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Abstract. Applied Biosystems’ SOLiD system offers a low-cost alterna-
tive to the traditional Sanger method of DNA sequencing. We introduce
two main algorithms of mapping SOLiD’s color reads onto a reference
genome. The first method performs mapping by adapting a greedy align-
ment framework. In such an alignment, reads are mapped to approximate
genome positions, allowing for a pre-specified bound on sequence differ-
ence that combines nucleotide mismatches, gaps, and sequencing errors.
The second method for precise alignment relies on a pair hidden Markov
model framework, combining a DNA sequence evolution model and se-
quencing errors (from read quality files).

1 Introduction

Next-generation sequencing (NGS) methods [1] provide economical alternatives
to the traditional Sanger method of DNA sequencing. Various commercially
available platforms can generate large amounts of information which enable im-
portant biological and medical applications [2], including, perhaps most notably,
the sequencing of personal and somatic genomes [3, 4], or even entire ecosys-
tems [5]. In a typical genome analysis pipeline, NGS reads are mapped to ref-
erence sequences, and the alignments are further examined to detect variations
within the target DNA sample, and with respect to the reference.

Currently available software for large-scale NGS mapping [6] use indexing
techniques in order to speed up the search for similarities. The underlying al-
gorithms rely either on hashtable-based indexes (seed-and-extend), or on com-
pressed indexes exploiting the Burrows-Wheeler Transformation (BWT). BWT-
based methods use little memory, and have an impressive computing speed [7, 8].
Seed-and-extend has an increasing advantage with higher sequence divergences,
due to flexible tailoring choices for seeding methods [9].

The AB SOLiD sequencing platform from Applied Biosystems, Inc. (Fos-
ter City, Cal.) poses even greater challenges for bioinformatics than other widely
used NGS technologies, due to the sheer size of the produced data (up to about a
billion 35bp or 50bp reads in one production run), and the employed dinucleotide
encoding by “colors.” We introduce algorithmic solutions to different problems
encountered when mapping AB SOLiD reads to a reference genome. First, we



propose a seed-and-extend framework for mapping color reads to locations along
a reference DNA. The novelty of the framework is a greedy extension procedure
employed in filtering the hits, which combines sequencing errors and DNA se-
quence differences. The seeding and the extension use the same “phase” repre-
sentation of the color sequences, in order to minimize the number of executed
arithmetic operations. The mappings are immediately useful for inferring struc-
tural variations [10] or phylogenetic classifications [11] (when multiple reference
genomes are considered). Our second algorithmic solution addresses fine-scale
alignments in a statistical framework. A notable feature of the approach is that
color read quality values (sequencing error probabilities) are incorporated into a
pair hidden Markov model. The statistical framework helps inferring the align-
ment with maximum expected accuracy or alignment metric accuracy (AMAP).
The model assigns posterior probabilities to all target sequence variations, which
can be used directly to deduce the consensus between overlapping reads without
a multiple alignment.

2 Methods

2.1 Sequences and numerical encoding

The AB SOLiD system relies on the ligase-driven synthesis of PCR-amplified
target DNA fragments. The sequencing read is produced in “color” encoding,
where colors correspond to the dinucleotides sampled by fluorescently labeled
probes in iterated synthesis cycles, arranged in their physical order along the
target fragment. In the rest of the paper, we use a convenient numerical encoding
for nucleotides and colors (or fluorescent dies):

A = 0, C = 1, G = 2, T = 3
FAM/blue = 0,Cy3/green = 1,TXR/orange = 2,Cy5/red = 3.

With this encoding, the mapping between colors and dinucleotides is simply the
bitwise exclusive OR operation, denoted by ⊕: dinucleotide xy is encoded by the
color c = x⊕ y.

The error-free color encoding for a DNA sequence t = t0..m is the sequence
s = c1..m where ci = ti ⊕ ti−1. Notice that the same c translates into four
possible t determined by t0. The read alignment problem is that of aligning
an unknown target sequence t to a known reference DNA sequence s = s1..n,
using a color sequence c that encodes t but may contain sequencing errors. The
alignment is evaluated with respect to the implied nucleotide mismatches and
gaps, as well as the implied sequencing errors. Figure 1 illustrates this concept.
An alignment is composed of column types M1–M4, D and I1–I2, where each
column contains three cells: a reference cell s, a color cell c and a target cell t.
For all three, s, c, t ∈ {0, 1, 2, 3,2}, where 2 is the indel character. Concatenated
non-indel characters in the color cells give the complete sequence c1..m, and those
in the reference cells yield a reference region si..i′ . Indel characters may not
occupy all three cells, and indels appear together in the color and target cells.
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Fig. 1. Alignment between reference DNA, color sequence, and target sequence. The
tables on the bottom enumerate possible alignment columns. Every column is anno-
tated by the preceding nucleotide y in the target, defining sequencing errors.

Here we consider the simplest alignment scoring system, called the edit distance,
which is computed by penalizing columns of type M2, M3, D and I1 with 1, and
columns of type M4 and I2 with 2. Columns of type M1 are not penalized. The
classic Smith-Waterman-Gotoh alignment [12, 13] is readily adaptable to find an
optimal alignment [14, 15]. In order to track sequencing errors, it is necessary to
include dinucleotide information in the formulas. Formally, there is a color error
in a non-D column that is not the leftmost such column, if t ⊕ t′ 6= cj where t′

is in the target cell, cj is in the color cell, and t is the target cell content in the
closest preceding non-D column.

The following lemma (proof omitted) shows that there is an optimal align-
ment that contains no columns with penalty 2.

Lemma 1. There is an alignment with minimum edit distance that contains
neither M4 nor I2 columns.

In a run of ` consecutive perfect matches (M1) between si..i+`−1 and cj..j+`−1,

cj = y ⊕ si (1a)
cj+k = si+k−1 ⊕ si+k {1 ≤ k < `}, (1b)

where y denotes the last aligned target nucleotide preceding the run. For conve-
nience, we introduce the phase representation φ0..m of the color sequence: φ0 = 0,
and φk = c1 ⊕ c2 ⊕ c3 ⊕ · · · ⊕ ck = φk−1 ⊕ ck for k > 0. From (1),

si+k = y ⊕ cj ⊕ cj+1 ⊕ · · · ⊕ cj+k = y ⊕ φj−1 ⊕ φj+k (2)



for all k = 0, . . . , ` − 1. In other words, there exists an u (in particular, u =
y⊕φj−1) with which si+k = u⊕φj+k holds for all k < `. The phase representa-
tion φ0..m = t0..m is thus the translation of the color read into DNA, assuming
that the target sequence starts with t0 = φ0 = 0 (A).

2.2 Color read indexing

In a seed-and-extend framework [9], local alignments between two DNA se-
quences R, T are found by using a seeding function h : {A, C, G, T}` 7→ H, which
filters the (i, j) position pairs where local alignments are worth being looked for.
Specifically, an index table is built for R which gives the set of positions h−1

R (x) ={
i : h

(
Ri..i+`−1

)
= x

}
for all x ∈ H. A pair (i, j) is hit when h

(
Tj..j+`−1

)
=

h
(
Ri..i+`−1

)
, or i ∈ h−1

R

(
h(Tj..j+`−1)

)
. Hits are found by sliding a window

along T and consulting the index table for h
(
Tj..j+`−1

)
in each position j. Hits

are extended by performing a local alignment in a region around (i, j).
In the simplest case, h is the identity function, and hits correspond to match-

ing `-mers. Other widely used seeding functions rely on so-called spaced seeds. An
(`, w) spaced seed is defined by a set {δ1, δ2, . . . , δw} ⊆ {1, 2, . . . , `} of sampled
positions, corresponding to the seeding function h(x1..`) = xδ1 · · ·xδw

. Accord-
ingly, (i, j) pairs are hit when Ri+δk−1 = Tj+δk−1 for all k = 1, . . . , w. Spaced
seeds perform theoretically and practically better [9] than `-mers as seeding
functions.

Seeding is not straightforward with color reads, because s and c do not en-
code DNA in the same way. Equation (2) suggests a possible way of adapting
spaced seeds to indexing color reads. For a hit, si+δk−1 = tj+δk−1 holds in
all sample positions k = 1, . . . , w. Assuming no sequencing errors in cj..j+`−1,
Eq. (2) implies that si+δ1−1 ⊕ si+δk−1 = φj+δ1−1 ⊕ φj+δk−1 for all k = 2, . . . , w.
Consequently, the hits can be found by indexing the reads in the phase repre-
sentation: the seeding function is h(x1..`) = y1..w−1 with yk = xδ1 ⊕ xδk+1 . For
a corresponding hit, h(si..i+`−1) = h(φj..j+`−1). (Existing tools like [14] trans-
late instead the reference sequence into color space, so that for an (i, j)-hit,
si+δk−2⊕ si+δk−1 = cj+δk−1 = φj+δk−2⊕φj+δk−1 at all k, which corresponds to
a seeding function h(x0..`) = y1..w with yk = xδk−1 ⊕ xδk

in our notation.)

2.3 Greedy alignment between color read and DNA sequence

Hits are extended by adapting the classic greedy procedure of Wu et al. [16]. An
(i, j) hit between the reference DNA s1..n and color read c1..m is extended by
computing the longest prefix of the color sequence that can be aligned starting
at reference position (i − j + 1) within prespecified bounds on the edit dis-
tance. Specifically, the procedure uses an argument dmax bounding the number
of allowed indels between the reference and the inferred target sequence, and
an argument emax that bounds the edit distance. The procedure is explained
best in terms of the edit graph. The edit graph’s vertices are {(i, j, t) : 0 ≤ i ≤
n; 0 ≤ j ≤ m; 0 ≤ t ≤ 3}. The edges are weighted, and correspond to alignment



columns of Fig. 1. By Lemma 1, it suffices to consider column types M1–M3, D
and I1. The t component of the vertex triple contains phase information on the
color sequence. An edge of type M1 has weight 0, and by (2), connects (i, j, t) to
(i + 1, j + 1, t) where t = si+1 ⊕ φj+1. All other edge types have weight 1: M2
(i, j, t)→ (i+1, j+1, si+1⊕φj+1) with t 6= si+1⊕φj+1, M3 (i, j, t)→ (i+1, j+1, t)
with t 6= si+1 ⊕ φj+1, I1 (i, j, t)→ (i, j + 1, t), and D (i, j, t)→ (i+ 1, j, t).

A path in the edit graph corresponds to an alignment. Given a bound emax, we
restrict our attention to paths from any of the (i, 0, t) vertices reach some (i′, j, t′)
with maximum j ≤ m, and have at most emax non-M1 edges. In other words,
we are searching for the longest alignable prefix within the bound. Define the
diagonal d = 0, 1, . . . , n as the vertex set

{
(i, i − d, t)}. Our greedy algorithm

considers paths along diagonals 0, . . . , 2dmax only. Let Rdt (e) = j if (j + d, j, t)
is the farthest reachable vertex from any (i, i− d, t′) on a path with vertices on
diagonals d ≤ 2dmax, and with edge weight sum at most e ≤ emax. Algorithm
Greedy computes all Rdt (e).

Algorithm Greedy
`
s1..n, φ0..m, dmax

´
Output: longest prefix of φ alignable within emax errors on diagonals 0, . . . 2dmax.

G1 for t← 0, . . . , 3 and d = 0, . . . , 2dmax do Rd
t (0)← 0;∀e > 0: Rd

t (e)← −∞
G2 for e← 0, . . . , emax do
G3 for t← 0, . . . , 3 and d = 0, . . . , 2dmax do
G4 j ← Rd

t (e); i← j + d
G5 if j 6= −∞ then
G6 while i+ 1 < n and j + 1 < m and si+1 ⊕ φj+1 = t do
G7 i← i+ 1; j ← j + 1 . run of M1 edges
G8 if j ≥ m− (emax − e) then return m else Rd

t (e)← j
G9 if e 6= emax then
G10 for t← 0, . . . , 3 and d = 0, . . . , 2dmax do
G11 j ← Rd

t (e); i← j + d
G12 if j 6= −∞ then
G13 if d 6= 2dmax then Update(d+ 1, t, e+ 1, j) . D edge
G14 if d 6= 0 then Update(d− 1, t, e+ 1, j + 1) . I1 edge
G15 if i < n then
G16 Update(d, t, e+ 1, j + 1) . M3 edge
G17 Update(d, si+1 ⊕ φj+1, e+ 1, j + 1) . M2 edge
G18 return maxt=0,...,3;d=0,...,2dmax{Rd

t (emax)}
Algorithm Update(d, t, e, j)

U1 if Rd
t (e) < j then Rd

t (e)← j

When extending a hit at (i, j) for the reference sequence s and the phase se-
quence φ0..m, Algorithm Greedy

(
si′..i′+m+2dmax−1, φ0..m, dmax

)
is called, where

i′ = i − j + 1 − dmax is the starting position of the region within which the
extension is performed. By an analogous argument to [16], the running time
is O(m + dmaxemax) on average (for random sequences), and O(mdmax) in the
worst case. The greedy framework can be adapted to slightly more general scoring
systems (match/mismatch penalties), but it is unclear whether it could accom-
modate symbol-dependent scoring and affine gap penalization [17]. Therefore,
Greedy is more useful for filtering hits than for retrieving optimal alignments.



2.4 Statistical alignment for color reads

We perform statistical alignment by using a pair hidden Markov model [18],
or pair-HMM. A pair-HMM defines a probability distribution over alignments.
The advantages of having a well-defined probabilistic model are manifold [19].
Likelihoods can be used to recognize unrelated sequence pairs, or to optimize
model parameters. Posterior probabilities quantify discrepancies between the
two sequences in a statistically principled manner.

log10 ν�. We thus assume that a sequence of error probabilities ν1..m is available
with the color sequence c1..m. Subsequently to a state transition (x, t) → (x�, t�),
the emission of the color character cj occurs with probabilities

γj(t⊕ t�) =

�
1− νj if cj = t⊕ t�

νj/3 if cj �= t⊕ t�
(3)

The emission of reference nucleotides is dictated by an assumed Markov model of
DNA sequence evolution [19], like the F84 model [20]. In general, we assume that
the nucleotide substitutions between reference and target happen according to a
Markov model that specifies the stationary distribution π and the substitution
probabilities p(s → t), and that the model is reversible (πsp(s → t) = πtp(t →
s)). Transitions to states (x, t) with different t ∈ {A, C, G, T} thus happen by
probabilities proportional to πt. The emission of a reference nucleotide s �= ✷

occurs with probability p(t → s) on arrival to state (M, t) (determining the
aligned target nucleotide t).

Transition Transition prob. Emission Emission prob.

S→ S 1− η (s, ✷) πs

S→ (M, t) η(1− δ)πt (✷, ✷) 1
S→ (I, t) ηδπt (✷, ✷) 1

(M, t)→ (M, t�) (1− 2δ)πt� (s, t⊕ t�) p(t� → s)
(M, t)→ (D, t) δ (s, ✷) πs

(M, t)→ (I, t�) δπt� (✷, t⊕ t�) 1
(M, t)→ E 1[after m colors] (✷, ✷) 1

(D, t)→ (M, t�) (1− �− δ)πt� (s, t⊕ t�) p(t� → s)
(D, t)→ (D, t) � (s, ✷) πs

(D, t)→ (I, t�) δπt� (✷, t⊕ t�) 1

(I, t)→ (M, t�) (1− δ − �)πt� (s, t⊕ t�) p(t� → s)
(I, t)→ (D, t) δ (s, ✷) πs

(I, t)→ (I, t�) �πt� (✷, t⊕ t�) 1
(I, t)→ E 1[after m colors] (✷, ✷) 1

E→ E 1− η (s, ✷) πs

Table 1. Transitions and emissions in the pair HMM. Only the correct colors are
shown in the Emission column, i.e., the error probability is 0 in this table.

Transition probabilities determine the expected lengths of unaligned prefixes
and suffixes, as well as the frequency and length of gaps. In particular, we assume
that the prefix and suffix regions have a geometric prior length distribution with
mean 1/η, that insertions and deletions start with a probability δ, and that gaps
have a geometric prior length distribution with mean 1/(1− �). When aligning a
color sequence of length m, we are interested in state sequences with exactly m
states emitting color characters (M and I). For that reason, we impose the non-
emitting state transition M → E and I → E after emitting m color characters.
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Fig. 2. Pair HMM for alignment of color reads and the reference DNA. Only the correct
colors are shown in the Emission column, i.e., the error probability is 0 in this table.

For the alignment of color reads to a reference DNA, we introduce a pair-
HMM with state set Q = {S,E} ∪ ({M, I,D} × {0, 1, 2, 3}). The HMM generates
a state sequence q0, . . . , q` ∈ Q` as a random Markov chain determined by tran-
sition probabilities between the states. A transition is followed by the random
emission of a pair w = (s, c) where s ∈ {0, 1, 2, 3,2} is a numerically encoded
nucleotide and c ∈ {0, 1, 2, 3,2} is a numerically encoded color. A run of the
hidden Markov model [20] consists of a random state sequence q0, . . . , q` cou-
pled with the random emitted pairs w1, . . . , w`. States S and E emit unaligned
prefixes and suffixes of the reference sequence. States (M, t), (D, t), (I, t) encode
the rightmost inferred target nucleotide t, and correspond to match, deletion,
and insertion. A transition from (x, t) to (x′, t′) with x′ ∈ {M, I} entails the
emission of a color character c: the color is correct if t ⊕ t′ = c. The SOLiD
sequencing system provides error estimates in so-called quality files that encode
the error probability ν on an integer scale using a formula originally introduced
for Sanger sequencing in the phred program [21]: qual = b−10 · log10 νc. We thus
assume that a sequence of error probabilities ν1..m is available with the color
sequence c1..m. Subsequently to a state transition (x, t) → (x′, t′), the emission
of the color character cj occurs with probability γj(t⊕ t′), where

γj(cj) = 1− νj and c 6= cj : γj(c) = νj/3. (3)



The emission of reference nucleotides is dictated by an assumed Markov model of
DNA sequence evolution [22], like the F84 model [23]. In general, we assume that
the nucleotide substitutions between reference and target happen according to a
Markov model that specifies the stationary distribution π and the substitution
probabilities p(s → t), and that the model is reversible (πsp(s → t) = πtp(t →
s)). Transitions to states (x, t) with different t ∈ {A, C, G, T} thus happen by
probabilities proportional to πt. The emission of a reference nucleotide s 6= 2

occurs with probability p(t→ s) on arrival to state (M, t).
Transition probabilities determine the expected lengths of unaligned prefixes

and suffixes, as well as the frequency and length of gaps. In particular, we assume
that the prefix and suffix regions have a geometric prior length distribution with
mean 1/η, that insertions and deletions start with a probability δ, and that
gaps have a geometric prior length distribution with mean 1/(1 − ε). When
aligning a color sequence of length m, we are interested in state sequences with
exactly m states emitting color characters (M and I). For that reason, we impose
the non-emitting state transition M → E and I → E after emitting m color
characters. The transition out of state S to (M, t) or (I, t), which sets the first
target nucleotide t0 = t, is also non-emitting. Figure 2 summarizes the state
transitions and the emissions.

2.5 Likelihood and posterior probabilities

A run of the pair-HMM in Fig. 2 produces an alignment, but the indels cannot
be observed, only the produced sequences. Given a reference s1..n and a color
sequence c1..m, we can compute the likelihood that such a pair is generated by
the model, while admitting color errors by known probabilities ν1..m. In order
to compute the likelihood (and various posterior probabilities later), we use for-
ward and backward probabilities [18, 20]. The forward probabilities are denoted
by S[i] = S[i, 0], E[i] = E[i,m],Mt[i, j], It[i, j], Dt[i, j] with i = 0, . . . , n and
j = 0, . . .m. The quantity q[i, j] denotes the probability that the pair-HMM
generates the prefixes s1..i and c1..j in a run that ends with state q. Forward
probabilities can be computed in a recursive manner, as shown in Table 1

The backward probabilities S′[i] = S′[i, 0], E′[i] = E′[i,m],M ′t [i, j], I
′
t[i, j], D

′
t[i, j]

capture a symmetric concept. The quantity q′[i, j] is the probability that the pair-
HMM produces the suffixes si+1..n and cj+1..n in a run starting with state q. The
backward probabilities are calculated by analogous recursions to those in Table 1.

Now, given the color error probabilities ν1..m, the likelihood for the ob-
served sequences is L(s1..n, c1..m) = E[n] = S′[0]. The forward and backward
probabilities are combined to calculate posterior probabilities for visiting var-
ious states. The posteriors are ψ(q)[i, j] = q[i,j]·q′[i,j]

L(s1..n,c1..m) for q = Mt, It, Dt and

ψ(q)[i] = q[i]·q′[i]
L(s1..n,c1..m) for q = S,E. The posterior probabilities can be used to

assign confidence to a triple alignment column. A state transition to q = (M, t),
followed by the emission of (s, c) corresponds to an alignment column (s, c, t)
of type M1–M4. Hence, p(i3 j, t) = ψ(Mt)[i, j] is the probability that such
a column aligning s = si and c = cj is correct. The probability that si is



Table 1. Recursions for forward probabilities.

S[0] = 1; E[0] = 0

S[i] = πsi · (1− η) · S[i− 1] {i > 0}
Mt[i, 0] = πt · η(1− δ) · S[i]; It[i, 0] = πt · ηδ · S[i]; Dt[i, 0] = 0 {i ≥ 0}

Mt[i, j] = πtp(t→ si)
X
t′

„
γj(t′ ⊕ t) {i, j > 0}

×
“

(1− 2δ) ·Mt′ [i− 1, j − 1]

+(1− δ − ε) · `It′ [i− 1, j − 1] +Dt′ [i− 1, j − 1]
´”«

It[i, j] = πt

X
t′
γj(t′ ⊕ t)

“
ε · It′ [i, j − 1]

+δ · `Mt′ [i, j − 1] +Dt′ [i, j − 1]
´” {i ≥ 0, j > 0}

Dt[i, j] = πsi

“
ε ·Dt[i− 1, j] + δ · `Mt[i− 1, j] + It[i− 1, j]

´” {i, j > 0}

E[i] = πsi(1− η) · E[i− 1] +
X

t

“
Mt[i,m] + It[i,m]

”
{i > 0}

deleted in the target sequence is p(i3 ·) =
∑
j,t ψ(Dt)[i, j] = 1−∑j,t pt(i3 j, t).

The probability that a column of type I1 or I2 containing (2, cj , t) should ap-
pear in the alignment is p(·3 j, t) =

∑
i ψ(It)[i, j]. Finally, the probability

that reference nucleotide i is part of the skipped prefix or suffix is α(i) =
ψ(S)[i] +ψ(E)[i]−∑t

(
ψ(Mt)[i,m] +ψ(It)[i,m]

)
, where the non-emitting tran-

sitions into E are taken into account.
With the posterior probabilities at hand, we can find the so-called AMAP

alignment that maximizes metric accuracy [24]. Consider an alignment with `
columns

(
(sk, ck, tk) : k = 1, . . . , `

)
Let T (k) be the type of column k, and let

s#k , c#k denote the number of non-indel reference and color characters emit-
ted in columns 1, . . . , k. Using a gap-factor G ∈ [0, 1], the alignment maxi-

mizes the score (1−G) ·∑k : T (k)∈M p(s#k 3 c#k , tk)+G ·
(∑

k : T (k)=D p(s
#
k 3 ·)+∑

k : T (k)∈I p(·3 c#k , tk) +
∑
k : T (k)∈S α(s#k )

)
, where M = {M1,M2,M3,M4},

I = {I1, I2} and S = {S,E}. The gap-factor sets a tradeoff between specificity
and sensitivity: G = 0 corresponds to the alignment with maximum expected
accuracy [18], and G = 1/3 provides a neutral setting. Computing the AMAP
alignment is straightforward by dynamic programming after the posterior prob-
abilities are calculated.

Small-scale variations such as nucleotide substitutions and short gaps can be
readily identified with statistical confidence. The probability that si is aligned
with a target nucleotide t ∈ {0, 1, 2, 3} is p(i ∼ t) =

∑
j p(i3 j, t). The proba-



(a)

(b)

Fig. 3. AMAP alignments and sequence variations. “Confidence” is the probability of
the column being correct. Shading indicates the quality values along the color sequence;
a dot ‘.’ denotes a color error. Sequence variants are shown by the logos. The height
of each logo box is proportional to the probability 1 − α(i) that the nucleotide is
covered by the alignment; posterior probabilities for homology statements are shown
by the relative symbol height. (a) Mismatches with different credibility. (b) Homology
statements may be stronger than alignment confidence (see GACC before the deletion).

bility that the reference nucleotide si is aligned with a gap is p(i3 ·). Figure 3
illustrates AMAP alignments and sequence variants. The probabilities of the
homology statements can be combined across different reads that align to the
same reference region, in order to infer sequence variations in the target DNA.

3 Experiments

We implemented the algorithms in a Java software package called Crema, and
used it on sequencing reads for Escherichia coli DH10B. The reads (35bp long
reads, no mate pairs) were downloaded from the Applied Biosystems website
(http://download.solidsoftwaretools.com/frag/R1a007_20080307_2_EG017_
F3.csfasta.zip), with the accompanying quality file. We selected 1 million
reads randomly, and mapped them against the genome of Shigella flexneri 2a
str. 301 (Genbank accession number NC 004337.1). In the experiments, we com-
pared our implementation with Bowtie [8] version 0.12.5, and SHRiMP [14] ver-
sion 1.3.2. All programs were tested on an ordinary Linux machine (Amazon
Elastic Compute Cloud, Standard Instance).

Read mapping. Table 2 shows the mapping results. In the greedy extension,
we mapped the reads by retaining hits where all 35 positions be aligned within
an edit distance of emax = 6, along a band of ±3 diagonals. At comparable
sensitivities, the greedy extension (with a platform-independent implementation)
is faster than Bowtie, or SHRiMP.

Read alignment. We computed the alignments for uniquely mapped reads by
first optimizing the pair-HMM parameters using a random subset of 100 thou-
sand reads. We employed the F84 model [23] of DNA sequence evolution, with



Table 2. Mapping DH10B sequencing reads to S. flexneri. Mappings with different
seeds (numbers denote length and weight) are compared with other tools at parameter
settings resulting in comparable sensitivities. “Unique” reads are mapped to a single
locus with maximal alignment score.

Method CPU time Mapped reads Unique

SHRiMP (-M 35bp,fast) 263 s 593785 561301
SHRiMP (-M 35bp,sensitive) 717 s 605348 572317
Bowtie (--best) 216 s 488137

Crema (19,17)-seed + greedy 118 s 511263 492230
Crema (16,14)-seed + greedy 192 s 569865 546495
Crema (14,12)-seed + greedy 581 s 605938 576419

equal base frequencies (GC-content of E. coli is close to 50%), and a transi-
tion/transversion ratio of 2. The sequence divergence, and the gap open/extend
probabilities were set in an Expectation-Maximization procedure by computing
the expected numbers of substitutions and indels: convergence was achieved after
four iterations with a divergence of 0.0145, gap open probability δ = 0.00025 and
gap extension probability ε = 0.5. Instead of directly using the Phred formula for
transforming quality scores into probabilities, we used our own mapping based
on the expected number of color errors at different scores, as computed by the
pair-HMM model.

Table 3. Alignments of DH10B sequencing reads with S. flexneri. “Validated” reads
and nucleotides appear in BLAST alignments to the DH10B reference. “Incorrect”
nucleotides differ from the DH10B genome sequence.

SHRiMP
(sensitive)

Reads

unique validated

All inferred nucleotides

validated incorrect

Substitutions

validated incorrect

572 317 570 107 19 569 714 42 863
(0.22%) 184 254 28 364

(15.4%)

Bowtie
(best) 465 024 463 785 15 274 713 13 862

(0.09%) 70 110 2 783
(4.0%)

Crema
(AMAP alignment) 576 419 574 490 19 962 920 40 308

(0.20%) 249 107 27 162
(10.9%)

Insertions

validated incorrect

290 10
(3.4%)

1 108 72
(6.5%)

(does not infer indels)

In order to validate alignment results, we used blastn [25] to align the in-
ferred target sequences to the assembled DH10B genome (Genbank accession
number NC 010473.1), with default parameters and an E-value cutoff of 10−6.
BLAST found an alignment for 99.7–99.6% of the reads. The alignments (as re-
ported in SAM [http://samtools.sourceforge.net/] format’s CIGAR strings)
of uniquely mapped reads were scanned to validate the inferred target nu-
cleotides. Table 3 shows the results. Bowtie, designed to map human sequence
variants, captures only very similar sequences, with an overall error rate of 0.09%.
SHRiMP and Crema are much more sensitive, but have a similar 0.2% overall



error. Crema is, however, better than SHRiMP at finding actual sequence dif-
ferences: about 35% more substitutions are predicted, with 30% fewer errors.
The framework is especially useful in annotating the computed alignments. The
posterior probabilities for the inferred nucleotides can be encoded in the QUAL
field of the SAM format using the phred transformation [21]. Figure 4 illus-
trates that high-scoring positions have a much lower error level. For instance,
inferred nucleotides with a quality score at least 20 (96% of positions) are wrong
only 0.045% of the time. The plot also shows that quality values under 30 are
predicted fairly accurately (Bowtie quality values are underestimated by more
than 20 on the same interval — data not shown).
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Fig. 4. Quality scores for inferred nucleotides and actual correctness (“BLAST valida-
tion”) in validating BLAST hits. The horizontal dashed line shows the overall fraction
of correctly inferred nucleotides. “Predicted correctness” uses the Phred formula with
small bars denoting rounding errors. Vertical bars plot the frequency of quality scores
with scaling shown on the right.

Conclusion

We presented a seed-and-extend framework for efficient color read mapping,
and a statistical alignment framework for precise alignments. The experiments
demonstrate that they offer valuable options in the comparative sequencing of
bacterial genomes.
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