Consider the corresponding clones associated with the codewords
c(t) = u(t)G, . . . , c(t+q−1) = u(t+q−1)G. Denote the elements of the code’s generator matrix G by gi,j

with row indices i = 1, . . . , k and column indices j = 1, . . . , n. The clone associated with an arbitrary
codeword c(t′) is included in pool Pj,x if and only if the j-th coordinate of c(t′) equals x, i.e., if

k∑
i=1

u(t′)
i gi,j = x.

Let yj =
∑k−1

i=1 u(t′)
i gi,j . By our selection of t, yj has the same value for t′ = t, . . . , t + q − 1. Thus the clone

associated with c(t′) is included in every pool Pj,xt′,j
with xt′,j = u(t′)

k gk,j + yj . If gk,j is not 0, then the set
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{xt,j , . . . , xt+q−1,j} contains all elements of Fq for every j. Consequently, every pool contains exactly one of
the clones associated with the codewords c(t), . . . , c(t+q−1). Let t0 be the largest integer such that t0 ≤ N
and it is divisible by q without remainder. If the lexicographic enumeration of all vectors is truncated at the
N -th element, the first t0 − 1 clones contribute equally to every pool, and the remaining (N − t0 + 1) clones
are included at most once in every pool. Hence every pool contains (t0/q) or (1 + t0/q) clones.

We have no knowledge of a similar statement to Proposition 8 in the literature. It is useful in our context
since it amounts to a simple way of selecting the N codewords for the N clones.

An important class of linear codes is the family of Reed-Solomon codes, which are particularly interesting
for our purposes. A [n, k, d] code is maximum distance separable (MDS) if it has minimum distance d =
n− k + 1. (The inequality d ≤ n− k + 1 holds for all linear codes, so MDS codes achieve maximum distance
for fixed code length and dimension, hence the name.) The Reed-Solomon codes are MDS codes over Fq, and
are defined as follows. Let n = q− 1, and α1, α2, . . . , αn be different non-zero elements of Fq. The generator
matrix G of the RS(n, k) code is

G =


1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

. . . . . . . . . . . . . . . . . . . . . . . .

αk−1
1 αk−1

2 . . . αk−1
n

 .

By using a mapping f : Fn
q 7→ Fqn

2 for the first N ≤ qk codewords, as before, a pooling design is obtained
with N clones and K = qn pools. This design has many advantageous properties. Since αk−1

i 6= 0 in the last
row of G, Proposition 8 applies and thus each pool has about the same size m = N

q . Each clone is included
in n pools, and by the MDS property, a k-subset of those pools uniquely identifies the clone. Moreover, it
can be shown (Kautz and Singleton 1964) that if t = bn−1

k−1 c, then any t-set of clones are uniquely identified
by the pools they are included in, i.e., there are no ambiguities in deconvoluting indexes comprising hits that
originate from up to t clones.

For a pooling design based on the RS(n, k) code, define the pool sets Pi = {Pi,x : x ∈ Fq} for all i =
1, . . . , n. Such pooling designs generalize transversal designs as shown by the following result.

Proposition 9. The pooling design based on the RS(n, k) code as described above has the following properties.

1. each pool belongs to exactly one pool set;

2. each clone is included in exactly one pool from each pool set;

3. for every k-set of pools that belong to different pool sets, there is exactly one clone that is included in
all pools.

Proof. Property 1 is trivial. For Property 2, notice that the clone associated with the codeword c is included
in the pool Pi,ci

in every Pi, and in no other pools. Property 3 follows from the MDS property of the Reed-
Solomon code: there is exactly one codeword that matches at least k coordinates of an arbitrary length n
vector.

Remark. The design based on the RS(n, 2) code gives the same transversal design we described in §3.3.
When k = 2, G has the structure

G =
(

1 1 . . . 1
α1 α2 . . . αn

)
.

Therefore, the pool set Pi of the RS(n, 2)-based design corresponds to the pool set Pαi
of the transversal

design, and the clone for the codeword c = [a, b]G of the code-based design corresponds to clone Ba,b of the
transversal design.
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3.5 Comparison of pooling designs

Various pooling designs (Barillot et al. 1991; Bruno et al. 1995; Chateauneuf et al. 1999; Macula 1999;
Ngo and Du 2002) have been proposed in recent years, mostly in the context of BAC library screening
through hybridization. Many group testing techniques (Raghavarao 1971; Du and Hwang 2000) are also
applicable to the construction of pooling designs. The main advantage of pooling designs is the reduced cost
of experiments, but when comparing pooling designs, other features may also need to be considered. Two
features generally sought for in pooling designs are error-correcting and ambiguity-resolving capabilities.

[Figure 5 about here.]

The power of resolving ambiguities is usually termed as the t-cover-free property: for all t-sets of clones,
the set of pools in which they are included is a set that is not a superset of the set of pools in which an
arbitrary separate clone is included. An example is the pooling design based on a Reed-Solomon code: the
RS(n, k) code leads to a t-cover-free design with t = bn−1

k−1 c (Kautz and Singleton 1964). Another example is
a transversal design with (t+1) pool sets: such a design is t-cover-free. Asymptotic properties of t-cover-free
designs have been extensively studied (Kautz and Singleton 1964; D’yachkov and Rykov 1982; Erdős et al.
1985; Hwang and Sós 1987; Ruszinkó 1994; Csűrös and Ruszinkó 2004).

We characterized the error-correcting property of designs as the k-out-of-n property: every clone is
included in n pools and k out of those pools uniquely identify the clone. In pooled hybridization experiments
both false positive and false negative errors are to be considered. However, the probability of false positives
in pooled shotgun experiments, i.e., that a significant local alignment is produced solely by read errors, is
negligible. Another difference from most group testing applications is that the test error depends on the
pooling design as described in Proposition 7. Figure 5 compares the indexing failure probabilities for several
pooling designs with the k-out-of-n property. An important observation is that for a fixed k and coverage
level, even as n increases, the indexing failure probability stays positive, determined by the value of k. This
positive limit is the value of the Poisson cumulative distribution function with expected value cM/` at (k−1),
as shown by the following result.

Proposition 10. Consider an index with effective length M between a clone and a reference sequence. For
a family of pooling schemes such that the clone appears in n pools, and a set of at least k ≤ n of these pools
uniquely determines the clone, where k is kept constant while n →∞,

lim
n→∞

pM = 1− e−c M
`

k−1∑
t=0

(
cM

`

)t

t!
. (10)

Proof. The key observation in the proof is that in Equation (9),

lim
n→∞

np≥1 = c
M

`
.

Then, by standard results in probability theory (Rényi 1970), the binomial distribution with parameters n
and p≥1 converges to the Poisson distribution with expected value cM

` .

[Table 1 about here.]

[Table 2 about here.]

Propositions 7 and 10 suggest that “advanced” pooling designs with large k and n are not necessarily
good since the higher indexing failure probability can be reduced only by increasing the read coverage: what
we save on library preparations, we may lose on shotgun read collection. Tables 1 and 2 compare designs
equivalent to the use of 24 × 24 and 96 × 96 arrays not only in their indexing success probabilities but
also in terms of their cost benefits. While three-dimensional pooling needs the fewest number of pools, it
is impractical as its indexing failure is much more likely than other design’s, it has no ambiguity-resolving
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capabilities, and its pool sizes grow rapidly with the number of clones — it is unclear at this point how to
achieve uniform clone representation in pools of several hundred clones. The designs based on Reed-Solomon
codes seem also impractical due to large pool sizes, and to the large number of pools a clone needs to
be included in. Nevertheless, their indexing failure probabilities are comparable to those of arrayed pooling
designs, and they provide the best ambiguity-resolving capabilities. Sparse array designs need many pools for
realistic sized projects and thus have limited benefits, especially in light of their modest ambiguity-resolving
features. In particular, transversal designs with three arrays outperform the sparse designs in every aspect.
On the other hand, three arrays may be prohibitively expensive for small (24 × 24) arrays. In conclusion,
a transversal design with two arrays has the most advantages. In case of mammalian genomes, the 9216
clones laid out on a 96 × 96 array represent 0.5–1X clone coverage of the genome, and thus are unlikely
to contain many ambiguities with four or more overlapping clones. Consequently, comparative mapping of
mammalian genomes can be performed using groups of 9216 clones, where every group is pooled with a
two-array transversal design.
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4 Experiments

We tested the efficiency of the PGI method for indexing mouse and rat clones by human reference sequences in
simulated experiments. The reference databases included the public human genome draft sequence (IHGSC
2001), the Human Transcript Database (HTDB) (Bouck et al. 2000), and the Unigene database of human
transcripts (Schuler 1997). Local alignments were computed using BLASTN (Altschul et al. 1997) with
default search parameters (word size=11, gap open cost=5, gap extension cost=2, mismatch penalty=2). A
hit was defined as a local alignment with an E-value less than 10−5, a length of at least 40 bases, and a score
of at least 60.

In the case of transcribed reference sequences, hits on the same human reference sequence were grouped
together to form the indexes. In the case of genomic sequences, we grouped close hits together within the
same reference sequence to form the indexes. In particular, indexes were defined as maximal sets of hits on
the same reference sequence, with a certain threshold on the maximum distance between consecutive hits,
called the resolution. After experimenting with resolution values between 1kbp and 200kbp, we decided to
use 2kbp resolution throughout the experiments. A particular difficulty we encountered in the experiments
was the abundance of repetitive elements in eukaryotic DNA. If part of a shotgun read has many homologies
in the human sequences, as is the case with common repeat sequences, the read generates many hits. As a
result, the same human sequence may be homologous to many reads. Accordingly, repeats in the arrayed
clones correspond to highly ambiguous indexes, and human-specific repeats may produce large number of
indexes to the same clone. Whereas in the cases of rat and mouse, it is possible to use a database of repeat
sequences such as Repbase (Jurka 2000), such information is not available for many other species. We thus
resorted to a different technique for filtering out repeats. We simply discarded shotgun reads that generated
more than twelve hits, thereby eliminating almost all repeats without using a database of repeated elements.

For the deconvolution, we set the maximum number of clones to three, that is, each index was assigned
to one, two, or three clones, or was declared ambiguous.

Finally, due to the fact that pooling was simulated and that in all experiments the original clone for each
read was known enabled a straightforward test of accuracy of indexing: an index was considered accurate if
both reads deconvoluted to the correct original clone.

4.1 Mouse experiments

In one set of experiments we studied the efficiency of indexing mouse clones with human sequences. We
selected 207 phase 3 sequences in the mouse sequencing project with lengths greater than 50k bases. We
used four pooling designs: two 14× 15 arrays for (random) double shuffling, a 39× 39 sparse array, shown in
Figure 3a, two 16× 16 arrays for transversal design, and a design based on the RS(6, 3) code with 42 pools.

[Table 3 about here.]

Random shotgun reads were produced by simulation. Each random read from a fixed pool was obtained
in the following manner. A clone was selected randomly with probabilities proportional to clone lengths. A
read length was picked using a Poisson distribution with mean ` = 550, truncated at 1000. The random
position of the read was picked uniformly from the possible places for the read length on the selected clone.
Each position of the read was corrupted independently with probability 0.01. The procedure was repeated
to attain the desired coverage within each pool. Fragments were generated for the different pooling designs
with c = 2. The results of the experiments are summarized in Table 3. The main finding is that 67%–88% of
the clones have at least one correct index, and 500–1600 correct indexes are created, depending on the array
design and the reference database. Note that advanced design methods significantly reduce the number of
false positives, as expected based on the discussion above. One of the reasons for the excellent performance
of the sparse array method is the fact that BAC redundancy in the data set does not exceed 2X. In the course
of the experiments, between 7% and 10% of a total of approximately 121,400 simulated reads gave alignments
against human sequences that were informative for the deconvolution, a percentage that is consistent with
the expected overall level of genomic sequence conservation between mouse and human.
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[Figure 6 about here.]

In order to explore the effect of read coverage on the success of indexing, we repeated the indexing with
lower coverage levels. We resampled the simulated reads by selecting appropriate portions randomly from
those produced with coverage 2. Figure 6 plots the number of indexed clones as a function of coverage. It
is worth noting that even for c = 0.5, about 2/3 of the clones get indexed by at least one human sequence.
In addition, the curves level off at about c = 1.0, and higher coverage levels yield limited benefits.

[Table 4 about here.]

Table 4 aims to assess how much information is lost solely by pooling. Using the same shotgun sequences
generated in the simulation experiments, we performed the clone indexing with the knowledge of which clone
the shotgun sequences originate from. BLAST parameters were the same as the ones used in the pooled
experiments, and we discarded reads that matched more than 12 Unigene sequences. We also discarded
indexes to more than three clones to exclude the effects of ambiguities. The table indicates that only
43–58% of the possible indexes are missed due to the pooling.

4.2 Rat experiments

In contrast to the mouse experiments, PGI simulation on rat was performed using publicly available real
shotgun reads from individual BACs being sequenced as part of the rat genome sequencing project. The
only simulated aspect was BAC pooling, for which we pooled reads from individual BACs computationally.
We selected a total of 625 rat BACs, each with more than 570 publicly available reads from the rat se-
quencing project. An average of 285 random reads per clone were used in each pool — corresponding to an
approximate c = 1.5 coverage. The results are summarized in Table 5.

[Table 5 about here.]

The lower percentage of correctly mapped clones only partially reflects the lower coverage (1.5 for rat
vs. 2 for mouse). A much more important factor contributing to the difference is the fact that the mouse
sequences used in our experiments are apparently richer in genes and thus contain more conserved regions
that contribute to the larger number of BACs correctly mapped onto human sequences.
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5 Discussion

PGI is a novel method for physical mapping of clones onto known macromolecular sequences. It employs
available sequences of humans and model organisms to index genomes of new organisms at a fraction of full
genome sequencings cost. The key idea of PGI is the pooled shotgun library construction, which reduces the
amount of subclone library preparations down to the order of the square root of the number of BAC clones.
In addition to setting priorities for targeted sequencing, PGI has the advantage that it relies on shotgun
libraries and sequences that can be reused in the sequencing phase.

We presented a probabilistic analysis of indexing success, and described pooling designs that increase
the efficiency of in silico deconvolution of pooled shotgun reads. Using publicly available mouse and rat
sequences, we demonstrated the power of the PGI method in simulated experiments. In particular, we
showed that using relatively few shotgun reads corresponding to 0.5-2.0 coverage of the clones, 60-90% of
the clones can be indexed with human genomic or transcribed sequences. Since our purpose of performing
the experiments was to show a proof of the PGI concept, we have not repeated them with different sets of
shotgun sequences. Moreover, we argue that different clones are sampled fairly independently: dependencies
are restricted to clones that share the same pool. Consequently, the numbers of Table 3 are sums of many
indicator variables with limited dependence, i.e., their variance should be small. This argument is further
supported by Figure 6, which plots ten independent samplings for each coverage level, and by Table 4,
which shows the results of five independent samplings. In both cases, the numbers vary very little across
experiments. The experiments support our theoretical analysis in §3.5: among the studied pooling designs,
two-array transversal designs balance cost and performance the best.

Comparative physical maps will allow efficient, targeted, cross-species sequencing for the purpose of
comparative annotation of genomic regions in model organisms that are of particular biomedical importance.
Due to the low level of chromosomal rearrangements across mammals, the order of BACs mapped to a
reference mammalian genome corresponds almost exactly to the order of BACs along the indexed mammalian
genome. The BAC ordering can be used in the complete sequencing of the indexed organism. Moreover, the
reference sequences may guide the sequence assembly in a comparative sequencing approach (Milosavljevic
1999).

PGI constructs comparative BAC-based physical maps at a fraction (on the order of 1% for closely
related species) of the cost of full genome sequencing. PGI requires only minor changes in the BAC-based
sequencing pipeline already established in sequencing laboratories. BAC pooling is the key to the economy of
PGI. The depth of shotgun sequencing is adjusted to fit the evolutionary distance of comparatively mapped
organisms. Shotgun sequencing, which represents the bulk of the effort involved in a PGI project, provides
useful information irrespective of the pooling scheme. In other words, pooling by itself does not represent a
significant overhead, and yet leads to a comprehensive and accurate comparative physical map.

PGI is not limited to the mapping of BAC clones. Other applications currently include the mapping of
arrayed cDNA clones onto genomic, or full or partial cDNA sequences within and across species, and the
mapping of bacterial genomic clones across different bacterial strains.

BACs can be comparatively mapped by BAC-end sequencing (Venter et al. 1996) and subsequent an-
choring of BAC ends onto orthologous regions of a related genome (e.g., Fujiyama et al. 2002). Due to the
size of clone insert, a BAC end sequence read is significantly more costly than a read from a short-insert
shotgun library that was prepared from a BAC pool. On the other hand, BAC-end sequencing does not incur
the library preparation cost for each BAC pool. In contrast to BAC-end sequencing, PGI maps shotgun
sequences obtained by randomly sampling the whole BAC, not just the ends. The sequencing depth may
be adjusted to fit evolutionary distance. Genomic rearrangements may be robustly detected via PGI by
mapping two halves of a single BAC spanning a breakpoint to two distant locations in the genome of a
related organism. In contrast, confident detection of a breakpoint by BAC-end sequencing involves mapping
of at least two BACs across a breakpoint.

Two new experimental aspects of PGI technology are currently in development. First, sampling efficiency
of PGI is increased by an order of magnitude by sequencing short mappable sequence tags (50–150 bp). This
is accomplished by breaking the pooled DNA into short fragments (“tags”), forming concatemers by ligation,
and by sequencing the concatemers (Andersson et al. 1997; Yu et al. 1997; Velculescu et al. 2000). Assuming
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a sequence read of 750 bp and tag size of 50–150 bp, a total of 5 to 15 different clones are sampled in a single
sequencing reaction. This method, which we refer to as Short-Tag PGI is particularly useful when the clone
sequences and reference sequences are highly similar, as is the case when mapping across primates. The
second improvement involves the pooling of the pools prior to shotgun library preparation. Shotgun reads
(concatemers of tags from an individual pool) are assigned back to the original pool through the sequencing
of a short pool-specific “barcode”, which is introduced into the concatemers prior to pooling. This second
improvement has the potential to reduce the library preparation cost by a factor of 24 to 192. Taken together,
the two improvements have the potential to produce by far the most economical method for comparative
physical mapping of BAC clones.
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Figure 1: Pooled Genomic Indexing (PGI)
The PGI method maps arrayed clones of one species onto genomic sequence of another (5). DNA from clones
are pooled together in rows (1) and columns (2). The pools are shotgun sequenced. If shotgun sequence reads
from a row and a column match the reference sequence (3 and 4 respectively) within a short distance (6), the
reads are assigned to the clone at the intersection of the row and the column. The clone is simultaneously
mapped onto the region between the matches. The segment of the reference sequence between the two
matches is said to index the clone.
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Figure 2: Ambiguities and false positives
The left-hand side shows ambiguity caused by overlap or homology between clones. Due to an overlap between
clones B12 and B21, alignments from the pools for R1, R2, C1, C2 are observed within a close distance on
the reference sequence. The index cannot be deconvoluted since it may originate from a homology between
clones B11 and B22. The right-hand side shows that the same overlap may cause the false positive indexing
of clone B11 when not all pools give matching reads due to a low read coverage.
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Figure 3: Sparse arrays
The left-hand side shows the sparse array used in conjunction with the mouse experiments. This 39 × 39
array contains 207 clones, placed at the darkened cells. The array was obtained by randomly adding clones
while preserving the sparse property, i.e., the property that for all choices of two rows and two columns, at
most three out of the four cells at the intersections have clones assigned to them. The right-hand side shows
a 49×49 sparse array for placing 343 clones, obtained systematically using the construction described in the
text.
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Figure 4: Preserved rectangles
Possible placements of four clones (1–4) within two rows and two columns forming a rectangle, which give
rise to the same ambiguity.
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Figure 5: Failure probabilities
The graphs on the left-hand side show the probabilities for failing to find an index, as a function of the
effective length. The values are calculated from Proposition 7 for simple arraying and double shuffling with
unique collinearity, as well as for designs based on the RS(6, 3) and RS(42, 3) codes, and the three-dimensional
design (3D). Notice that in case of a simple index, the failure probabilities for the sparse array design are the
same as for the simple array. The graphs on the right-hand side compare the failure probabilities of pooling
designs with the k-out-of-n property for an index with cM/` = 10, as given by Proposition 7. The graphs
on both sides are plotted for coverage c = 1 and expected shotgun read length ` = 500.
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Figure 6: Mapping success vs. read coverage
Number of correctly mapped clones is indicated as a function of read coverage for three different pooling
schemes. PGI was tested in a simulated experiment involving 207 publicly available mouse genomic sequences
of length between 50kbp and 300kbp. Pooling and shotgun sequencing were then simulated. For each coverage
level, reads for c = 2 were resampled ten times. Graphs go through the median values for four poling designs:
simple (smpl), shuffled (shfl), and sparse (sprs), and Reed-Solomon (rs63). Deconvolution was performed
using human Unigene database. Notice that the curves level off at approximately c = 1.0, indicating limited
benefit of much greater read coverages.
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design N K n m amb indexing failure probability
cM/` = 2 cM/` = 5 cM/` = 10 cM/` = 20

simple 576 48 2 24 1 0.60 0.16 0.013 9.1 · 10−5

sparse 512 128 2 8 2 0.60 0.16 0.013 9.1 · 10−5

double 576 96 4 24 3 0.49 0.074 2.1 · 10−3 1.2 · 10−6

triple 576 144 6 24 5 0.46 0.059 1.2 · 10−3 3.4 · 10−7

3D 512 24 3 64 1 0.88 0.47 0.10 3.8 · 10−3

RS(7, 3) 512 56 7 64 3 0.76 0.21 0.011 1.2 · 10−5

none 576 576 — — 576 0.14 6.7 · 10−3 4.5 · 10−5 2.1 · 10−9

Table 1: Comparison of pooling designs for 512–576 clones
Columns: N is the number of clones, K is the number of shotgun libraries needed (the number of pools),
n is the number of pools a clone appears in, m is the number of clones in a pool. Column amb gives
the maximum resolvable ambiguity, i.e., the maximum number of clones an index can be deconvoluted
to. Indexing failure probabilities are calculated from Equation (8). With read coverage c = 1 and shotgun
sequence length ` = 500, the corresponding effective lengths are 1000, 2500, 5000, and 10000 bp, respectively.
The simple design is based on a 24 × 24 array; the sparse design is based on an affine plane of order 8; the
double and triple designs use two and three 24× 24 arrays, respectively; the 3D design is three-dimensional
pooling with a 8× 8× 8 cube; the RS(6, 3) design is based on the corresponding Reed-Solomon code; none
describes the case of preparing a shotgun library for every clone individually for the purposes of comparative
mapping.
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design N K n m amb indexing failure probability
cM/` = 1 cM/` = 5 cM/` = 10 cM/` = 20

simple 9216 192 2 96 1 0.60 0.16 0.013 9.1 · 10−5

sparse 12167 1058 2 23 2 0.60 0.16 0.013 9.1 · 10−5

double 9216 384 4 96 3 0.49 0.074 2.1 · 10−3 1.2 · 10−6

triple 9216 576 6 96 5 0.46 0.059 1.2 · 10−3 3.4 · 10−7

3D 9261 63 3 441 1 0.88 0.47 0.10 3.8 · 10−3

RS(22, 3) 9223 506 23 401 10 0.70 0.15 4.1 · 10−3 1.1 · 10−6

none 9216 9216 — — 9216 0.14 6.7 · 10−3 4.5 · 10−5 2.1 · 10−9

Table 2: Comparison of pooling designs for 9216–12167 clones
Columns are the same as in Table 1. The simple design is based on a 96×96 array; the sparse design is based
on an affine plane of order 23; the double and triple designs use two and three 96 × 96 arrays, respectively;
the 3D design is three-dimensional pooling with a 21 × 21 × 21 cube; the RS(22, 3) design is based on the
corresponding Reed-Solomon code; none describes the case of preparing a shotgun library for every clone
individually for the purposes of comparative mapping.
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Pools Number of correctly indexed clones Number of correct indexes / false positives

UG HTDB HS UG HTDB HS

simple 29 159 (77%) 139 (67%) 172 (83%) 723 / 248 488 / 108 1472 / 698

RS(6, 3) 42 172 (83%) - - 611 / 150 - -

shuffled 58 172 (83%) 150 (72%) 180 (87%) 756 / 76 514 / 18 1549 / 238

transversal 64 181 (87 %) - - 748 / 100 - -

sparse 78 175 (85%) 152 (74%) 185 (88%) 823 / 22 569 / 11 1634 / 69

Table 3: Indexing of mouse clones
Experimental results for simulated indexing of 207 mouse clones with coverage level 2. The table gives the results
for five pooling designs (simple, random shuffled, sparse array, transversal design, and RS(6, 3)), and three databases
of reference sequences: Unigene (UG), HTDB, and human genome draft (HS). The transversal and RS(6, 3) designs
were used with the UG database only.
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Method With pooling Without pooling
Indexes Indexed clones Indexes Indexed clones

simple 723 159 (77%) 1391 198 (96%)
RS(6, 3) 611 172 (83%) 1438 198 (96%)
shuffled 756 172 (83%) 1395 196 (95%)
transversal 748 181 (87%) 1368 195 (94%)
sparse 823 175 (85%) 1432 198 (96%)

Table 4: Loss of information due to pooling
The table lists the number of correct indexes and correctly indexed clones when indexing mouse clones with
Unigene sequences.
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correct indexes false positives indexed clones

simple 1418 236 384 (61%)

shuffled 1383 30 409 (65%)

sparse 1574 17 451 (72%)

Table 5: Indexing rat clones
This table show the experimental results on simulated indexing of 625 rat clones by Unigene sequences with coverage
level 1.5.
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