
Performing local similarity searches with
variable length seeds?

Miklós Csűrös

Département d’informatique et de recherche opérationnelle, Université de Montréal
C.P. 6128 succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada

csuros@iro.umontreal.ca

Abstract. This paper describes a general method for controlling the
running time of similarity search algorithms. Our method can be used
in conjunction with the seed-and-extend paradigm employed by many
search algorithms, including BLAST. We introduce the concept of a seed
tree, and provide a seed tree-pruning algorithm that affects the specificity
in a predictable manner. The algorithm uses a single parameter to control
the speed of the similarity search. The parameter enables us to reach
arbitrary levels between the exponential increases in running time that
are typical of seed-and-extend methods.

1 Introduction

Finding similarities between sequences is one of the major preoccupations of
bioinformatics [1]. All similarities, defined as local alignments scoring above a
certain threshold, can be found with dynamic programming using the Smith-
Waterman algorithm [2]. While there are many inventions that improve the speed
of a full sensitivity search (e.g., [3]), a full-scale search that involves sequences
with several million letters cannot be carried out in a reasonable time frame. In
such cases, sensitivity is most often sacrificed for speed. This paper describes a
method to adjust the running time of local similarity searches on a fine scale.

Most successful alignment heuristics rely on suffix trees [4], or hash tables.
Hashing-based methods include FASTA [5], BLAST [6], BLAT [7], BLASTZ [8],
and PatternHunter [9, 10]. In their simplest form, hashing-based, or seed-and-
extend, methods identify common short substrings of a fixed length k between
the input sequences S and T . Matching substrings, or hits, are the starting points
(“seeds”) for computing local alignments. The sensitivity depends on the seed
length k: weaker similarities can be found by using smaller values. Unfortunately,
by decreasing k, we increase the number of hits due to random matches that do
not expand into significant alignments. Roughly speaking, the number of such
spurious hits is |S|·|T |

4k for DNA sequences. As a consequence, increased sensitivity
levels are achieved at the cost of fourfold increases in the running time.

We propose a general technique to regulate the specificity of hashing-based
methods. The key idea is to vary the seed lengths, which leads to a fine resolution
? Research supported by NSERC grant 250391-02.

in specificity. Shorter seeds mean better sensitivity, so we aim at a maximal
increase in sensitivity by maximizing the number of shorter seeds. The procedure
is controlled by a parameter that explicitly sets the permitted increase in running
time. More precisely, the parameter limits the number of spurious hits caused
by shorter seeds.

Seed-and-extend methods find matching substrings between S and T by using
a lookup table. For every length-k word, the table stores a list of positions
where it is seen in S. Our method creates shorter seeds by merging lists in
the lookup table for words with common prefixes. We estimate the increase in
spurious hits by using actual word counts in S and the letter frequencies observed
in T . The list merging procedure uses the concept of a seed tree, described in
Section 2. The technique is not restricted to fixed-length substrings but can be
used in conjunction with spaced seeds, as reviewed in Section 3. The procedure
modifies the lookup table, and thus can be incorporated in most seed-and-extend
algorithms. Our proposed method is fast and requires only a small amount of
additional memory. Specifically, it can be implemented for DNA sequences with
the help of about 2

34k integer variables (the lookup table on its own uses |S|+4k

integers), an increase of about 11 megabytes for k = 11 over the basic method.
Section 4 analyzes the method’s space and time requirements in detail. Section 5
describes the results of a few experiments. Section 6 concludes with a discussion
of related methods and future research.

1.1 Seed-and-extend methods

We use the following notation. We are interested in sequences over a finite al-
phabet Σ. The length of a sequence S is denoted by |S|. The set of all sequences
with length m is denoted by Σm. The concatenation of two sequences S and T is
denoted by S ·T . The notation S[i] stands for the i-th character of S, and S[i..j]
means the substring of S starting with its i-th character and ending with its j-th
character.

Seed-and-extend methods rely on a hashing function h : Σ` 7→ Σk. Pairs of
positions (i, j) are identified in which h(S[i..i + ` − 1]) = h(T [j..j + ` − 1]).
Such pairs are called hits. Hits are further extended into local alignments. In
the simplest case, the similarity search uses the identity function for hashing
(and thus ` = k): hits are identified by identical substrings. Such fixed length
substrings are called k-mers. The success of the seed-and-extend approach is
due to the speed in which hits can be identified. The first step of the search
constructs a hash table using a window of length ` that slides over S. For every
position i = 1, . . . , |S| − ` + 1, the hash key h(S[i..i + ` − 1]) is calculated: the
table contains the

〈
h(S[i..i+ `−1]), i

〉
pairs. In other words, the key occurrence

list OccS(u) is calculated for every possible hash key u ∈ Σk, defined as

OccS(u) =
{

i : h(S[i..i + `− 1]) = u
}

. (1)

In the second step of the search, a window slides over T . In each position j =
1, . . . , |T | − ` + 1, the hits (i, j) are considered for extension where i is in the
occurrence list OccS

(
h(T [j..j + `− 1])

)
.

It was discovered recently [9] that spaced seeds yield better sensitivity than k-
mers. A spaced seed is defined by an ordered set S = {s1, s2, . . . , sk} ⊆ {1, . . . , `}.
Such a seed is referred to as an (`, k)-seed. The corresponding hashing function
is h(u) = u[s1] · u[s2] · · ·u[sk], i.e., it samples the positions specified by S. Pa-
rameter k is called the weight of the seed. The use of a (k, k)-seed corresponds to
the case of using k-mers. From this point on we assume that the hash function h
is defined by an (`, k)-seed.

1.2 Spurious hits

Using a simple model of random sequences, we estimate the number of spurious
hits that spaced seeds generate. Assume that S is a random sequence of indepen-
dent and identically distributed (i.i.d.) characters, specified by the distribution
P{S[i] = σ} = pσ for all i = 1, . . . , |S| and σ ∈ Σ. Similarly, assume that T is a
sequence of i.i.d. characters, specified by the distribution P{T [j] = σ} = qσ for
all j = 1, . . . , |T | and σ ∈ Σ. Let S = {s1, s2, . . . , sk} be the spaced seed that
defines the hash function h. The number of window positions in which a specific
key u is encountered in S equals

nS(u) =
∣∣∣OccS(u)

∣∣∣ =
|S|−`+1∑

i=1

|u|∏
j=1

{
S[i + sj − 1] = u[j]

}
,

where {·} stands for the indicator function. Hence the expected number of such
positions is

EnS(u) = (|S| − ` + 1)
|u|∏
j=1

pu[j]. (2)

The expected number of hits produced by u is

HS,T (u) = E[nS(u)nT (u)] = (|S| − ` + 1)(|T | − ` + 1)
(|u|∏

j=1

(pu[j]qu[j])
)

, (3)

where we used the independence of the two sequences. The expected total num-
ber of hits is

HS,T =
∑

u∈Σk

HS,T (u) = (|S| − ` + 1)(|T | − ` + 1)
(∑

σ∈Σ

pσqσ

)k

= NMβk (4)

with N = |S| − ` + 1, M = |T | − ` + 1, and β =
∑

σ∈Σ pσqσ. If at least
one of the sequences is uniform, i.e., if ∀σ : pσ = 1/|Σ| or ∀σ : qσ = 1/|Σ|,
then β = 1/|Σ|. However, genomic sequences often display biased nucleotide

frequencies. For instance, the mouse genome [11] has a a 42% (G+C) content, and
(G + C) content varies between 38% and 48% on different human chromosomes.
In order to model the effect of a given (G + C) content fG+C, let pA = pT =
(1 − fG+C)/2, pC = pG = fG+C/2, and qσ = pσ. Equation (4) then gives HS,T =

NM
(

1
2 − fG+C(1 − fG+C)

)k

. For fG+C = 40%, we obtain HS,T = NM · 3.85−k

and for fG+C = 30%, the formula gives HS,T = NM · 3.45−k. The base of the
exponential may actually be larger than 4, when e.g., S has (G+C) > 50% and T
has (G + C) < 50%.

2 Variable length seeds

S = AACACGATCACA

AAC ACA ACG ATC

ACAA AT

A

CAC CGA

CA CG

C G

GA

GAT

T

TC

TCA
1 2,10 4

2,4,101

7

7

1,2,4,7,10

3,9

3,9

5

5

3,5,9

6

6

6

8

8

8

1,2,3,4,5,6,7,8,9,10

Fig. 1. Example of a seed tree built over 3-mers in the sequence S. Numbers at the
nodes are the window positions at which the node’s t-mer is seen. Only those nodes
are shown that are sampled by at least one sequence position.

A seed tree is obtained by placing the hash keys in a trie data structure
[12]. Specifically, the seed tree is a rooted tree defined as follows. Every non-leaf
node has a child corresponding to every character σ ∈ Σ. The root is at level 0.
Nodes at level t = 0, . . . , k correspond to t-mers. The children of node u ∈ Σt

are {u · σ : σ ∈ Σ}. The leaves are (initially) at level k. Figure 1 shows an
example of a seed tree. We now define the seeds corresponding to higher levels,
and extend Equation (1) to inner nodes. Recall the definition of the occurrence
list for a key u, OccS(u) =

{
i : h(S[i..i + ` − 1]) = u

}
. The list Occ is defined

recursively by OccS(v) = ∪σ∈ΣOccS(v · σ) whenever |v| < k. It is not hard to
see that in the case of hashing with k-mers, this definition corresponds to the
idea that the lists OccS at level t are produced by the t-mers in S. Accordingly,

OccS(u) =
{

i : i ≤ |S| − k + 1, S[i..i + |u| − 1] = u
}

holds for all nodes u in that
case.

Key frequencies in a random sequence with (G+C)=40%

1E-8

1E-7

1E-6

1E-5

1E-4

0 2 4 6 8 10

Key weight (G+C)

E
x

p
o

n
e

n
ti

al
 f

ac
to

r
k=11 k=10 k=9

Fig. 2. Frequency of k-mers in the case of non-uniform nucleotide distribution. Under
the assumption that S is a sequence of i.i.d. nucleotides with frequencies pA = pT = 0.3
and pC = pG = fG+C/2 = 0.2, Equation (2) predicts that a k-mer with t (G+ C) content

is encountered (|S| − ` + 1)α times where α =
ft
G+C

(1−fG+C)
k−t

2k . The plot shows α as a
function of t for k = 9, 10, 11. For example, a 9-mer with eight (G+ C) is seen about as
often as a 10-mer with five (G + C) or an 11-mer with two (G + C).

Equation (3) is particularly interesting when the nucleotide frequencies are
not uniform. Figure 2 shows the frequency of different k-mers in a sequence with
40% (G + C) content. The frequencies may vary widely for a given k. Given the
fact that some shorter k-mers are rarer than others, we prune the seed tree and
use shorter or longer k-mers depending on the number of hits they generate. In
every pruning operation, a node is selected whose children are leaves, and the
children are removed. Our aim is to balance the number of hits generated by the
leaves. After a certain amount of pruning, we stop, and use the modified seed
tree for finding hits. Using a sliding window over T , instead of looking for the
key h(T [j..j + ` − 1]) in every position j, we find its longest prefix u that is in
the pruned seed tree. The corresponding hits are OccS(u)× {j}.

The key to the pruning procedure is the criterion by which nodes are selected.
Our criterion relies on predicting the increase in the number of hits at each
pruning. First, the sequence S is analyzed to build the key occurrence lists at
the leaf level. At the same time nS(u) = |OccS(u)| is calculated for all u ∈ Σk.
For inner nodes we rely on the recursions

OccS(v) =
⋃

σ∈Σ

OccS(v · σ); and nS(v) =
∑
σ∈Σ

nS(v · σ). (5)

The number of hits a node v ∈ Σt generates is predicted as

hits(v) = MnS(v)
|v|∏

j=1

q̂v[j],

where M = |T |−`+1 and q̂σ are the nucleotide frequencies observed in T . Notice
that while Equation (3) calculates the number of hits from letter frequencies in S
and T , hits(v) is the expected number of hits, given observed key frequencies in S,
and observed letter frequencies in T . The increase in the number of hits when
pruning at node v is predicted as

hits+(v) = hits(v)−
∑
σ∈Σ

hits(v · σ) = M

(|v|∏
j=1

q̂v[j]

) ∑
σ∈Σ

(1− q̂σ)nS(v · σ), (6)

where we employed the recursion of (5). We keep on pruning the tree, always
selecting a node that increases the number of hits by the least amount, until the
total predicted increase surpasses a threshold parameter.

Procedure EstimateHits
Input: hash key size k, occurrence lists OccS(·), character frequencies q̂, se-
quence length M
Output: places every u ∈ Σ<k in the appropriate bin by setting up the linked
lists BinList

H1 set total← 0; for all b← 0, . . . , B do set BinList← ∅
H2 for all u ∈ Σk−1 do
H3 set nσ ← |OccS(u · σ)| for all σ ∈ Σ // nσ = nS(u · σ)

H4 set h←M
(∏|u|

i=1
q̂u[i]

)
H5 set total← total + h

∑
σ∈Σ

q̂σnσ

H6 set nS(u)←
∑

σ∈Σ
nσ

H7 set H← h
∑

σ∈Σ
(1− q̂σ)nσ // H = hits+(u)

H8 add u to the end of BinList[b(H)]
H9 for t← k − 2, . . . , 0 do
H10 for all u ∈ Σt do
H11 set nS(u)←

∑
σ∈Σ

nS(u · σ)

H12 set H←M
(∏|u|

i=1
q̂u[i]

)∑
σ∈Σ

(1− q̂σ)nS(u · σ)

H13 add u to the end of BinList[b(H)]
H14 return total. // (returns number of hits without pruning)

Fig. 3. Procedure EstimateHits. EstimateHits places the inner nodes of the seed tree in
the appropriate bins, based on the number of hits they produce. Notice that nS(·) is
not needed outside this procedure.

In order to carry out the pruning, we use a binning procedure. Proceeding
from the leaves towards the root, we calculate nS(v) using Equation (5), and

hits+(v) using Equation (6). Using a monotone binning function b : [0,∞) 7→
{0, 1, . . . , B}, we place every tree node v into the bin b(hits+(v)). The pruning
is carried out by selecting nodes first from bin 0, then from bin 1, and so on,
until the threshold for the number of hits is reached, or there are no more nodes
available. Lemma 1 shows that the increase in the number of hits is larger at
parents than it is at the children unless the sequence T consists mostly of the
same character. The importance of this lemma is that it suggests how nodes
should be stored: using a linked list at each bin, nodes are added at the list tail
as we calculate hits+ from the leaves upwards. Pruning proceeds by traversing
the list in each bin. By Lemma 1, whenever a node is considered for pruning, all
of its descendants are pruned already.

Lemma 1. If q̂σ ≤ 1/2 for all σ ∈ Σ, then for all v with |v| < k−1 and x ∈ Σ,
hits+(v) ≥ hits+(v · x).

Proof. By Equation (6), hits+(v) ≥ hits+(v · x) if and only if∑
σ∈Σ

(1− q̂σ)nS(v · σ) ≥ q̂x

∑
σ′∈Σ

(1− q̂σ′)nS(v · x · σ′). (*)

We prove that the term for σ = x on the left-hand side already ensures the
inequality, i.e., that

(1− q̂x)nS(v · x) ≥ q̂x

∑
σ′∈Σ

(1− q̂σ′)nS(v · x · σ′), (**)

which implies (*) and thus the lemma. By Equation (5), nS(v ·x) =
∑

σ′ nS(v ·x ·
σ′). Consequently, Equation (**) holds if (1− q̂x)nS(v ·x ·σ′) ≥ q̂x(1− q̂σ′)nS(v ·
x · σ′), that is, if (1− q̂x) ≥ q̂x(1− q̂σ′) for all σ′. Since q̂x ≤ 1

2 , 1− q̂x ≥ q̂x, and
Equation (**) follows. ut

Figure 3 sketches the procedure used to estimate the increased number of
hits, and to place the nodes in their appropriate bins. Figure 4 sketches the
pruning itself. It is important to notice that the seed tree is not used later when
hit extension is performed, but rather that Line P5 updates the lookup table
entry OccS(u) for every leaf in the subtree rooted at an inner node v when
pruning at v. Line P4 calculates the parent’s list by merging the lists at the
children to preserve the ordering of positions. (It is often exploited during hit
extension that positions are listed in decreasing order for each key.)When T is
finally processed, we can use the lists OccS(u) directly with every hash key u.
This technique allows for interfacing with other lookup table-based algorithms.
Procedures EstimateHits and Prune update the hash table after it is constructed,
and the search can proceed as usual without any additional data structures.

Figure 5 sketches a possible way to incorporate the seed tree pruning proce-
dures in a local similarity search algorithm. It follows the logic of such tools as
BLAST [6] and PatternHunter [9]. The difference is in Lines A4–A6, where the
hash table is updated based on the seed tree pruning procedure. Lines A1–A3
build the hash table as usual. Lines A7–A10 find hits and extend just as if the
pruning never happened.

Procedure Prune
Input: total increase in hits max, list BinList of nodes in every bin
Output: pruned seed tree

P1 set increase← 0 and bin← 0
P2 while increase < max and bin ≤ B do
P3 for all u ∈ BinList[bin] starting at the list head, do
P4 set OccS(u)← ∪σ∈ΣOccS(u · σ)
P5 set OccS(v)← OccS(u) for every leaf v in the subtree of u
P6 set increase← increase + b−1(bin)
P7 if increase ≥ max then return
P8 set bin← bin + 1

Fig. 4. Procedure Prune. Line P5 implements the pruning: the lists at the leaves are
updated to accelerate the ensuing extension process when scanning T . (Accordingly,
for every inner node u, OccS(u) is stored physically at the leftmost leaf in its subtree.)
Notice that BinList is not needed after the pruning. The expression b−1(bin) in Line P6
denotes the average value of hits+ in bin.

3 Spaced seeds

A seed tree can be used immediately in conjunction with a spaced seed S =
{s1, · · · , sk}, since the pruning works regardless of how the hash keys are ob-
tained. It is advantageous, however, to select a good permutation si1 , . . . , sik

of
the sampled positions that maximizes sensitivity. For a permutation i1, . . . , ik,
define the series of seeds St for t = 0, . . . , k by S0 = ∅ and St = St−1 ∪ {sit}
for t = 1, . . . , k. The keys at level t of the seed tree correspond to hashing with
the spaced seed St. An optimal permutation is obtained by iteratively selecting
ik, ik−1, . . . , i1. Starting with Sk = S, St−1 is computed by selecting the element
of St that can be removed to obtain the highest increase in sensitivity. Sensitivity
is measured as the probability of detecting a region of a given length and sim-
ilarity. The probability is calculated under the assumption that every position
of the region mutates independently with the same probability. Formally, the
following model is used. Assume that a region of length L ≥ ` of similarity g
is “hidden” in the two sequences: there exist i0, j0 such that S[i0..i0 + L − 1]
and T [j0..j0 + L − 1] are identical in about gL positions. More precisely, the
corresponding substrings have such a distribution that for all σ, σ′ ∈ Σ, and
position offsets j = 1, . . . , L,

P
{

T [j0 + j − 1] = σ′
∣∣∣ S[i0 + j − 1] = σ

}
=

{
g if σ = σ′;
1−g
|Σ|−1 if σ 6= σ′,

and that different positions are independent. Sensitivity of a hashing function
is measured as the probability of producing a hit within this region, i.e., the
probability that there exists i ∈ {−s1 +1,−s1 +2, . . . , L−sk} for which h(S[i0 +
i..i0 + i + ` − 1]) = h(T [j0 + i..j0 + i + ` − 1]). The probability of detecting
such a homology region by a given seed can be calculated explicitly using an
appropriately defined Markov chain [13, 14].

Algorithm CompareSequences
Input: sequences S, T , hashing function h : Σ` 7→ Σk, relative increase in
running time R

A1 initialize OccS(u)← ∅ for all u ∈ Σk

A2 for all i← 1, . . . , |S| − ` + 1 do
A3 set u← h(S[i..i + `− 1]) and add i to OccS(u)

A4 calculate M = |T | − ` + 1, and q̂σ =

∑|T |
j=1

{T [j]=σ}

|T | for all σ ∈ Σ

A5 set T← EstimateHits(k, OccS , q̂, M) // T is the number of spurious hits
without pruning

A6 do Prune(RT)
A7 for j ← 1, . . . , |T | − ` + 1 do
A8 set u← h(T [j..j + `− 1])
A9 for all i ∈ OccS(u) do
A10 extend the hit at (i, j) and report the alignment if significant

Fig. 5. The comparison algorithm.

We implemented the Markov chain method and calculated the optimal per-
mutation for a number of seeds. Table 1 shows the seeds used in our experiments.
At first sight it may seem that it is best to remove the leftmost or rightmost
positions from the seed, since that increases the expected number of hits within
the similarity region (which is (L− (max S−min S + 1))g|S|). Interestingly, this
is not always the case: for instance, the sensitivity of the (18, 12)-seed increases
the most by removing a sampling position in the middle.

Clearly, the principle of choosing a permutation based on sensitivity is not
restricted to the case of independent mutations and constant mutation rates. In
particular, it can be applied in conjunction of other, more sophisticated models
for assessing sensitivity, such as the Markov models for coding regions employed
in [14] and [15].

4 Performance analysis

Theorem 1. The procedures EstimateHits and Prune can be implemented using
2 |Σ|k−1

|Σ|−1 + O(1) integer variables.

Proof. Procedure EstimateHits has to keep track of nS(u) for every non-leaf
node u. The number of non-leaf nodes in the seed tree equals

∑k−1
t=0 |Σ|t =

|Σ|k−1
|Σ|−1 . Procedure Prune relies on the BinList array of linked lists. The chaining

within the lists can be implemented by using an array that gives the next element
after each non-leaf node u in the bin that contains u. Therefore, |Σ|k−1

|Σ|−1 integers
can be used for the chaining if every node address is encoded by an integer value.
An additional array of (B + 1) elements specifies the first element in each bin.
The total number of integer variables is therefore 2 |Σ|k−1

|Σ|−1 +(B+1)+O(1), where
the O(1) term accounts for auxiliary local variables. ut

As discussed in [9], the lookup table can be implemented so that every occur-
rence list OccS(u) is a linked list of positions in decreasing order, with the aid
of (|S|+ |Σ|k) integers. (In an array of size |Σ|k, the last position is given where
each hash key is seen in S. Another array of size |S| gives the previous position
for every i where the hash key h(S[i..i + ` − 1]) is seen.) Theorem 1 thus im-
plies that the DNA similarity search algorithm of Figure 5 can be implemented
with (4|S| + 5

34k+1 + ε) bytes (allowing four bytes per integer) in addition to
the storage of the input sequences. The term ε accounts for the runtime envi-
ronment, all local variables, and the data structure tracking recent extensions in
Line A10. As an illustration of space efficiency, if S and T are around 150 Mbp
in length, if every nucleotide is stored in one byte, and if k = 11, then the al-
gorithm uses less than 1 Gbytes of memory. In our experiments with trees over
the (18, 12)-seed comparing human and rat X chromosomes (152 and 163 million
letters), the maximum memory usage was about 990MB.

Theorem 2. EstimateHits and Prune update the lookup table in O
(
k|S|+k|Σ|k

)
time.

Proof. EstimateHits executes Line H3 for every leaf node. The total time spent
counting the size of every list Occ in Line H3 is thus O(|Σ|k + |S|). Lines H11–
H13 take O(|Σ| + t) time for every node at level t = 0, . . . , k − 2, and thus the
total time of executing the loop is of O(k|Σ|k−2 + |Σ|k−1). EstimateHits thus
runs in O(k|Σ|k−2 + |Σ|k + |S|) time. In an extreme scenario, procedure Prune
is called with max = ∞, and all nodes are pruned. Since list merging in Line P4
takes linear time in the sum of the list lengths, pruning all nodes at level t
takes O(|S|) time. Hence the total time spent on merging in Line P4 is O(|S|k).
Line P5 takes O(1) time for every leaf v, and thus O(|Σ|k) time is spent in
Line P5 for every tree level. Consequently, Prune runs in O(|Σ|kk + |S|k) time.
ut

It is worth pointing out that in contrast to the worst-case analysis of Theo-
rem 2, pruning should be carried out with a parameter R = O(β−1) where β is
defined in Equation (4). Otherwise, too many nodes of the seed tree are pruned,
resulting in more hits than a shorter seed would produce. Since the shorter seed
would require less memory and might provide better sensitivity, it is better to
avoid large R values. For a reasonable choice of R, procedure Prune takes a time
of O(|Σ|k + |S|), rather than O(k) times as much, as pruning takes place only
on one or a few tree levels.

5 Experiments

We implemented the algorithm in Figure 5 to test its performance on DNA
sequences. We carried out a number of experiments with our prototype imple-
mentation with two goals in mind. First, we wanted to assess how valid the
estimation of spurious hits is for biological sequences, and whether the fine-
tuning of specificity vs. sensitivity is truly achieved by using a single parameter.

Seed Ordered positions s1, s2, . . . , sk Remark

(20, 13)-seed 10, 9, 6, 4, 3, 14, 16, 18, 19, 2, 13, 1, 20 Best weight-13 seed

(18, 12)-seed 2, 3, 8, 10, 13, 14, 5, 1, 16, 17, 18, 7 Best weight-12 seed

(18, 11)-seed 2, 3, 8, 10, 13, 14, 5, 1, 16, 17, 18 Best weight-11 seed (PatternHunter)

(18, 10)-seed 1, 2, 3, 6, 9, 12, 14, 16, 17, 18 Best (18,10)-seed

(16, 10)-seed 1, 2, 4, 5, 9, 10, 12, 14, 15, 16 Best weight-10 seed

Table 1. Seeds used in our experiments. “Best” refers to highest sensitivity, measured
by the probability of detecting a 70%-similarity region of length 64. Sampled positions
are ordered by maximizing the sensitivity of shortened seeds as described. The weight-
10 seeds were not used in conjunction with tree pruning, and thus their permutation
is arbitrary.

Secondly, we wanted to measure how much time the tree pruning takes with re-
spect to other steps in the search. We implemented only gapless seed extension
since our aim was not to develop another similarity search tool, but to produce a
testbed for seed tree pruning. The experiments rely on a simple scoring function
with a match score of 1 and mismatch penalty of 1. The extension calculates
high-scoring segment pairs (HSPs) for every hit (i, j). The extensions are found
by exploring the diagonal of (i, j) in two directions until the score drops be-
low a threshold. The highest scoring segment is selected in both directions to
obtain the HSP. The significance of the alignment is assessed using standard
techniques [16]. We keep track of the longest extension along each diagonal, and
attempt the extension only if the hit does not overlap with a previously explored
region. In all experiments we used a cutoff of E = 0.1 for defining HSPs, i.e.,
we considered local alignments that have a score that is expected to occur 0.1
times in the sequence comparison.

The seeds we used in the experiments are shown in Table 1. In a first set of
experiments, we compared the genome sequence of H. influenzae (1.8 million base
pairs) to that of E. coli (4.6 Mbp). Figure 6a shows the accuracy of predicting the
number of spurious hits using two seed trees, one built over the (18, 12)-seed and
the other over the (18, 11)-seed. The parameter R predicts the increase in number
of spurious hits very well1. Figure 6b plots the number of HSPs in function of
the number of hits. The plot shows that the seed trees attain intermediate levels
of sensitivity. In fact, the seed trees perform better than the weight-10 seeds.

We also compared the concatenated genome sequence of the budding yeast
S. cerevisiae (12 Mbp) to the concatenated genome sequence of the fission yeast
S. pombe (12.5 Mbp). Figure 7a shows the accuracy of predicting the number of
spurious hits. Again, the predicted and measured values of specificity are very
close. Figure 7b plots the number of HSPs for different levels of specificity: the

1 Using the seed tree over the (18, 11)-seed as an example, Equation (4) predicts
H ≈ 1.9 · 106 spurious hits (H. influenzae genome has a 38% (G + C) content, while
that of E. coli is close to 50%). The (18, 11)-seed finds 2.6 ·106 hits without pruning.
We expect therefore that the number of hits grows as H(R) = 2.6 · 106 + 1.9 · 106R.

seed tree over the (18, 12)-seed falls behind the (18, 11)-seed, but the seed tree
over the latter slightly outperforms a weight-10 seed.

The final example of the method’s application is the comparison of human
and rat X chromosomes (152 and 163 million base pairs, respectively). We con-
catenated the sequence contigs for each chromosome, using sequences that were
masked for repeat and low-complexity regions. We ignored masked regions for
hit generation but included them for hit extension. The experimental results are
summarized in Figure 8. Again, the parameter accurately predicts the increases
in running time, and specificity levels between those of spaces seeds are reached.

The time it takes to carry out the pruning is comparable to the time of
building the lookup table. Table 2 shows measured running times. (The hit
extension in our implementation is not optimized, and only gapless extensions are
found, but comparable running times were reported for PatternHunter [9], which
does construct gapped extensions.) The time increments for the X chromosomes
are particularly instructive, as the chromosomes are of average size in the two
genomes. Comparison of the entire human and rat genomes would take about
four hundred times more. Using weight-13, 12, and 11 seeds, the chromosome
comparison takes 1

2 , 1.25, and 4 hours without pruning. Multiplying by 400, the
genome comparisons would take 8, 21, or 67 CPU days. Seed trees provide a
flexible way to perform the genome comparisons at various levels of specificity
in addition to these three very different choices.

Table Pruning Extensions

H. influenzae–E. coli, (18,12)-seed R = 0 2s 0s 8s
H. influenzae–E. coli, (18,12)-seed R = 3.5 2s 9s 15s
H. influenzae–E. coli, (18,11)-seed R = 3.5 2s 3s 31s

S. cerevisiae–S. pombe, (18,12)-seed R = 0 13s 0s 3m 31s
S. cerevisiae–S. pombe, (18,12)-seed R = 3.5 14s 21s 6m 27s
S. cerevisiae–S. pombe, (18,11)-seed R = 3.5 12s 13s 32m 24s

Human chrX–rat chrX, (20,13)-seed R = 0 82s 0s 31m
Human chrX–rat chrX, (20,13)-seed R = 3.5 76s 6m 34s 78m
Human chrX–rat chrX, (18,12)-seed R = 3.5 119s 105s 4h 21m

Table 2. Measured running times for different parts of the comparison algorithm,
excluding input-output. Column “Table” shows the time it takes to build the ini-
tial hash table after reading the first sequence. Column “Pruning” gives the running
time for EstimateHits and Prune procedures. Column “Extensions” gives the running
time for processing all hits and calculating HSPs. Timing was done on an Apple
PowerBook 1.25GHz G4 with 1 GBytes of memory running MacOS X, using Java’s
System.currentTimeMillis() method.

6 Discussion

Seed-and-extend methods, exemplified by the NCBI BLAST suite, have been
thoroughly successful in providing a way to perform highly sensitive similarity
searches between long molecular sequences in reasonable time. Traditional seed-
and-extend methods use fixed length hash keys. Our proposed method creates a
hashing function with varying key lengths, based on statistics gathered from the
input sequences. Shorter keys are introduced to maximize the sensitivity with
a predictable compromise of specificity. We introduced the concept of the seed
tree, which guides the selection of shorter seeds. After gathering statistics about
the hash keys, and pruning, the seed tree is not needed anymore. The second
sequence in the comparison is processed using the updated lookup table, and
thus hash keys and their occurrence lists are still found in O(1) time.

There are many variations on the basic seed-and-extend idea that affect
the sensitivity of the search. We consider two such variations: multiple spaced
seeds [10, 14] and vector seeds [17]. Li et al. [10] explore the use of multiple spaced
seeds in homology searches. In order to use a set of m seeds, one needs to con-
struct a lookup table for every seed, requiring enough memory for (m|S|+m|Σ|k)
integers. As a consequence, long sequences may need to be split into smaller
segments. The number of spurious hits grows linearly with m, allowing for no
fine-tuning between consecutive values of m. Our method can be used instead
of multiple seeds to control the specificity on a fine scale. It can also be used in
conjunction with multiple lookup tables in the same way as with a single one: a
seed tree is pruned for every table. In order to track the number of hits created,
the procedure Prune would have to be modified to consider the seed trees built
for the different seeds simultaneously.

Brejová et al. [17] consider relaxing the definition of a match between hash
keys by introducing the concept of vector seeds. Vector seeds permit weighted
mismatches between hash keys for producing hits. Relaxing or tightening the
hit criteria allows for reaching different levels of sensitivity and specificity. Our
approach of pruning a seed tree creates new hits in a data-dependent man-
ner, and offers a way of setting different levels of specificity for different keys.
Brudno et al. [18] also use a trie to manipulate hash keys, but do not consider
either variable length keys, or pruning.

While our implementation focused on nucleotide sequences, we attempted to
present the idea of pruning seed trees independently of the underlying alphabet.
In particular, our algorithms in Figures 3 and 4 can be implemented for protein
sequences, with consequences for space and time requirements as analyzed in
Section 4. In the case of proteins, hits are usually defined by similarity rather
than identity, so the ramifications of pruning are more complex. We are currently
exploring the practicality of our method on other than DNA sequences.

References

1. Miller, W.: Comparison of genomic DNA sequences: solved and unsolved problems.
Bioinformatics 17 (2001) 391–397

2. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147 (1981) 195–197

3. Myers, G., Durbin, R.: A table-driven full sensitivity similarity search algorithm.
J. Comput. Biol. 10 (2003) 103–117

4. Delcher, A.L., Phillippy, A., Carlton, J., Salzberg, S.L.: Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Res. 30 (2002) 2478–2483

5. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison.
Proc. Natl. Acad. Sci. USA 85 (1988) 2444–2448

6. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25 (1997) 3389–3402

7. Kent, W.J.: BLAT — the BLAST-like alignment tool. Genome Res. 12 (2002)
656–664

8. Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haus-
sler, D., Miller, W.: Human-mouse alignments with BLASTZ. Genome Res. 13
(2003) 103–107

9. Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive homology
search. Bioinformatics 18 (2002) 440–445

10. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: highly sensitive and fast
homology search. Journal of Bioinformatics and Computational Biology (2004) To
appear.

11. MGSC: Initial sequencing and comparative analysis of the mouse genome. Nature
420 (2002) 520–562

12. Friedkin, E.: Trie memory. Comm. ACM 3 (1960) 490–500
13. Nicodème, P., Salvy, B., Flajolet, P.: Motif statistics. In Nešetřil, J., ed.: Al-

gorithms — ESA’99: 7th Annual European Symposium. Volume 1643 of LNCS.,
Heidelberg, Springer-Verlag (1999) 194–211

14. Buhler, J., Keich, U., Sun, Y.: Designing seeds for similarity search in genomic
DNA. In Vingron, M., Istrail, S., Pevzner, P., Waterman, M., eds.: Proc. 7th An-
nual International Conference on Computational Molecular Biology (RECOMB),
New York, NY, ACM Press (2003) 67–75

15. Brejová, B., Brown, D., Vinař, T.: Optimal spaced seeds for homologous coding
regions. Journal of Bioinformatics and Computational Biology 1 (2004) 595–610

16. Karlin, S., Altschul, S.F.: Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proc. Natl. Acad.
Sci. USA 87 (1990) 2264–2268

17. Brejová, B., Brown, D., Vinař, T.: Vector seeds: an extension to spaced seeds allows
substantial improvements in sensitivity and specificity. In Benson, G., Page, R.,
eds.: Algorithms and Bioinformatics: 3rd International Workshop (WABI). Volume
2812 of LNCS., Heidelberg, Springer-Verlag (2003) 39–54

18. Brudno, M., Chapman, M.A., Gottgens, B., Batzoglou, S., Morgenstern, B.: Fast
and sensitive multiple alignment of large genomic sequences. BMC Bioinformatics
4 (2003) 66

1 2 3
R

5M

2M

10M

hits

(18,12)-seed

(18,11)-seed

(18,10)-seed

H. influenzae vs. E. coli

52 10
million hits

1400

1450

1500

HSPs

(18,10)-seed

(16-10) seed

10-mers

tree over (18,12)-seed

tree over (18,11)-seed

H. influenzae vs. E. coli

a b

Fig. 6. Comparison of H. influenzae and E. coli genomes. The left-hand side plots the
number of hits in function of the algorithm’s parameter R for two seed trees. Each
dotted line shows the expected slope of the function. The right-hand side shows the
specificity-sensitivity trade-off for HSPs with E-value 10−1. Both curves start at R = 0,
i.e., where hits are produced by spaced seeds without tree pruning.

1 2 3 4
R

3e8

2e8

1e8

4e8

hits

(18,12)-seed

(18,11)-seed

(18,10)-seed

S. cerevisiae vs. S. pombe

300200100 400
million hits

15k

14k

16k

HSPs

(18,10)-seed

(16,10)-seed

tree over (18,11)-seed

tree over (18,12)-seed

S. cerevisiae vs. S. pombe

a b

Fig. 7. Comparison of two yeast genomes. The left-hand side plots the number of hits in
function of the algorithm’s parameter R for two trees. Dotted lines show the expected
slopes. The right-hand side shows the specificity-sensitivity trade-off for HSPs with
E-value 10−1. Both curves start at R = 0.

1 2 3
R

1e9

2e9

hits

(18,12) seed

(18,11) seed

(20,13) seed

Human chrX vs. rat chrX

1 2
billion hits

45k

42k

48k

HSPs
(18,11)-seed

tree over (20,13)-seed

tree over (18,12)-seed

Human chrX vs. rat chrX

a b

Fig. 8. Comparison of two mammalian X chromosomes. The figure on the left-hand
side plots the number of hits for different R values; dotted lines indicate the expected
slopes. The right-hand side illustrates the sensitivity-specificity trade-off. Both curves
start at R = 0.

