
Segmentation with an isochore distribution?
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Abstract. We introduce a novel generative probabilistic model for seg-
mentation problems in molecular sequence analysis. All segmentations
that satisfy given minimum segment length requirements are equally
likely in the model. We show how segmentation-related problems can
be solved with similar efficacy as in hidden Markov models. In partic-
ular, we show how the best segmentation, as well as posterior segment
class probabilities in individual sequence positions can be computed in
O(nC) time in case of C segment classes and a sequence of length n.

1 Introduction

Let x = x1x2 · · ·xn be a sequence of characters over a finite alphabet A. A
segmentation of x is described as a sequence z = z1z2 . . . zn that assigns a segment
class to each sequence position. The segmentation is thus a sequence over an
alphabet C, where C is the set of segment classes. A segment is a maximal
contiguous region of positions that belong to the same class. Many molecular
sequence analysis problems can be formulated as segmentation problems [1].
Obvious examples include the identification of isochores [2] in genomic DNA,
and identification of charge clusters and hydrophobic profiles for proteins. In
principle, all sequence annotation tasks (with non-overlapping segments) fit this
general segmentation framework. For example, even such a complex task as
eukaryotic gene prediction [3], entails the segmentation of a genomic sequence
into classes such as “intergenic” and “exonic.” In this work we are interested in
generative probabilistic models, when the sequence x is the observed value of
a random variable that depends solely on z, which is also a random instance.
Furthermore, we assume independence in the sense that each xi depends on zi

only. Such probabilistic models include hidden Markov models [4, 5], and other
notable examples [6, 7]. Hidden Markov models (HMMs) have the computational
advantage that various segmentation-related problems, including that of finding
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the most likely segmentation, can be solved with linear-time algorithms in the
sequence length n.

This paper’s main goal is to introduce a new class of prior segmentation
distributions; namely, a uniform distribution over segmentations in which all
segments are longer than some specified threshold. Such a distribution captures
usual expectations from segmentation results. We show that it is possible to
compute the most likely segmentation in linear time in n, while the minimum
segment length does not affect the running time. We show the same asymptotic
running times for computing the posterior probabilities for segment class mem-
berships and segment boundaries. In other words, we describe the analogues of
the Viterbi and forward-backward algorithms.

An important motivation for our segmentation model comes from the iso-
chore theory [8]. It postulates that the genome of warm-blooded vertebrates is
composed of isochores in a mosaic structure. An isochore is a long contiguous
segment of genomic DNA with a “fairly homogeneous” guanine+cytosine (GC)
content [9]. The old debate about the theory’s utility reemerged at the com-
pletion of the human genome draft sequence and persists to this day [9–13].
Eyre-Walker and Hurst [14] review biologically relevant issues in conjunction
with isochores. We do not want to settle the question of biological relevance,
but rather treat isochores as a technically useful concept describing the “fairly
homogeneous” GC content of a region within an environment of at least 50–
300 thousand base pairs. Usual isochore computations involve sliding windows
of fixed length [10, 11, 13, 14]. Window-less methods usually correspond to the
minimization of some segment homogeneity measure [2, 15]. To our knowledge,
no generative model exists until now that explicitly captures the notions of min-
imum length and homogeneity at the same time. Here we put forward such a
minimalist model, along with relevant computations.

1.1 Model and model selection

First we describe a generative framework for defining segmentation problems. A
sequence of random variables X = (Xi : i = 1, . . . , n) is dependent on a sequence
of (unknown) segment class memberships Z = (Zi : i = 1, . . . , n). Here Xi ∈ A

are letters from a finite alphabet and Zi ∈ C are segment classes. The possible
segment classes C are known. From an observed sequence x = x1 · · ·xn, we want
to deduce a segmentation z = z1 · · · zn. The human genome is often analyzed
in terms of isochores named L1, L2, H1, H2, H3 with typical GC level cutoffs
of 0.37, 0.41, 0.46, 0.53. In our probabilistic framework, a human chromosome
sequence forms x, and C comprises isochore classes.

More or less general versions of this framework were considered in the statis-
tical literature [6, 16]. They usually involve Ω(n2)-time computations for deter-
mining optimal segmentations [16, 17]. Optimality is measured by some fitness or
homogeneity measure. We focus on cases when the optimal segmentation can be
found efficiently by some reasonable principle. First of all, we assume indepen-



dence: the distribution of each Xi is completely determined by the probabilities

pz(x) = P
{

Xi = x
∣∣∣ Zi = z

}
.

A direct likelihood maximization approach cannot be used to choose a hypoth-
esis z, since the likelihood is maximized when each zi = maxz pz(xi), which is
rarely a consistent estimation. (For example, in GC content analysis, the best seg-
mentation is a binary sequence of two classes for 100% and 0% GC.) We discuss
two main principles that lead to better estimates without overfitting. The first
principle is a Bayesian one: by imposing a prior distribution on Z, one can select z
that maximizes the posterior probability P

{
Z = z

∣∣∣ X = x
}

. This principle is
employed in hidden Markov models. If Z is a Markov chain with a finite state
set C, then the best segmentation can be found in O(n|C|) time using the Viterbi
algorithm [4, 5]. An alternative principle is to incorporate a notion of complexity
in the optimization. For instance, the likelihood can be combined with descrip-
tion length [18], which penalizes complicated segmentations. When C is finite,
and the segmentation’s complexity is measured by the number of its segments,
the best segmentation can be found efficiently in O(n|C|) time [7]. When C is the
set of all possible distributions over A, then the best segmentation minimizes
the entropy with an adequate complexity penalization [2, 15].

The Bayesian approach of imposing a prior distribution on Z has the method-
ological advantage that it enables one to define probabilities of the type P

{
χ(Z)

∣∣∣
X = x

}
, where χ(·) is some “interesting” property. Interesting properties include

segment boundaries (χ(z) = {zi−1 = z′; zi = z}) and the class of a position
(χ(z) = {zi = z}). Concerning the notation χ(·), we use events and their indica-
tors interchangeably, and, thus, {zi = z} denotes both the event that position i
belongs to class z and the indicator variable which takes the value of 1 or 0,
when the event occurs or not, respectively.

2 Isochore distribution

In what follows, we focus on the case when Z is uniformly distributed over all
segmentations satisfying certain minimum segment length requirements. We call
such a distribution an isochore distribution. When the segmentation prior is
uniform over a set Z, the posterior probabilities can be computed as

P
{

χ(Z)
∣∣∣ X = x

}
∝

∑
z∈Z∩χ(z)

P
{
X = x

∣∣∣ Z = z
}

, (1)

since P{X = x} does not depend on z and P{Z = z} is the same for every choice
of z ∈ Z. In our case, the main difficulty is the efficient enumeration of segmen-
tations that satisfy the minimum length requirements when the segmentation
value is fixed in a position.

We are interested in segmentations where segments of class z ∈ {1, . . . , C} are
of minimum length mz > 0. The notion of minimum segment length is captured



through the following notation. We define left(z, i) as the number of positions to
the left of i that belong to the same segment class, and right(z, i) as the number
of positions to the right that belong to the same segment class. Formally,

left(z, i) =
(
min
d>0

{d : zi−d 6= zi}
)
− 1; right(z, i) =

(
min
d>0

{d : zi+d 6= zi}
)
− 1.

We extend the notation so that zi = 0 whenever i ≤ 0 or i > n: if zj = z for all
j ≤ i then left(z, j) = j − 1 for all j ≤ i, and an analogous statement holds for
right() in the rightmost segment. Clearly, the length of the segment that includes
position i is the value

length(z, i) = left(z, i) + right(z, i) + 1.

Definition 1. Let m1, . . . ,mC > 0 be the minimum segment lengths for the
segment classes. A segmentation z is valid if and only if

length(z, i) ≥ mzi

for all i = 1, . . . , n. A random variable Z has an isochore distribution if it is
drawn uniformly from the set of valid segmentations.

2.1 Number of valid segmentations

It is useful to compute the number of valid segmentations, since it defines our
prior. Let Nz(n) be the number of valid segmentations for a sequence of length n
which end with a segment of class z, and let N(n) =

∑
z Nz(n) be the total

number of valid segmentations. These values can be computed exactly:

Nz(n) =


0 if n < mz;
1 if n = mz;
Nz(n− 1) +

∑
z′ 6=z Nz′(n−mz) if n > mz.

For the particular case of ∀z : mz = m, i.e., identical segment length thresholds,
we have the recursion N(n) = N(n − 1) + (C − 1)N(n − m) for n > m, with
the initial values N(n) = 0 for n < m and N(m) = C. Clearly, N(n) grows
exponentially with n. In general, N(n) = Θ(βn/m) where β is the root of the
characteristic equation β − β1−1/m − (C − 1) = 0. The value N(n) provides the
normalizing value in Eq. (1) and can be used for normalization in upcoming
formulas.

2.2 Computing the best segmentation

Finding the best segmentation under the isochore distribution prior is not dif-
ficult. The dynamic programming method outlined in [7] for C = 2 can be
generalized to an arbitrary number C of classes. Define

ξz(i) = pz(xi) and Ξz(i, i′) =
i′∏

j=i

ξz(j).



In other words, Ξz(i′, i) is the likelihood for a segment i..i′ in class z. We derive
a dynamic programming algorithm for the variables Vz(i) for all z ∈ {1, . . . , C}
and i = 1, . . . , n. The variable Vz(i) gives the likelihood for the best segmentation
that is valid within the prefix x1..i and ends with class zi = z.

Vz(i)

=


0 i < mz;
Ξz(1,mz) i = mz;

max
{

ξz(i)Vz(i− 1), Ξz(i−mz + 1, i) maxz′ Vz′(i−mz)
}

i > mz.

(2)

After carrying out the computations for all z and i, the best segmentation ends
with arg maxz Vz(n) and previous classes can be found by tracing back the max-
ima in (2). An advantageous technique is to keep track of letter counts

ca(i) =
i∑

j=1

{xj = a}

for all a ∈ A and i and then compute Ξz(i, j) =
∏

a∈Σ

(
pz(a)

)ca(j)−ca(i−1) (with
ca(0) = 0). In order to reduce costly floating-point calculations,

(
pz(a)

)c should
be computed beforehand for all z ∈ {1, . . . , C}, a ∈ A and c ∈ {0, 1, . . . ,m}.
One can also work with log Vz(i) instead to avoid underflow, and to expedite the
computations by performing additions instead of multiplications.

Theorem 1. A segmentation z that maximizes P
{
Z = z

∣∣∣ X = x
}

can be found
in O(nC) time when Z has an isochore distribution with C segment classes.

2.3 Computing posteriors

For computing posterior probabilities, we need to be able to sample valid seg-
mentations that are constrained at a position. In order to simplify the formulas,
we assume from now on that the minimum segment lengths are identical, i.e.,
for all z, mz = m, and that the minimum length m is an even number.

In order to derive recurrence relations, consider the following sets of (not
necessarily valid) segmentations for z ∈ {1, . . . , C}, i ∈ {1, . . . , n} and d ∈
{0, . . . , n}

L(d)
z (i) =

{
z : zi = z; left(z, i) ≥ d;∀j < i− length(z, i) : length(z, j) ≥ m

}
;

R(d)
z (i) =

{
z : zi = z; right(z, i) ≥ d;∀j > i + length(z, i) : length(z, j) ≥ m

}
.

In other words, L
(d)
z (i) is the set of segmentations that are restricted only for the

prefix z1, . . . , zi so that (a) positions i− d, . . . , i are in class z, and (b) segments
before the segment of i satisfy the minimum length requirements. The sets R

(d)
z (i)



are defined analogously for suffixes of z. Now, L
(m−1)
z′ (i − 1) ∩ R

(m−1)
z (i) is the

set of valid segmentations that have a z′ → z segment boundary at i. Hence, the
posterior probability of a boundary at position i > 1 can be written as

qz′→z(i) = P
{

Zi−1 = z′;Zi = z
∣∣∣ X = x

}
∝ P

{
X = x

∣∣∣ Z ∈ L
(m−1)
z′ (i− 1) ∩ R(m−1)

z (i)
}

when z′ 6= z. It will be useful to define the posterior probabilities for position 1 <
i < n being the left or right end of a segment in class z:

q→z(i) =
∑
z′ 6=z

qz′→z(i); 1 < i ≤ n; (3a)

qz→(i) =
∑
z′ 6=z

qz→z′(i + 1); 1 ≤ i < n. (3b)

The posterior probability that position i belongs to class z is denoted by

qz(i) = P
{

Zi = z
∣∣∣ X = x

}
.

For the sake of completeness, we extend the notation of Eqs. (3) to the sequence
extremities: q→z(1) = qz(1) and qz→(n) = qz(n).

Theorem 2. Let µz(i) = P
{
Z ∈ L

(m/2)
z (i) ∩ R

(m/2)
z (i)

∣∣∣ X = x
}
. For all

i ∈ {1, . . . , n} and z ∈ {1, . . . , C}, the probability that position 1 < i < n belongs
to segment class z can be written as

qz(i) = µz(i) +
max{i−1, m

2 −1}∑
δ=0

q→z(i− δ) +
max{n−i, m

2 −1}∑
δ=0

qz→(i + δ).

Proof. If zi = z and z is a valid segmentation, then exactly one of the following
is true

1. left(z, i) ≥ m/2 and right(z, i) ≥ m/2 simultaneously;
2. position i’s segment starts at position i− δ for some 0 ≤ δ < m/2.
3. position i’s segment ends at position i + δ for some 0 ≤ δ < m/2.

The probability for Case 1 is µz(i). The probability of Case 2 is
∑

δ q→z(i− δ);
the probability of Case 3 is

∑
δ qz→(i + δ). ut



3 Algorithm for posterior probabilities

Define the following likelihoods

Lz(i) =
∑

z∈L
(m−1)
z (i)

P
{

X1..i−1 = x1..i−1

∣∣∣ Z = z
}

; (4a)

λz(i) =
∑

z∈L
(m/2)
z (i)

P
{

X1..i−1 = x1..i−1

∣∣∣ Z = z
}

; (4b)

Rz(i) =
∑

z∈R
(m−1)
z (i)

P
{

Xi+1..n = xi+1..n

∣∣∣ Z = z
}

; (4c)

%z(i) =
∑

z∈R
(m/2)
z (i)

P
{

Xi+1..n = xi+1..n

∣∣∣ Z = z
}

; (4d)

bz′→z(i) =
∑

z∈L
(m−1)
z′

(i−1)∩R
(m−1)
z (i)

P
{
X = x

∣∣∣ Z = z
}

, i > 1. (4e)

Clearly, bz′→z(i) = Lz′(i− 1)ξz′(i− 1)ξz(i)Rz(i). whenever 1 < i ≤ n. Let

b→z(i) =
∑
z′ 6=z

bz′→z(i) = ξz(i)Rz(i)
∑
z′ 6=z

ξz′(i− 1)Lz′(i− 1), i > 1;

bz→(i) =
∑
z′ 6=z

bz→z′(i + 1) = ξz(i)Lz(i)
∑
z′ 6=z

ξz′(i + 1)Rz′(i + 1), i < n.

For the sequence extremities,

qz(1) ∝ b→z(1) = ξz(1)Rz(1); (5a)
qz(n) ∝ bz→(n) = ξz(n)Lz(n). (5b)

By Theorem 2, the posterior probabilities for segment class memberships can be
computed for all 1 < i < n as

qz(i) ∝ λz(i)ξz(i)%z(i) + hz(i), (6)

where

hz(i) =
min{i−1, m

2 −1}∑
δ=0

b→z(i− δ) +
min{n−i, m

2 −1}∑
δ=0

bz→(i + δ).

The right-hand sides of Eqs. (5) and (6) are normalized by dividing them
with Q =

∑
z ξz(1)Rz(1) =

∑
z ξz(n)Lz(n). In fact, posterior probabilities for

segment boundaries are computed by the same normalization:

q→z(i) = Q−1b→z(i) and qz→(i) = Q−1bz→(i).

Additionally, since P{Z = z} = 1/N(n) for all z, Bayes’ theorem gives P{X =
x} = Q

N(n) .



The variables of Eqs. (4) are computed by the following recurrences.

λz(i) = ξz(i− 1)λz(i− 1) + Ξz(i−
m

2
, i− 1)

×
∑
z′ 6=z

ξz′(i−
m

2
− 1)Lz′(i−

m

2
− 1);

i >
m

2
+ 1 (7a)

Lz(i) = ξz(i− 1)Lz(i− 1)

+ Ξz(i−m + 1, i− 1)
∑
z′ 6=z

ξz′(i−m)Lz′(i−m);

i > m (7b)

Analogous formulas are used to compute %z(i) and Rz(i). If m
2 < i ≤ n− m

2 +1,
then

hz(i) = hz(i− 1) + b→z(i)− b→z(i−
m

2
) + bz→(i +

m

2
− 1)− bz→(i− 1). (8)

Obviously, hz(1) = b→z(1). For 1 < i ≤ m
2 the recurrence of Eq. (8) does not

include the subtraction of b→z(i− m
2 ) and for i > n− m

2 +1 the recurrence does
not include the term bz→(i + m

2 − 1). The variables of Eqs. (7) are initialized in
an obvious manner.

A useful algorithmic technique for computing expressions of the type A(z) =∑
z′ 6=z B(z′) for all z in O(C) total time is the following. First compute Blo(z) =∑
z′<z B(z′) for all z. Then compute Bhi(z) =

∑
z′>z B(z′) for all z. Clearly, this

can be done in O(C) time. Now, A(z) = Blo(z)+Bhi(z) can be set in O(1) time
for each z. Using this technique, all variables can be computed for every i in
O(nC) time. Notice that the Ξz can be computed in O(1) time for all z, by
keeping track of character counts in prefixes and suffixes as described in §2.2.

Remark. It may seem that when the minimum lengths differ,
∑

z′ 6=z ξz′(i−
mz)Lz′(i−mz) in (7b), for example, needs to be computed for each z separately,
resulting in a Θ(C2) factor in the running time. The technique, however, can be
readily adapted to this case. The appropriate Blo and Bhi values need to be kept
for recent values of j = i−mz, which again leads to a linear running time in C.

By the preceding discussion, we can state the following theorem.

Theorem 3. All posterior probabilities for segment class memberships and seg-
ment boundaries can be computed in O(nC) time when Z has an isochore distri-
bution with C segment classes.

The posterior probabilities can be used in an Expectation Maximization
framework, as in Baum-Welch training for HMMs [4, 5]. Simply, the pz(x) are
estimated as

p̂z(x) =
∑n

i=1 qz(i){xi = x}∑n
i=1 qz(i)

.

3.1 Memory management

Since the recurrences for % and R can be computed from right to left while those
for λ, L and h are computed in a left to right direction, a direct implementation



would need to first compute and store the % and R values and then proceed
from left to right to carry out the posterior computations. The left-to-right
computation proceeds in a “lookahead” fashion: for every i, λz(i), Lz(i+ m

2 −1),
hz(i) and qz(i) are computed, in this order. Consequently, an array of size m
can store the necessary values Lz(j) for i − m

2 ≤ j < i + m
2 to carry out one

step of the left-to-right computations. For λz and hz, only the previous values
are needed. It is, however, a good idea to keep track of recent values of bz→ and
b→z so that they are not computed twice.

A direct implementation, in which all %z(i) and Rz(i) are computed before
proceeding to the left-to-right computations, may be impractical for large se-
quences because of large memory requirements. For longer sequences, it is possi-
ble to do the computations using a “slicing” or “checkpointing” technique, simi-
lar to those employed in pairwise sequence alignment and HMM training [19]. We
do not discuss the details here due to space limitations. The technique allows for
computing the probabilities on all-purpose desktop computers: our implementa-
tion was used to carry out the segmentations with five classes and m = 50000 for
human chromosome 1 (246 Mbp), with a memory footprint below 2 Gigabytes.
A recursive checkpointing technique leads to the result of the following theorem.

Theorem 4. For C segment classes with minimum length m and a sequence
of length n, the posterior probabilities can be computed in O(LnC) time using
O

(
Cm1−1/Ln1/LL

)
workspace, where L is an arbitrary positive integer. In par-

ticular, by choosing L = Θ
(
log n

m

)
, the probabilities are computed in O(Cn log n

m )
time using O

(
Cm log n

m

)
workspace.

4 Experiments

We implemented the described procedure for posterior calculations in a Java
package. Figure 1 compares in a simulated experiment the quality of HMM-
based predictions and our method. The figure illustrates that HMM predictions
are more easily affected by random fluctuations in the sequence composition.

For illustrative purposes, we carried out a segmentation of human chromo-
some 19 [20]. The results of the segmentation can be viewed as a custom annota-
tion track in the UCSC genome browser [21]; the track can be downloaded from
http://www.iro.umontreal.ca/˜csuros/segmentation/hg17/chr19-segments.bed.

There are two principal questions that need to be addressed in this context:
whether most of the genome can be classified into isochores, and whether there
is a non-arbitrary threshold on homogeneous region lengths. Using five isochore
classes, we segmented the sequence into segments within which the class member-
ship can be established with at least 90% probability, using a minimum length
of 50000 base pairs. About 85% of the sequence can be classified into one of
the isochore classes with more than 90% fidelity. Almost all of the missing 15%
fall into the unsequenced centromeric region, and the few percents that remain
are mostly in short segment boundaries. This fact does not necessarily reflect
the validity of classification, as long segments have a very small chance to fall
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Fig. 1. Posterior segment class membership by HMM and isochore distributions. A
random DNA sequence of 1000 characters was generated with alternating 30% and 70%
GC level in 100bp segments. The plot compares the posterior segment class membership
for the 30% GC class as computed by an HMM (two states, state switching transition
probabilities are 0.01), and those computed using isochore distributions with minimum
length 50 and 100. The former already gives smoother results (see especially the seventh
segment), while the latter finds the true segmentation perfectly.

right between two classes in GC composition. Figure 2 plots the statistics on the
segments. This chromosome is unusually GC-rich [20], 1.4%, 9.4%, 15.9%, 22.8%
and 35.5% of the positions are classified into the classes L1, L2, H1, H2 and H3,
respectively. It is interesting to notice that a large number of the segments have
a length very close to the lower bound, which hints at heterogeneity below the
minimum length cutoff. Classically, isochores are said to be hundreds of thousand
base pairs in length: our segmentation does not reveal such a phenomenon.

5 Conclusion

We presented a novel probabilistic model for segmentations and showed how
usual techniques associated with hidden Markov models have their equivalents,
including a Viterbi-style algorithm for finding the best segmentation, a forward-
backward algorithm for computing posteriors, and expectation maximization
for setting class parameters. The model features an explicit minimum segment
length parameter, which is not easily captured by an HMM. Our “minimalist”
model assumes a uniform distribution among segmentations that obey the seg-
ment length constraints. Some additional parameters can be easily incorporated
into the model. For instance, one can add conditional probabilities for changing
segment classes, or have a segment length distribution that is a shifted geometric
one. Using the example of Eq. (7b), write

Lz(i) = τ0ξz(i− 1)Lz(i− 1) + Ξz(i−m + 1, i− 1)
∑
z′ 6=z

τz′ξz′(i−m)Lz′(i−m).

The parameter τ0 implies that segment length has a thresholded geometric dis-
tribution and the parameters τz′ model different probabilities for the preced-
ing segment class. In fact, such a parametrization is the equivalent of posterior
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Fig. 2. Segment composition and length in the segmentation of chr19. Segment class
levels are as follows: 35%, 39%, 43%, 47%, and 53% GC in L1–H3, respectively.

computations for HMMs when the state sequence has to obey some duration
thresholds. Hidden Markov models are sometimes used along with some ad hoc
thresholding on segment lengths (e.g., [22]). Our results show that such an ap-
proach can be implemented in a theoretically sound manner. There are some
standard techniques [5], involving extra states or transitions, which can model
minimum segment lengths at the price of increased time complexity. In contrast,
our algorithms’ running time is linear in the number of segment classes (using
the equivalent of two states per class), and the time complexity is not affected
by the minimum segment length.

Without doubt, many genome features (such as gene density, retrotransposi-
tion and replication timing) are linked to regional GC composition, but there is
still need for an adequate “isochore theory” that explains genome organization
in terms of isochores. A main difficulty in assessing the role of isochores in mam-
malian genome analysis has been the lack of a widely accepted generative (as
opposed to descriptive) model. In our opinion, such a falsifiable model is neces-
sary for a useful scientific discussion, and would open up the path to meaningful
hypothesis testing procedures. Refutation attemps [10, 11, 14] have been rebuked
on the basis that the employed statistical models do not adequately capture the
true nature of isochores [9, 12]. On the other hand, proponents of the theory
largely relied on ad hoc segmentation procedures [2, 13], which result in useful
genome annotations, but make it difficult to assess statistical validity. We in-
tend to continue our work toward an adequate isochore model, by incorporating
positional dependence and other essential features.

We hope that our model and the associated computational results will be
useful on their own for “simple” sequence analysis tasks, such as the identification
of isochores or CpG islands, or as part of more sophisticated probabilistic models
for complicated analysis problems, such as ab initio gene prediction.
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