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Abstract1

Homologous genes originate from a common ancestor through vertical2

inheritance, duplication or horizontal gene transfer. Entire homolog fam-3

ilies spawned by a single ancestral gene can be identified across multiple4

genomes based on protein sequence similarity. The sequences, however, do5

not always reveal conclusively the history of large families. In order to study6

the evolution of complete gene repertoires, we propose here a mathematical7

framework that does not rely on resolved histories. We show that so-called8

phylogenetic profiles, formed by family sizes across multiple genomes, are9

sufficient to infer principal evolutionary trends. The main novelty in our ap-10

proach is an efficient algorithm to compute the likelihood of a phylogenetic11

profile in a model of birth-and-death processes acting on a phylogeny.12

We examine known gene families in 28 archaeal genomes using a proba-13

bilistic model that involves lineage- and family-specific components of gene14

acquisition, duplication, and loss. The model enables us to consider all pos-15

sible histories when inferring statistics about archaeal evolution. According16

to our reconstruction, most lineages are characterized by a net loss of gene17

families. Major increases in gene repertoire have occurred only a few times.18

Our reconstruction underlines the importance of persistent streamlining pro-19

cesses in shaping genome composition in Archaea. It also suggests that early20

archaeal genomes were as complex as typical modern ones, and even show21

signs, in the case of the methanogenic ancestor, of an extremely large gene22

repertoire.23
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Introduction24

The evolution of homologous gene families, i.e., genes of common ancestry, is25

enmeshed within species histories in a complex manner (Koonin, 2005). Con-26

comitantly with the diversification of organismal lineages, gene families expand27

by duplications, individual genes get eliminated, and new genes arrive by lateral28

transfer. It is now clear that de novo gene formation and vertical processes (Snel29

et al., 2002; Henikoff et al., 1997), such as duplication and loss, act in concert with30

horizontal gene transfer (Boucher et al., 2003; Gogarten and Townsend, 2005).31

Gene families are identified in current practice by pairwise sequence compar-32

isons, coupled with the clustering of postulated homolog pairs (Tatusov et al.,33

1997; Alexeyenko et al., 2006) The phylogenetic profile of a gene family com-34

prises the family size across a set of organisms, i.e., the number of homologs within35

the same family in each genome. Such profiles are extremely informative even36

without taking the gene sequences into account: profile data sets have been used37

to construct organismal phylogenies (Fitz-Gibbon and House, 1999; Snel et al.,38

1999; Tekaia et al., 1999) and to infer ancestral gene content (Mirkin et al., 2003;39

Iwasaki and Takagi, 2007); similar and complementary profiles hint at functional40

associations (Tatusov et al., 1997; Pellegrini et al., 1999). Considering various41

evolutionary processes in a mathematical model of gene family evolution is chal-42

lenging. One main element that distinguishes the present study from past work43

is the elaboration of a likelihood framework for phylogenetic profiles that simul-44

taneously accounts for gene duplication, loss, and acquisition. In particular, we45

describe an algorithm for the exact computation of the likelihood in a phylogenetic46

gain-loss-duplication model.47
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The present study uses a gain-loss-duplication model to address gene content48

evolution in Archaea. Relying on a complete set of known homolog families in 2849

sequenced genomes, we inferred lineage- and family-specific statistics. In a pre-50

cursory step, we constructed a plausible phylogeny using 88 universally conserved51

proteins, which we believe is a noteworthy result on its own, as the phylogeny52

resolves some problematic euryarchaeal branching orders (involving Thermoplas-53

matales, Methanopyrus and Methanobacteriales) confidently. Gene loss emerges54

in our analysis as the dominant force that has shaped archaeal genomes through-55

out their history. Apparently, genome streamlining has been an ongoing process56

in all lineages with a fairly constant intensity, apart from dramatic genome com-57

pactions in endosymbiotic Archaea. Our reconstruction suggests that early Ar-58

chaea had a comparable genomic complexity to today’s organisms. In particular,59

the euryarchaeal ancestor of two classes of methanogens had a very large genome,60

resulting from one of the rare upsurges in gene content, similarly to some modern61

lineages of Methanosarcina and Halobacteria.62
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Methods63

Phylogenetic profiles in Archaea64

Phylogenetic profiles, sequences, and functional annotations were downloaded from65

the arCOG database of orthologous gene clusters in Archaea (Makarova et al.,66

2007) at ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG. The pro-67

files were amended with data on lineage-specific singletons and inparalog families68

that have no archaeal homologs outside of one genome (Yuri Wolf, personal com-69

munication), which was produced in the process of compiling the arCOG database.70

The following organisms are included in the study: Archæoglobus fulgidus71

(Arcfu), Haloarcula marismortui ATCC 43049 (Halma), Halobacterium sp. strain72

NRC-1 (Halsp), Methanosarcina acetivorans (Metac), Methanococcoides burtonii73

DSM 6242 (Metbu), Methanoculleus marisnigri JR1 (Metcu), Methanospirillum74

hungatei JF-1 (Methu), Methanocaldococcus jannaschii (Metja), Methanopyrus75

kandleri (Metka), Methanosarcina mazei (Metma), Methanococcus maripaludis76

S2 (Metmp), Methanosphaera stadtmanæ (Metst), Methanothermobacter thermoau-77

totrophicus (Metth), Nanoarchæum equitans (Naneq), Picrophilus torridus DSM78

9790 (Picto), Pyrococcus abyssi (Pyrab), Pyrococcus furiosus (Pyrfu), Thermo-79

plasma acidophilum (Theac), Thermococcus kodakaraensis KOD1 (Theko), Ther-80

moplasma volcanium (Thevo), Æropyrum pernix (Aerpe), Caldivirga maquilin-81

gensis IC-167 (Calma), Cenarchæum symbiosum (Censy), Hyperthermus butylicus82

(Hypbu), Pyrobaculum ærophilum (Pyrae), Sulfolobus solfataricus (Sulso); Sul-83

folobus acidocaldarius DSM 639 (Sulac), Thermofilum pendens Hrk 5 (Thepe)84

with the last eight classified as crenarchaeota. The abbreviations are those used85

by (Makarova et al., 2007) and the arCOG database.86
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Reconstruction of archaeal phylogeny87

The phylogeny was constructed using concatenated multiple alignments of se-88

lected orthologous protein sequences. The sequences were chosen from the arCOG89

database based on phylogenetic profiles: we selected all arCOG groups where ev-90

ery studied genome contained exactly one homolog. There are 88 such groups91

(see Supplemental Material for sequences), and 46 of those correspond to ribo-92

somal proteins. Alignments were done using the program Muscle (Edgar, 2004).93

Phylogenies were built by likelihood maximization using PhyML (Guindon and94

Gascuel, 2003), with the Jones-Taylor-Thornton substitution model and eight dis-95

crete Gamma categories and invariant sites. The expected number of substitutions96

per amino acid site was computed on each edge for the ribosomal proteins in the97

JTT+I+Γ8 model by PhyML. Bootstrap support values for the branches were com-98

puted by PhyML, using 500 replicates.99

Inference of gene content evolution100

We maximized the likelihood (see below for the likelihood computation) of the101

data set using a gain-loss-duplication model with a Poisson distribution at the root102

and four discrete Gamma categories capturing rate variation across families, for103

edge length tf and duplication λf each. For a given set of model parameters (three104

parameters — t̂eκ̂e, t̂eµ̂e, t̂eλ̂e — per edge, one for the root’s Poisson param-105

eter Γ, and two Gamma shape parameters for rate variation), the likelihood of106

each family was computed using (1) with the described methods of manipulating107

rate variation and correcting for absent profiles. The data set’s likelihood (i.e.,108

the product of family likelihoods) was then maximized numerically as a function109
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of the model parameters, using custom-made software implementing the Broyden-110

Fletcher-Goldfarb-Shanno conjugate gradient method and Brent’s one-dimensional111

optimization method (Press et al., 1997). Family sizes and lineage-specific events112

(gains,losses,expansions,contractions) were computed using posterior probabilities113

in the optimized gain-loss-duplication model.114

Phylogenetic birth-and-death model115

A phylogenetic birth-and-death model formalizes the evolution of an organism-116

specific census variable along a rooted phylogeny T . We consider only binary117

phylogenies here; the full set of methods applicable to multi-furcating phylogenies118

is described in the Supporting Information. The model specifies edge lengths, as119

well as birth-and-death processes (Ross, 1996; Kendall, 1949) acting on the edges.120

Populations of identical individuals evolve along the tree from the root towards121

the leaves by Galton-Watson processes. At non-leaf nodes of the tree, populations122

are instantaneously copied to evolve independently along the adjoining descen-123

dant edges. Let the random variable ξ(x) ∈ {0, 1, 2, . . . } denote the population124

count at every node x ∈ V(T ). Every edge xy is characterized by a loss rate µxy,125

a duplication rate λxy and a gain rate κxy. If
(
X(t) : t ≥ 0

)
is a linear birth-126

and-death process (Kendall, 1949; Takács, 1962) with these rate parameters, then127

P
{
ξ(y) = m

∣∣∣ ξ(x) = n
}

= P
{
X(txy) = m

∣∣∣ X(0) = n
}

, where txy > 0 is128

the edge length, which defines the time interval during which the birth-and-death129

process runs. The joint distribution of
(
ξ(x) : x ∈ V(T )

)
is determined by the phy-130

logeny, the edge lengths and rates, along with the distribution at the root ρ, denoted131

as γ(n) = P{ξ(ρ) = n}.132

It is assumed that one can observe the population counts at the terminal nodes133
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(i.e., leaves), but not at the inner nodes of the phylogeny. Since individuals are134

considered identical, we are also ignorant of the ancestral relationships between in-135

dividuals within and across populations. The population counts at the leaves form136

a phylogenetic profile, which is formally a function Φ: L(T ) 7→ {0, 1, 2, . . . },137

where L(T ) ⊂ V(T ) denote the set of leaf nodes. Our central problem is to com-138

pute the likelihood of a profile, i.e., the probability of the observed counts for fixed139

model parameters. Define the notation Φ(L′) =
(
Φ(x) : x ∈ L′

)
for the partial140

profile within a subset L′ ⊆ L(T ). Similarly, let ξ(L′) =
(
ξ(x) : x ∈ L′

)
denote141

the vector-valued random variable composed of individual population counts. The142

likelihood of Φ is the probability L = P
{
ξ
(
L(T )

)
= Φ

}
. Let Tx denote the sub-143

tree of T rooted at node x. Define the survival count range Mx for every node x as144

Mx =
∑

y∈L(Tx)
Φ(y). Clearly, the ranges can be calculated easily in a postorder145

traversal.146

For our discussion, we borrow standard terminology applied to homologous147

genes (Sonnhammer and Koonin, 2002). For every edge xy, the population of148

node y can be split by ancestry at node x: inparalog groups are formed by the149

progenies of each individual at x and a xenolog group is formed by the individuals150

whose ancestor immigrated into the population. When ξ(x) = n on the edge xy,151

then ξ(y) = η+
∑n

i=1 ζi, where η is the xenolog group size, and ζi are the indepen-152

dent and identically distributed inparalog group sizes. The distribution of xenolog153

and inparalog group sizes is the well-characterized transient distribution of the ap-154

propriate linear birth-and-death processes (Karlin and McGregor, 1958; Kendall,155

1949; Takács, 1962); see Supplemental Material. Namely, each ζi has a shifted156

geometric distribution, and for κ > 0, η has a negative binomial or Poisson distri-157

bution. The distributions’ parameters are known functions of the edge length txy158
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and rates κxy, λxy, µxy.159

Surviving lineages160

A key factor in inferring the likelihood formulas is the probability that a given in-161

dividual at a tree node x has no descendants at the leaves within the subtree rooted162

at x. The corresponding extinction probability is denoted by Dx, which can be163

computed in a postorder traversal (Csűrös and Miklós, 2006). An individual at164

node x is referred to as surviving if it has at least one progeny at the leaves de-165

scending from x. Let Ξ(x) denote the number of surviving individuals at each166

node x. The number of surviving xenologs and inparalogs follow the same class of167

distributions as the total number of xenologs and inparalogs (see Supplemental Ma-168

terial). Consequently, if ξ(x) = n on edge xy, then Ξ(y) = η +
∑n

i=1 ζi, where η169

is the surviving xenolog count with a Poisson or negative binomial distribution, and170

ζi are surviving paralog counts, with negative binomial distributions. The distri-171

butions’ parameters can be computed explicitly using the process parameters and172

the extinction probabilities. In the formulas to follow, we use the probabilities173

w∗y[m|n] = P{η +
∑n

i=1 ζi = m; ∀ζi > 0}, which can be computed by dynamic174

programming for all n,m ≤My in O(M2
y ) time (see Supplemental Material).175

Computing the likelihood176

We compute the likelihood using conditional survival likelihoods defined as the177

probability of observing the partial profile within Tx given the number of surviving178

individuals Ξ(x): Lx[n] = P
{
ξ
(
L(Tx)

)
= Φ

(
L(Tx)

) ∣∣∣ Ξ(x) = n
}

. For m >179

Mx, Lx[m] = 0. For valuesm = 0, 1, . . . ,Mx, the conditional survival likelihoods180

can be computed recursively as shown below.181
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If node x is a leaf, then182

Lx[n] =


0 if n 6= Φ(x);

1 if n = Φ(x).

If x is an inner node with children x1, x2, then Lx[n] can be expressed using Lxi [·]

and auxiliary values Bi;·,· for i = 1, 2 in the following manner. Auxiliary values

Bi;t,s are defined for i = 1, 2 and s = 0, . . . ,Mxi as follows.

Bi;0,s =
Mxi∑
m=0

w∗xi [m|s]Lxi [m] {0 ≤ s ≤Mxi}

B2;t,Mx2
= Gx2(0)B2;t−1,Mx2

B2;t,s = B2;t−1,s+1 +Gx2(0)B2;t−1,s {0 ≤ s < Mx2}

where Gxi(k) = P{ζ = k} for a surviving inparalog group at xi. In the above183

equations, 0 < t ≤Mx1 . For all n = 0, . . . ,Mx184

Lx[n] =
(
1−Dx

)−n ∑
0≤t≤Mx1
0≤s≤Mx2
t+s=n

(
n

s

)(
Dx1

)s
B1;0,tB2;t,s.

The complete likelihood is computed as185

L =
Mρ∑
m=0

Lρ[m]P{Ξ(ρ) = m}.

For some parametric distributions γ, there is a closed formula for P{Ξ(ρ) = m}. In186

particular, if γ is the stationary distribution for a gain-loss-duplication or a gain-loss187
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models, then Ξ(ρ) has a negative binomial or Poisson distribution, respectively.188

The likelihood for a Poisson distribution at the root is189

L =
Mρ∑
m=0

Lρ[m] exp
(
−Γ(1−Dρ)

)(Γ(1−Dρ)
)m

m!
(1)

where Γ is the mean family size at the root.190

The likelihood formula (1) is corrected in order to account for the fact that the191

data set does not contain all-absent profiles with Φ(x) = 0 for all leaves x, in a192

manner analogous to (Felsenstein, 1992).193

Family-specific rate variation is considered by computing the likelihood val-194

ues for each discrete rate category c characterized by factors (tc, κc, µc, λc). The195

factors in our analysis are either constant 1, or correspond to the expected values196

within the four quartiles of a Gamma distribution with mean 1.197
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Results and discussion198

Computational analysis of phylogenetic profiles199

Birth-and-death processes are commonly used to model a population of identi-200

cal individuals (Kendall, 1949; Karlin and McGregor, 1958) and waiting queues201

(Takács, 1962). Their use in modeling gene family evolution is justified by the202

fact that losses and duplications seem to occur independently between the mem-203

bers of multi-gene families (Nei and Rooney, 2005). The most general process we204

consider is a gain-loss-duplication process which is characterized by the rates of205

gain κ, loss µ and duplication λ: a population of size n grows by a rate of (λn+κ)206

and decreases by a rate of µn. In our context, the population comprises homologs207

of a given family in the genome. Gene acquisition occurs with a rate of κ, combin-208

ing various means such as innovation and lateral transfer. We model gene family209

evolution in a phylogenetic setting by associating gain-loss-duplication processes210

with the branches of a phylogenetic tree. The corresponding phylogenetic birth-211

and-death model defines a probabilistic framework for the evolution of gene family212

size. The observed family sizes at the terminal nodes form a phylogenetic profile.213

In principle, a phylogenetic birth-and-death model suits likelihood-based inference214

since it is a probabilistic graphical model (Jordan, 2004) with a tree structure. The215

mathematical difficulties stem from the fact that the state space of the processes216

(i.e., family size) is infinitely large. Consequently, routine computational tech-217

niques used to analyze molecular sequence evolution (Felsenstein, 1981) are not218

applicable. Previously proposed likelihood methods (Hahn et al., 2005; Spencer219

et al., 2006; Iwasaki and Takagi, 2007) have sidestepped the infinity problem by220
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using approximative calculations with bounds on maximal family size.221

We have introduced (Csűrös and Miklós, 2006) a procedure for computing222

the likelihood in a restricted gain-loss-duplication model (assuming 0 < κ and223

0 < λ < µ), without imposing artificial size bounds. The weakness of that pro-224

cedure is potential numerical instability, due to the use of alternating sums in the225

formulas. We found practical cases (such as the archaeal gene content study we226

report below), where the numerical instability led to serious errors. The novel pro-227

cedure presented here is numerically stable, as well as computationally efficient. It228

applies to arbitrary gain-loss-duplication models, including degenerate cases such229

as the one of (Hahn et al., 2005) with λ = µ and κ = 0. The algorithm takes230

O(M2n) time to complete for a phylogenetic profile over n species and M total231

number of genes (see Supplemental Material).232

Gene content evolution in Archaea233

Archaea constitute one of the three main domains of cellular life, and are notable234

for a spectacular diversity of adaptive strategies to extreme environments (Garrett235

and Klenk, 2006). We examined gene content evolution in Archaea. For the pur-236

poses of the study we have selected 28 completely sequenced genomes covering all237

major physiological and metabolic groups recognized in cultured Archaea: ther-238

mophiles, halophiles, acidophiles, nitrifiers and methanogens (Valentine, 2007).239

Homolog gene families were extracted from the arCOG (archaeal clusters of or-240

thologous groups) database (Makarova et al., 2007), and combined with groupings241

of genes that have no archaeal homologs outside of single genomes. The complete242

data set consists of 14216 families, of which 7461 are among the arCOGs.243
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Phylogenetic relationships244

Archaeal phylogenetic relationships have been resolved to an increasing degree of245

confidence (Forterre et al., 2006) with the aid of accumulating sequence data. Fig-246

ure 1 shows our consensual phylogeny based on maximum likelihood trees for con-247

catenated alignments of 46 ribosomal proteins (r-proteins) and 88 unique conserved248

proteins (uc-proteins), which are precisely those that have exactly one homolog in249

each sampled genome. Congruent phylogenies were proposed before (Forterre250

et al., 2006), based on complete phylogenomics evidence. In our study, r-proteins251

and uc-proteins show solid support for most recognized phylogenetic relationships,252

but provide contradictory signals for the placement of some euryarchaeal groups.253

Notably, both sequence data sets support the basal position of N. equitans, which254

was originally thought to be a specimen of a separate group from Euryarchaeota255

and Crenarchaeota (Waters et al., 2003), but is more likely an early-branching eu-256

ryarchaeal organism (Makarova and Koonin, 2005; Forterre et al., 2006). The data257

also support the early branching position of non-thermophilic crenarchaea repre-258

sented by C. symbiosum. In fact, non-thermophilic crenarchaea may constitute a259

separate phylum from Euryarchaota and Crenarchaeota, tentatively named Thau-260

marchaeota (Brochier-Armanet et al., 2008).261

[Figure 1 about here.]262

The observed uncertainties about euryarchaeal groups concern the placement263

of Thermoplasmata, and so-called Class I methanogens (Bapteste et al., 2005)264

comprising Methanopyrales, Methanobacteriales and Methanococcales. Thermo-265

plasmata were originally thought to be a an early-branching lineage of Euryarchaeota266

(Forterre et al., 2006), but analyses of r-proteins (Matte-Tailliez et al., 2002) have267
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provided strong evidence for their late-branching position after Class I methanogens268

as in Figure 1. R-proteins in our study support the late-branching of Thermo-269

plasmatales (89% bootstrap value), but a maximum-likelihood tree built from uc-270

proteins places Thermoplasmatales between Nanoarchaea and Thermococcales (66%271

BV). It has been argued that this placement is due to long-branch attraction (Matte-272

Tailliez et al., 2002; Brochier et al., 2004), a frequent systematic bias of sequence273

evolution models (Rodrı́guez-Ezpeleta et al., 2007). Indeed, after we removed274

N. equitans and C. symbiosum from the uc-protein data set, the late-branching po-275

sition of Thermoplasmatales regained solid support (100% BV).276

The correct phylogenetic position of M. kandleri (Metka) is one of the re-277

maining puzzles in archaeal evolution. The existence of close phylogenetic re-278

lationships between Class I methanogens is fairly certain, but different protein279

sets and taxonomic sampling give conflicting or weak indications (Slesarev et al.,280

2002; Brochier et al., 2004, 2005; Gao and Gupta, 2007) about the exact branch-281

ing order among Methanopyrales, Methanobacteriales and Methanococcales. R-282

proteins in our study give a weak support for the monophyly of Methanococcales283

and Methanobacteriales at the exclusion of Methanopyrales (49% BV) and faintly284

favor the paraphyly of Class I methanogens (37% BV for the immediate split of285

Methanopyrales between Thermococcales and Methanobacteriales/Methanococcales;286

see Supplemental Material). Uc-proteins, however, solidly point to the monophyly287

of Class I methanogens (> 97% BV). Interestingly, the maximum-likelihood trees288

built from uc-proteins do not resolve well the relationships between Halobacteri-289

ales, Methanosarcinales and Methanomicrobiales (see Supplemental Material), but290

there is little reason to doubt that r-proteins provide a genuine phylogenetic signal291

about the monophyly of Class II methanogens (Bapteste et al., 2005; Brochier-292
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Armanet et al., 2008), uniting Methanosarcinales and Methanomicrobiales.293

We conclude that based on protein sequences, Thermoplasmatales constitute294

a late-branching euryarchaeal lineage, and their early-branching status is a long-295

branch attraction artifact. Furthermore, the sequences provide evidence of the296

monophyly of both Class I and Class II methanogens.297

Evolutionary rates: correlations between sequence and gene content298

evolution299

We experimented with models of increasing complexity that combine lineage- and300

gene-specific factors in the gain-loss-duplication processes. Specifically, we as-301

sumed that the process for family f on branch e is characterized by the rates302

κ = κ̂eκf , µ = µ̂eµf , λ = λ̂eλf , and runs for a duration of t = t̂etf . Here,303

t̂e, κ̂e, µ̂e, λ̂e are branch-specific process parameters, and tf , κf , µf , λf are family-304

specific rate variation coefficients. Starting with simple models with invariant305

family-specific coefficients, we introduced rate variation in a model hierarchy with306

increasing complexity. In more complex models, some coefficients were drawn307

randomly from a discretized Gamma distribution (Yang, 1994). Different family-308

specific coefficients do not have the same impact on the model fit. We found the309

largest improvement when introducing variation in edge length (tf ), followed by310

duplication-rate variation (λf ). Further variation in loss and gain rates led to in-311

significant improvements in the model fit, and were not assumed in the analysis.312

[Figure 2 about here.]313

In the absence of extraneous scaling, we set t̂e = 1 in order to examine the total314

rates of gene content change on each edge e. We found a conspicuous correlation315
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across branches between the rate of sequence evolution (expected numbers of sub-316

stitutions per site for ribosomal proteins) and the component rates of gene content317

evolution: on this point, see Figure 2 for loss, and the Supplemental Material for318

duplication and gain. More precisely, the correlation holds for the lineage-specific319

components of loss, duplication and gain rates in a decreasing order of strength320

(P -values of 1.1 · 10−11, 8.2 · 10−6, 1.6 · 10−4, respectively, by Student’s t-test for321

Spearman rank-order correlation coefficient).322

The apparent correlations between gene content and sequence evolution rates323

imply that a steady balance has been maintained between drift and natural selec-324

tion in almost all lineages. Loss and duplication rates, in particular, have similar325

vagaries as amino acid substitution rates, and provide thus comparable molecu-326

lar clocks. We measured each terminal node’s depth by summing the rates along327

branches from the root to the node in question. Excluding N. equitans and C. sym-328

biosum, the coefficient of variation of the depth is 26% for protein sequences, 23%329

for gene loss rates and 20% for duplication rates. Depths by gene gain rates span330

about a four-fold range: for substitution, loss, and duplication, the span is close to331

two-fold.332

Genes have thus been eliminated in all archaeal lineages with a fairly universal333

constancy, apart from occasional accelerations. In other words, genome degrada-334

tion processes seem to persist at a fairly common intensity in every lineage (Mira335

et al., 2001). Conceivably, genome decay is counterbalanced by natural selection336

that eliminates deleterious mutations. The root cause of dramatically increased337

gene loss in endosymbionts such as N. equitans (Makarova and Koonin, 2005) may338

be reduced selection (Hershberg et al., 2007; Koonin and Wolf, 2008). Principles339

of population genetics imply that changes in population size alone can explain rate340
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changes (Lynch, 2006): selection power is weaker in a smaller population, which341

should manifest in accelerated evolution of sequences (Ohta, 1972) and gene con-342

tent.343

We examined the differences between evolutionary rates in sibling terminal344

taxa for signs of natural selection. Figure 2 shows that gene loss and amino345

acid substitution rates differ in a concerted fashion for three pairs, that is, for346

M. stadtmanæ-M. thermoautotrophicus, Halobacterium sp.-H. marismortuimi, and347

S. acidocaldarius-S. sulfolobus. In seven other pairs, loss rates are essentially the348

same, even if substitution rates may differ. The agreements between substitution349

and gene loss rate changes attest to common selection forces and mutation pro-350

cesses acting on different forms of genome decay, and are predicted by population-351

genetic arguments (Lynch, 2006).352

In the lineage leading to M. stadtmanæ, a human commensal (Fricke et al.,353

2006), all rates are simultaneously larger when compared to its sibling lineage354

M. thermoautotrophicus, which may be attributed to a smaller population size for355

the former, which has a smaller habitat. Gene gain and duplication rates behave356

in general less predictably: numerical differences between loss, gain, and duplica-357

tion rates on sibling lineages occur in almost all possible sign combinations. The358

observed fluctuations corroborate the intuition that selection pressures acting on359

gain and duplication are strong and variable (Wolf et al., 2002). It is plausible that360

during episodes of massive adaptation, the selective advantages of gene acquisition361

may outweigh possible negative consequences of an increased genome, and thus362

drive elevated gene gains, especially if coupled with small population sizes. In our363

case, unusually large gain rates are inferred on some of the deepest branches (such364

as the one leading to node E1 on Figure 1 or to the halobacterial ancestor), as well365
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as on the terminal branches leading to M. acetivorans (Metac), H. marismortuimi366

(Halma) and P. ærophilum (Pyrae).367

History of archaeal gene census: streamlining and surges368

We inferred a probable history of archaeal gene content using posterior probabili-369

ties for ancestral family sizes and family size changes, computed from the phylo-370

genetic profiles in the fitted model. Figure 3 summarizes the results by lineages.371

(See Supplemental Material for bootstrap confidence intervals: the uncertainty in372

ancestral family counts is estimated to be within ±19% for all nodes.)373

[Figure 3 about here.]374

Our reconstruction suggests a recurrent theme in archaeal evolution: a major375

physiological or metabolic invention leads to a successful founding population in376

a new environment, which then further diversifies by genomic streamlining. We377

can see notably that Figure 3 shows only a few branches where gains prevail over378

losses (i.e., at least twice as many gains as losses): such is the case for some deep379

crenarchaeal and euryarchaeal branches, and the terminal lineages for M. acetivo-380

rans and H. marismortuimi. About half of the remaining terminal lineages and381

two-thirds of remaining deep lineages are dominated by loss. Moreover, there is382

only one ancestral node (the crenarchaeal ancestor) in the entire tree for which gain383

is dominant in both descendant lineages.384

Why would gene loss be so prevalent? We speculate that the versatility of385

a large genome in such extant lineages as M. acetivorans (Galagan et al., 2002)386

and H. marismortuimi (Baliga et al., 2004) can be upheld for only relatively short387

time periods. Genetic drift already leads to the diversification of descendant lin-388
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eages, which are frequently isolated, given the disconnectedness of the extreme389

environments they dwell in (Whitaker et al., 2003; Escobar-Páramo et al., 2005).390

Specialization and the loss of dispensable functions should be favorable in the de-391

scendants that are typically under significant energy stress (Valentine, 2007). Ge-392

nomic streamlining should also be favored by population-size effects due to the393

isolation (Lynch, 2006), even in the case of slightly deleterious loss of function.394

After the crenarchaeal split, the main euryarchaeal lineage has been charac-395

terized by the accumulation of new families, culminating in a large surge on the396

branch leading to node E1, where many new families appeared. The time interval397

(judging by sequence divergence in Figure 1) and the extent of gene gain is similar398

to what is seen with H. marismortuimi (Halma) and M. acetivorans (Metac). The399

inference of large gains in the E1 lineage is due to the large number of gene fami-400

lies shared between multiple descendant lineages, and especially between the two401

classes of methanogens (Slesarev et al., 2002; Bapteste et al., 2005; Gao and Gupta,402

2007; Makarova et al., 2007). In fact, this lineage may very well have been where403

hydrogenotrophic methanogenesis was invented, which then underwent modifica-404

tions, extensions and degradations in subsequent lineages. It was noted in previous405

genome-scale comparisons (Bapteste et al., 2005; Gao and Gupta, 2007) that it is406

likely that euryarchaeal lineages acquired methanogenesis predominantly by verti-407

cal inheritance, because the associated pathways are fairly complex, and neither the408

sequences nor the phylogenetic profiles show evidence of substantial amounts of409

lateral gene transfer. Figure 3 suggests that methanogenesis appeared after the split410

of Thermococcales in the company of more than 760 genes. Based on extant ex-411

amples of archaea with such swelled genomes (Galagan et al., 2002; Baliga et al.,412

2004), it is plausible that the corresponding archaeal organisms were extremely413
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versatile.414

Our inference of ancestral gene content is quite different from previous recon-415

structions based on parsimony principles (Makarova et al., 2007; Csűrös, 2008): at416

deep nodes, we postulate larger genomes. Parsimonious reconstructions (Mirkin417

et al., 2003; Kunin et al., 2005; Csűrös, 2008) aim to minimize the number of im-418

plied loss and gain events. As a consequence, parsimony inherently underestimates419

the age of gene families. A probabilistic framework, such as a phylogenetic birth-420

and-death model, makes it feasible to take all possibilities into consideration in a421

mathematically sound way. A case in point is the last archaeal common ancestor422

(LACA), where only about 1300 families are inferred to have been present with a423

posterior probability of at least 90%, which is close to a parsimony-based infer-424

ence of about 1000 families (Makarova et al., 2007). Given the uncertainties of425

most family histories, the exact genome composition of LACA is hard to estimate,426

but the fractional probabilities point to a genome with slightly more than 2000427

families, which is similar to such extant organisms as S. sulfolobus. Such a large428

genome size implies that LACA’s genomic complexity was even greater than pre-429

viously imagined (Makarova et al., 2007), on a par with modern, moderately-sized430

archaeal genomes.431
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