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Abstract1

By conventional wisdom, a feature that occurs too often or too rarely in a genome can indicate a2

functional element. To infer functionality from frequency, it is crucial to precisely characterize3

occurrences in neutrally evolving DNA. We find that the frequency of oligonucleotides in a4

genomic sequence follows primarily a Pareto-lognormal distribution, which encapsulates5

lognormal and power-law features found across all known genomes. Such a distribution may be6

the result of completely random evolution by a copying process. Our characterization of the7

entire frequency distribution of genomic words opens a way to a more accurate reasoning about8

their over- and under-representation in genomic sequences.9
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Introduction1

Determining what constitutes the surprisingly frequent and rare in a genome is a fundamental and2

ongoing issue in genomics [5]. Sequence motifs might be unusually rare or frequent because they3

belong to mobile, structural or regulatory elements, and are thus subject to selective and adaptive4

forces. After examining oligonucleotide occurrences in more than sixty diverse genomes, we5

found that a Pareto-lognormal distribution captures the crucial features of oligonucleotide6

frequency distributions in all the studied genomes. While prevailing random sequence models fail7

to produce such features, a neutral model of random duplications can. We illustrate our claim8

with a completely random copy-and-paste process that induces a distribution similar to those9

observed in real-life sequences.10

Random sequence models11

The simplest sequence motif is an oligonucleotide, or DNA word. A definite word frequency12

distribution that characterizes a neutrally evolving sequence is necessary to establish whether a13

word appears unusually often or rarely in a genome sequence. For instance, the statistical14

significance of the (hypothetical) overrepresentation of a word w is routinely measured by the tail15

probability P{N(w)≥ n}, where n is the number of times w occurs in the studied sequence, and16

N(w) is the random number of occurrences in a null model. In this context we focus on the17

distribution of frequencies across all words of the same length l (i.e., l-mers), called the word18

frequency distribution or spectrum.19

Standard null models in bioinformatics are random texts [15], including Bernoulli and Markov20

models (see Glossary). Random text models imply a rapidly decreasing tail in the spectrum of21
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short words (typically, 8≤l≤16). In particular, they imply that the number of oligonucleotides that1

occur the same number of times decreases exponentially with the number of occurrences. In2

reality, genomic word frequencies exhibit no such behavior (Figure 1). Depending on the genome3

and word lengths, the spectrum can show a power-law decrease on the right, a lognormal shape,4

or even a power-law tail on the left. Such features are at odds with random text models (see5

Figure 1A and Supplementary Material). As a consequence, random text models tend to6

underestimate the probability of frequent and rare words in long sequences.7

We examined whether combining a random text model with the mosaic-like variation of8

cytosine-guanine content [1] explains the shape of spectra (for vertebrates, at least). Localized9

random shuffling, which preserves the landscape of cytosine-guanine variation, also produces a10

light tail (Figure 1A), and is thus not a substitute for an adequate null model.11

The distribution of oligonucleotide frequencies12

To date, genomic spectra have not been fully characterized, aside from the observation of power-13

law behavior for certain word sizes [7-9] in the right-hand tail. Here we point out that a14

parametric distribution describes word frequencies extremely well. The distribution in question is15

the so-called double Pareto-lognormal (DPL) distribution [14]. The DPL distribution fits many16

real-life size distributions, including that of personal incomes, human settlements, and files on the17

Internet [11]. It has four parameters: α, β, ν and τ; its density function has a power-law (Pareto)18

tail to the left and to the right, with slopes of  (β-1) and (-α -1) on a log-log scale, respectively; in19

the middle, its shape is dominated by a lognormal distribution with parameters ν and τ.20
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Figure 1B illustrates that the four parameters of a single DPL distribution can be adjusted to1

describe hundreds or thousands of word frequencies in non-vertebrate genomes. (More examples2

are given as Supplementary Material.) We initially sought to characterize vertebrate genomes. To3

our surprise, we found that in spite of considerable differences in the organization, composition4

and the structure of the genetic material between organisms, the DPL distribution applies to5

genomes from all domains of cellular life, and thus represents a universal genomic feature.6

The fitted distribution's parameters reflect some idiosyncrasies of the genome at hand. For7

instance, the upper power-law tail, which reflects genome repetitiveness, is generally steeper in8

prokaryotes than in eukaryotes. The prevalence of frequent words in vertebrate genomes cannot9

be entirely attributed to mobile elements, as the contribution of non-repeat regions diminishes10

very slowly and does not vanish when moving toward higher frequencies. On human11

chromosome 12, for example, about 25% of very frequent 12-mers occur in non-repeat regions12

(see Supplementary Material for detailed analysis). Furthermore, frequent words are plentiful13

even in repeat-masked vertebrate and many non-vertebrate genomes (Figures 1B and D). Figures14

1C and D illustrate vertebrate spectra using the example of chromosome 12, which is15

representative of the genome with respect to repeat element distribution and cytosine-guanine16

content [17].17

Random evolution by duplication18

Why would the DPL distribution systematically appear in genomic spectra? The answer may well19

lie in duplicative processes. The power-law tail of protein domain and gene family size20

distributions [7] can be explained by birth and death models [4,13], in which family size changes21

by duplication and deletion processes, and new families are introduced by a steady innovation22
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process.  A similar model applies to genomic word frequencies. Consider a particular word’s1

occurrences along the genome as a “family.” The family size is affected by mutational events,2

including duplications, insertions, deletions and point mutations. The family can increase by any3

copying mechanism, including genomic duplication and retrotranscription. The family decreases4

if a mutation destroys an occurrence. Point mutations can create new words, but so can insertions5

(at the insertion boundaries) and deletions (by fusing two halves of a word). A neutral model6

equipped with constant-rate duplication, deletion, and mutation processes thus corresponds to a7

birth and death model of gene families. In order to illustrate how power-law features arise in a8

neutral duplication model, we carried out a simulation experiment in which a DNA sequence9

evolved solely by a “copy-and-paste” mechanism. We iteratively expanded an initial random10

Bernoulli sequence, by selecting a contiguous piece of a fixed length m in every iteration, and11

copying it back into the sequence at a random position. While this procedure may seem12

surprisingly simple (perhaps even too abstract), it is, in fact, quite effective at achieving a similar13

spectrum to real-life sequences (Figure 1A).14

As another sign of the importance of duplications, we note the association between heavy-tail15

distributions and long-range autocorrelation, which are tokens of self-similarity. Long-range16

autocorrelation at the single nucleotide level was observed before (see [3] for a review), and it17

was shown that it could result from so-called expansion-randomization processes [10], which18

model sequence evolution by deletions, mutations and duplications of single nucleotides.19

Practical implications20

As we have just suggested, the birth and death model implies that some words occur often simply21

by chance, and not because of their functionality. Words that are abundant at an early point of22
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evolution tend to stay frequent in the course of random events. Therefore, even the high1

frequency of a particular word across many related species does not imply functionality on its2

own, as the word might have been frequent by chance in a common ancestor already.3

The success of computational sequence analysis hinges on adequate criteria for unusual word4

frequencies in a wide range of applications, including identification of regulatory elements [2]5

and repeat families [12], whole-genome assembly [18] and homology search [6]. Random text6

models can cause many false signals, as they imply the statistical concentration of empirical word7

frequencies.8

An example of underestimating the probability of frequent word occurrences is apparent in a9

recent study by Rigoutsos et al [16]. They reported that certain DNA words, termed pyknons,10

appear frequently in human gene-related sequences andin noncoding regions, in restricted11

configurations, and presented many arguments for the pyknon’s functionality. By relying on a12

Bernoulli model, they reasoned that 16-mers should appear in a random genome sequence more13

than forty times with a probability <10-32. Such a word frequency, however, is not as14

extraordinary if we take into account the universal shape of genomic spectra. A DPL distribution15

fitted to the human genome spectrum yields a P-value of 0.001 (see Supplementary16

Material).This latter translates to about four million 16-mers that are expected to occur at least17

forty times in a random genome-sized sequence. Strikingly, at least 460 thousand frequent words18

appear already in the repeat-masked sequence as accidental constituents of the fitted19

distribution’s heavy tail.20
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Conclusion1

Word frequencies bear witness to a long history of evolutionary tinkering: copying, deleting, and2

changing different parts of the genome. We argue that global features of genomic spectra arise3

from duplicative evolutionary processes, and not necessarily from intricate word-level selection4

on point mutations and deletions that are enacting adaptation and conservation, or simply obeying5

structural constraints. In practice, the heavy tail of word frequency distributions means that6

caution should be exercised when inferring functionality of motifs from frequency alone,7

especially if overrepresentation is related to word occurrences in random texts. Our investigations8

reveal the suitability of a simple Pareto-lognormal distribution for the statistical assessment of9

unusual word frequencies.10
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Figure legend1

Genomic spectra and fitted DPL distributions. The ordinate plots the number of words that occur2

n times, for each n shown on the X-axis. For each spectrum, dots show the l-mer frequency3

distribution, and a solid line traces the fitted double Pareto-lognormal (DPL) distribution.4

 (A) 13-mer frequencies in repeat-masked human chromosome 5 (“real”), and in random5

sequences of the same length (Bernoulli and a first-order Markov model). The spectrum of a6

shuffled sequence is also plotted, which was produced by randomly garbling the7

nucleotides within windows of length 1000 to preserve large-scale heterogeneity. A verisimilar8

word frequency distribution is achieved by random “copy-and-paste” of 33-mers. The procedure9

started with a Bernoulli sequence of 5000 random nucleotides with 38.5% guanine-cytosine10

content, matching the composition of chromosome 5.11

 (B) Some smaller spectra. Notice the lower power-law tail in the B. subtilis genome.12

 (C) 9-mer spectra of repeat-masked human chromosome 12. In organisms with strong13

dinucleotide bias, such as for CpG in vertebrates, the spectrum can be decomposed into multiple14

DPL distributions by dinucleotide content. By grouping the words according to the number of15

non-overlapping CpG dinucleotides in them, frequencies in each group follow a16

DPL distribution.17

(D) CpG-free l-mers on repeat-masked chromosome 12. Notice the transition from a lognormal18

to a power-law shape as the word length increases.19
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 Glossary1

Bernoulli model2

The simplest random sequence model is the Bernoulli, or “coin-flip” model. Each nucleotide of3

the sequence is chosen independently, by the same background nucleotide probabilities p(A),4

p(C), p(G) and p(T). Accordingly, a DNA word w=w1w2…wl occurs in a given sequence5

position with probability p(w)=p(w1)p(w2)…p(wl). For a long random sequence, the number6

of occurrences N(w) can be approximated [21] by a Poisson distribution with parameter L p(w).7

Consequently, the l-mer spectrum of a Bernoulli sequence follows a mixture of Poisson8

distributions, with one Poisson distribution for each possible value of p(w).9

Markov model10

Markov models capture compositional biases present at the level of very short oligonucleotides.11

In this model,a random sequence is generated by a k-th order Markov chain. In other words, each12

random nucleotide depends on the k preceding nucleotides so that dinucleotide bias, for example,13

can be represented with k=1. Mathematically, the model is defined by the probabilities p(a | u)14

where a∈ {A,C,G,T} and u takes values in the set of k-mers. Depending on the relationship15

between L and l, the tail probabilities may be approximated by a Poisson or Gaussian distribution16

[15], which imply exponentially small values for P{N(w)≥n}. Notice that the model has 3·4k17

independent parameters p(a | u).18
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Power laws and heavy tails1

The term ``power law’’ applies to any function f(t) which is essentially polynomial, i.e., f(t)≈2

c·tk with some constants c and k. In the context of probabilities, an upper power-law tail means3

mathematically that the tail probability p≥t=P{X≥ t} is asymptotically proportional to 1/tα with4

some constant α>1 as t→∞. Conversely, X has a lower power-law tail if p≤t=P{X≤ t}∼ tβ for5

some β>0 as t→0.6

A power-law tail is “heavy” in the sense that log(p≥t)≈ –αlog t, and thus the same tail7

probability is reached at much larger t values than in light-tailed distributions, such as Gaussian8

and Poisson, where log(p≥t)≈ –poly(t) for some polynomial of t. Random quantities with light-9

tailed distributions have a typical magnitude, where all observations are concentrated, whereas10

heavy-tailed distributions span several orders of magnitude, and have no obvious ``typical’’11

value.12

Long-range autocorrelation13

Autocorrelation of a sequence is measured by the function14

f(r)=Σa=A,C,G,T ((L-r)-1Σi gi(a)gi+r(a)-L-1Σi (gi(a))2)15

where gi(a)=1 if the sequence has the nucleotide a in position i, otherwise gi(a)=0. In a16

Bernoulli model, the expected value of f(r) is zero; in Markov models, it decays exponentially17

fast with r. Autocorrelation in genome sequences has a long range, as it follows a power law. It18

has been argued that long-range autocorrelation affects the statistical significance in homology19
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search programs such as BLAST [20], and that it should be taken into account in isochore1

segmentation [19].2
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Online Supplementary Material
Reconsidering the significance of genomic word

frequencies

Miklós Csűrös∗† Laurent Noé‡ Gregory Kucherov‡

1 Methods

Words were counted only on one strand of the DNA sequences (the ‘plus’
strand of the sequence file — counting on both strands gives similar results),
with the exception of the 16-mers in the human genome, where both strands
were scanned. We counted the occurrence of a word w if it appeared in a
given sequence at some position i..i + `− 1, without ambiguous nucleotides.
The DPL distribution was fitted using its cumulative distribution function
(cdf), which is

F (x) = Φ
(

ln x − ν

τ

)
+

α

α + β
xβe−βν+β2τ2/2Φ

(
− ln x − ν + βτ 2

τ

)

− β

α + β
x−αeαν+α2τ2/2Φ

(
ln x − ν − ατ 2

τ

)

for x > 0 and F (x) = 0 for x ≤ 0, where Φ(·) denotes the cdf of the
standard normal distribution. The spectrum consists of the numbers W (n)
of `-mers occurring exactly n times for all n = 0, 1, 2, . . . In order to fit
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†Department of Computer Science and Operations Research, Université de Montréal,

CP 6128, succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada.
‡Laboratoire d’Informatique Fondamentale de Lille, Bât. M3, 59655 Villeneuve d’Ascq

Cédex, France.
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the distribution’s parameters, the spectrum
(
W (n) : n = 0, 1 . . .

)
was con-

sidered as a set of binned values for independently drawn samples from a
continuous DPL distribution: W (n) was compared to the predicted value

4`

(
F (n + 1

2
)− F (n− 1

2
)
)
. We used custom-made programs to carry out the

parameter fitting, using the Levenberg-Marquardt algorithm [7], a nonlinear
least-squares method, for which the starting parameter values were set by
likelihood maximization [8].

We defined CpG content of a word w as the number of non-overlapping
CG and GC dinucleotides in w.

Human sequences (original and repeat-masked) and repeat annotations
were obtained from the UCSC genome browser [2] gateway’s FTP server
(ftp://hgdownload.cse.ucsc.edu/), for version hg18 (NCBI Build 36.1).
(The repeat annotations were generated by the programs RepeatMasker [11]
and Tandem Repeats Finder [1].) Other sequences were downloaded from
the NCBI FTP server (ftp://ftp.ncbi.nlm.nih.gov/genomes/).

The random sequences of Figure 1A have the same length as the repeat-
masked chromosome sequence (or, more precisely, the same number of 13-
mers). The k-order Markov models were constructed by counting (k + 1)-
mers in the repeat-masked sequence, and setting the transition probabili-
ties p(a|u1...k) = N(u1u2···uka)∑

b
N(u1u2···ukb)

where N(w) is the number of occurrences of

the (k + 1)-mer w. For the random shuffling, we partitioned the sequence
into contiguous segments containing exactly 1000 non-ambiguous nucleotides.
Non-ambiguous nucleotides were garbled in each segment by generating a
uniform random permutation. The random copy-paste evolution was per-
formed by generating an initial Bernoulli sequence of length 5000nt, with
38.5% GC-content as for the chromosome sequence. In each iteration, (1) a
uniform random position was picked for the starting position of the copied
sequence, and (2) an independent uniform random position was picked for
the point where the copied sequence is to be inserted. The Java programs
(source and bytecode) that generated the random sequences can be obtained
from the corresponding author, or downloaded directly from the webpage
http://www.iro.umontreal.ca/~csuros/spectrum/.

2



2 Contribution of repeats in the spectrum’s

tail

Figure 1 and Table 1 illustrate the contribution of repeats to the spectrum.
The contribution of different annotations were computed by multiplying
each W (n) value in the spectrum by the fraction of occurrences within the
annotated regions for words appearing n times in the entire sequence.

n words (a) seq (b) nonrep (c) SINE (d) LINE (e) LTR (f) other (g)
12 19.6 69.6 47.2 16.7 21.4 8.4 6.3
25 5.3 39.7 41.5 21.3 22.6 7.6 7.0
30 3.7 33.9 39.6 23.1 22.9 7.3 7.2
50 1.3 22.6 34.0 28.8 23.2 6.5 7.5

100 0.4 14.7 27.9 36.7 22.6 5.4 7.4
200 0.1 10.6 24.6 43.0 20.7 4.7 7.0

Table 1: Composition of the 12-mer spectrum’s tail in human chromosome 12: (a)
fraction of words that occur at least n times; column; (b) fraction of the genome
sequence covered by such words; (c–g) fraction of occurrences within non-repeat
regions, short interspersed elements, long interspersed elements, long terminal re-
peats, and other repeat elements (including DNA transposons, simple repeats,
low-complexity and tandem repeats), respectively. Fractions are expressed as per-
centages.

3 16-mer spectrum of the human genome

We counted 16-mers in the forward and reverse strands of the human genome
sequence, NCBI version 36.1. We fitted a DPL distribution to word occur-
rences between 0 and 100 for the unmasked sequence, and ignored the shape
of the upper tail consisting of words occurring more than 100 times, since
it is determined by the mixture of repeat elements. The DPL curve has
parameters α = 1.988, β = 0.209, ν = 1.08, τ = 0.528, which corresponds
to a tail probability P{N(w) ≥ 40} = 9.2 · 10−4. We found that other pa-
rameter settings also provide a reasonable fit to the spectrum, corresponding
to tail probabilities between 8.6 · 10−4 and 1.0 · 10−3. Figure 2 shows the
16-mer spectrum of the repeat-masked sequence. The fitted DPL distribu-
tion has parameters α = 2.625, β = 0.191, ν = 0.828, τ = 0.556, giving

3
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null model, but they are often absorbed in the fundamental curve.
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Figure 2: 16-mer spectrum of the repeat-masked human genome. The solid curve
shows the fitted DPL distribution. The vertical line indicates the cutoff of forty
occurrences chosen by Rigoutsos et al.

P{N(w) ≥ 40} = 1.08 · 10−4. Since there are 416 16-mers, the expected
number of words occurring at least 40 times is 416 · 1.08 · 10−4 ≈ 464000.

4 Fit of Markov models

Markov models of random sequences are often used to predict word frequen-
cies. Markov and Bernoulli models capture the word distribution for all word
lengths simultaneously, but the models are not necessarily more compact in
practice than a few DPL distributions, if the goal is to recognize unusual
word occurrences. A third-order Markov model has 3 · 43 = 192 independent
parameters, and, thus, uses almost 20 parameters for each practically inter-
esting word length (say, between six and fifteen). A DPL model is then five
times simpler with four parameters per word length distribution. A second-
order Markov model routinely used to capture the codon distribution in a
prokaryotic genome uses 3 ·42 = 48 parameters, which is equivalent to twelve
DPL distributions in complexity. Even third- to seventh-order Markov mod-
els are employed in practice [9, 3, 12, 10, 4, 6, 5] in order to provide P-values

5
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Figure 3: Spectra of Markov models. The models were estimated from the repeat-
masked sequence of human chromosome 5. The plots compare the 13-mer spectra
of the Markov models to that of the true sequence.

for word overrepresentation.
Figure 3 illustrates how much Markov models fail to capture the word

frequency distributions for lengths above their order, despite a substantial
number of parameters. Notice that it is necessary to use a seventh-order
Markov model (with 49152 independent parameters) to predict 13-mer fre-
quencies.
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