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Abstract

The path we follow in this dissertation leads from biomolecular sequences and
mathematical sequence evolution models to the design of algorithms with su-
perior efficiency for these models. We study the construction of evolutionary
trees from sequences in a probabilistic framework. Our focal problem is
that of learning evolutionary tree topologies from the sample sequences they
generate in Markov models of evolution. We examine several models, most
importantly, the i. i. d. Markov model, and some subclassess such as the
Jukes-Cantor model and the Hasegawa-Kishino-Yano model.

We discuss the nature of evolutionary distances. We prove a novel result
concerning the uniqueness of evolutionary distances as functionals of distri-
butions over mutating sequences, namely, that distance functions differ only
by a single factor in time-reversible models with constant substitution rates.
We scrutinize methods for estimating evolutionary distances from sample
sequences and derive novel upper bounds on the probabilities of large de-
viations in the cases of the Jukes-Cantor distance, Kimura’s distance, the
paralinear distance, and the LogDet metric. In each case we show that the
probabilities decrease exponentially in sequence length and in the square of
similarities between the sequences involved, where distance is the logarithm
of similarity.

We offer a comprehensive overview of maximum likelihood, character-
based, and distance-based topology reconstruction algorithms. We describe
known theoretical guarantees for their success, and sources of computational
and statistical difficulties. Building on our convergence analysis of distance
functions, we extend existing results for popular distance-based algorithms,
such as Neighbor-Joining, on the sample size they require for successful topol-
ogy recovery.

The final chapter presents a family of novel distance-based algorithms on
the principle of “Harmonic Greedy Triplets,” originating from our analysis
of the distance estimation error. We prove that the algorithms recover the
correct topology from sample sequences that are polynomially long in tree
size, while running in quadratic time in the number of leaves. Our algorithms
are the fastest known to date with provable polynomial sample size bounds.
We support our theoretical results with simulation experiments involving
large, biologically motivated trees with up to 3135 leaves.
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Chapter 1

Preliminaries

1.1 Introduction

Key characteristics of the human mind such as language and abstract think-
ing rely on its ability to explore similarities and differences between objects
and events in the surrounding environment. The way we group objects in
order to speak and think about them in an organized manner is a pivotal
concern of philosophy, and many scientific disciplines, including biology. One
of the earliest branches of biology originating from the ancient Greeks is tax-
onomy, the science of naming and classifying organisms. Biological classifica-
tion gained a new, causal perspective with the introduction of evolutionary
theories. The birth and rapid growth of molecular biology have enriched
our understanding of evolution, and have provided a basis to mathematically
sound and experimentally testable theories on how biomolecular sequences
evolve. In this dissertation we study how evolutionary history can be retraced
in various sequence evolution models. We examine the properties of relation-
ships between evolving sequences in order to design efficient algorithms for
successful recovery of evolutionary trees. We aim to focus on algorithmic
issues; the nature of the problem, however, inevitably puts us at the inter-
section of statistics, computer science, and — to a lesser extent — molecular
biology.

The thesis is structured as follows. The rest of Chapter 1 presents a
summary of concepts in molecular biology pertaining to our study, as well as
an introduction to evolutionary trees, graph-theoretical concepts, and prob-
abilistic models of evolution. Chapter 2 discusses stochastic models of se-
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CHAPTER 1. PRELIMINARIES 2

quence evolution, concentrating on Markov models. Chapter 3 examines for-
mal definitions of similarity measures between evolving sequences. Chapter 4
reviews existing algorithmic approaches to evolutionary tree reconstruction.
Finally, Chapter 5 presents our Harmonic Greedy Triplets algorithms, theo-
retical results on their efficiency, and experimental results of reconstructing
large evolutionary trees.

1.2 Biomolecular sequences

Before delving into the structure, function, and reconstruction of evolution-
ary trees, it is necessary to first elucidate the context in which they will be
applied, namely, that of biomolecular sequences.

1.2.1 Nucleic acids and proteins

The study of molecular interactions within and between cells is ubiquitous in
biology. In fact, hardly any part of biology can be effectively studied without
it. Here we review some basic concepts of molecular biology. There are many
good introductions to the field. In our presentation we rely on the canonic
textbook of Lodish et al. (1995) and the review of Hunter (1999).

The complex functions of life are primarily the result of coordinated in-
teractions between large molecules. The two groups of large molecules that
are most important for our purposes are those of nucleic acids and proteins.
Proteins are responsible for the structure, development, and functioning of
the cells. Nucleic acids store and transfer the information necessary to build
proteins. With a (not completely precise) analogy from computer science,
proteins are dynamic entities corresponding to processes, and nucleic acids
are static entities corresponding to stored programs. Nucleic acids and pro-
teins are linear polymers. They consist of a sequence of building blocks,
called monomers. There are only a few possible monomers, but the diversity
of proteins and nucleic acids is enormous.
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sugar

phosphate
group base

The monomers of nucleic acids are called nu-
cleotides. A nucleotide consists of a phosphate
group, a small sugar molecule, and an organic
base. There are two types of nucleic acids: de-
oxyribonucleic acid (DNA) and ribonucleic acid
(RNA). They differ in the types of sugar molecules
in the nucleotides comprising them: DNA con-
tains deoxyribose, and RNA contains ribose.

There are only a handful of bases occurring naturally. In DNA, the bases
can be adenine (A), guanine (G), cytosine (C), or thymine (T). In RNA
molecules, the bases may be A, G, C, or uracil (U) instead of T. Some
special RNA molecules may contain also the base inosine (I). During poly-
merization, the phosphate groups and the sugars of the nucleotides attach
to each other to form the DNA or RNA molecule (see Figure 1.1). Since
the nucleotides only differ in their bases, a nucleic acid can be described as
a sequence. The length of RNA sequences ranges from less than a hundred
to many thousands. A DNA sequence may consist of up to a few hundred
million nucleotides.

The monomers of proteins are called amino acids. There are twenty
amino acids found naturally, which only differ in the so-called R-group, or
side chain. Amino acids bond to each other in a peptide chain to form a
protein (see Figure 1.1). A protein consists of up to a few thousand amino
acids. The sequence information about proteins is stored by DNA molecules
in the cell. In order to synthesize a protein, first a segment of DNA is tran-
scribed into a specific type of RNA, called messenger RNA (mRNA), which
is a polymer of four possible nucleotides: A, G, C, and U. Subsequently, the
sequence of mRNA is translated into one or more protein sequences by a
ribosome, which is a cell organelle responsible for protein synthesis. Ribo-
somes consist of ribosomal RNA (rRNA) and protein molecules. The mRNA
transcribed from DNA may be modified before it reaches the ribosome, and
in fact, the same primary mRNA is sometimes edited differently to yield
different proteins. During synthesis, the ribosome adds one amino acid at
a time proceeding physically along the mRNA in one direction. Thus, the
translation from mRNA to proteins is sequential. The translation relies on
the fixed encoding of amino acids by nucleotides, known as the genetic code.
A block of nucleotides encoding an amino acid in the mRNA is called a codon.
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b1 b2 b3 bN

R1 R2 R3 RN

Figure 1.1: Nucleic acids (upper image) and proteins (lower image) are lin-
ear polymers, consisting of a sequence of monomers. The nucleotides com-
prising the nucleic acid form a polynucleotide chain that is defined by the
sequence of bases b1b2 · · · bN . In a conceptually similar manner, the amino
acids comprising the protein form a polypeptide chain that is defined by the
sequence of R-groups R1R2 · · ·RN .

A codon consists of three nucleotides, and thus there are 64 codons. With
a few exceptions, the genetic code is universal among all organisms. In the
universal genetic code there are three codons signaling the end of the protein
sequence. The other 61 codons encode the 20 amino acids, and thus multiple
codons may encode the same amino acid.

The amino acids are furnished to the ribosomes by transfer RNA (tRNA)
molecules. Every tRNA has one specific amino acid that may be connected
to it. In addition, every tRNA has a segment, called the anticodon, which is
a block of three nucleotides. The ribosomes pair up codons with anticodons,
separate the protein attached to the tRNA molecule and add it to the growing
protein chain. Outside the ribosome, specific enzymes connect the amino
acids to the tRNAs. There are 20 such enzymes, one for each amino acid,
and 30-50 different tRNAs, depending on the organism. Thus, the success of
the translation depends on the precise functioning of the ribosomes and the
enzymes attaching amino acids to tRNAs. The codon-anticodon matching,
the transcription of DNA to RNA, and even the physical structure of nucleic
acids is the result of the chemical affinity of nucleotide bases to pair with
each other. This phenomenon, known as base pairing, allows the formation
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of bonds between the following pairs of nucleotides: A with T or U, and G
with C. The base inosine is only found in tRNAs, and can pair with C, A, or
U. Finally, in case of the codon-anticodon matching, G sometimes pairs with
U. Adenine and guanine are purines, and thymine, cytosine, and uracil are
pyrimidines. As a general rule, pyrimidines pair with purines and vice versa.

The transcription of DNA to mRNA is carried out by a group of proteins,
which read the DNA sequence in one direction, adding one nucleotide at a
time. For each DNA nucleotide, one nucleotide is added to the growing RNA
chain, guided by the rules of base pairing. The codon-anticodon matching
also relies on the base pairing mechanism, with the “exceptional” events of
matching G with U or I with another base occurring in the third position
of the codon, removing some redundancy, since the same anticodon may be
matched with more than one codon encoding the same amino acid.

The monomers of nucleic acids and proteins interact with each other. In
their natural state many chemical bonds are formed between different parts
determining the chemical properties of the molecules. In the case of nucleic
acids, the physical shape of the molecule is primarily due to the base pairing
mechanism. A single strand of nucleic acid, such as an mRNA or a tRNA,
forms loops within itself. The structure of DNA is also the result of base
pairing. In the native state of DNA, two polynucleotide strands are linked
together. The bases in the two strands are complimentary. The two strands
entwine to form the double helix structure discovered by Watson and Crick.
During DNA replication, for instance, when the cell is replicating itself, the
two strands of the DNA separate, and specific enzymes complement the single
strands so that two identical DNAs with double strands are constructed.

The starting point for the synthesis of all molecules within the cell is
DNA. Nucleic acids, such as tRNA and rRNA are directly transcribed from
DNA. Proteins are translated from mRNAs that are transcribed from DNA.
Other macromolecules and small molecules are synthesized by proteins. A
region of DNA that is involved in the synthesis of a functional protein or
RNA molecule is called a gene. Genes were actually discovered in the nine-
teenth century by Gregor Mendel as the discrete units of heredity. Genes are
organized into chromosomes in the cell, so that each chromosome contains
one double-stranded DNA molecule. In many organisms the chromosomes
exist in multiple copies. Most normal human cells contain 22 pairs of so-
called autosomes and two sex chromosomes. In eukaryotic organisms the
chromosomes are found in the cell nucleus. Some other organelles, namely
the mitochondrion and the chloroplast, contain their own DNA.
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1.2.2 Molecular evolution

The evolution of organisms is the result of the variation in genes as they are
passed to the descendants. The sources of the variations may be localized
errors during DNA replication, or global rearrangements of genes within and
between chromosomes. On a chain of descendants, the variations grow with
the generations. Consequently, the difference between organisms at the ge-
netic level can be used to infer their evolutionary relationships. Resolving the
sequence of a particular gene, either as the genomic DNA, the transcribed
RNA, or the translated protein is a fairly routine procedure by now (Smith
et al. 1986; Bonfield and Staden 1995; Ewing et al. 1998). The challenge lies
rather in the manner of comparing sequences between different organisms,
which is the main theme of our dissertation.

Evolutionary ancestor-descendant relationships can be depicted by an
evolutionary tree, or phylogeny. Homologous bimolecular sequences taken
from different species can be used to reconstruct their evolutionary history.
For example, Penny and Hasegawa (1997) used complete mitochondrial DNA
sequences from a number of mammals to support the theory that the evolu-
tion of the platypus branched off from that of the marsupials after the evolu-
tion of marsupials and mammals took a different course. Sometimes there are
DNA sequences available even from extinct species (Wayne et al. 1999), in
which case paleontological theories can be evaluated through molecular evo-
lutionary studies. An interesting example of one such study is that of Noro
et al. (1998), who used mitochondrial gene sequences from a mammoth re-
covered from Siberian permafrost to establish the evolutionary relationships
between the woolly mammoth and its extant relatives. Mitochondrial DNA
is often used in molecular evolutionary studies (Brown 1985) since it is al-
most exclusively inherited in the maternal lineage. In contrast, nuclear DNA
in diploid cells is inherited from both parents, and thus different trees may
depict the evolution of a gene sequence through generations, depending on
whether the maternal or paternal lineage is considered (Avise and Wollen-
berg 1997). Such problems can be resolved through a mathematically exact
definition of the tree structure when finite populations are compared (e.g.,
Tavaré 1995), but it is beyond the scope of this dissertation. Mitochondrial
sequences are favored because they mutate rapidly, and thus recent evolution-
ary events can be identified using them. For instance, evolutionary studies
on the origin of different human populations (e.g., Maddison et al. 1992)
often use mitochondrial DNA.
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Phylogenetic analysis has many other applications besides retracing evo-
lutionary history of species (Hillis 1997). Galtier et al. (1999) used rRNA
sequences to hypothesize about the very origins of life, finding that the com-
mon ancestor to all extant life forms probably lived at a moderate temper-
ature, refuting the “hot origin of life” conjecture. Gao et al. (1999) used
HIV and SIV sequences to support the theory that HIV-1 originates from
a subspecies of chimpanzees found in Gabon. A study in a similar vein by
Bollyky and Holmes (1999) investigates several hypotheses about the origin
of the hepatitis B virus. Comparison of viral sequences can be useful also
for deducing the transmission chain of a particular disease, since the evolu-
tion of the viral sequences branches off at infection events. Ou et al. (1992)
built a phylogeny based on HIV sequences to support the evidence that a
Florida dentist infected several patients. Evolutionary trees can also be de-
rived from the comparison of different genes within and between species, in
which case the origin of the corresponding proteins can be studied. For ex-
ample, phylogenies of globin and globin-like proteins (Suzuki and Imai 1998)
furthered our understanding of how new genes emerge. Similar studies are
useful also in predicting the function of novel genes (Eisen 1998) Finally, as
a somewhat unexpected application, Matisoo-Smith et al. (1998) compared
mitochondrial DNA sequences from Pacific rats on different islands in order
to test hypotheses on how humans populated Polynesia. Since the rats ac-
companied the ancestral Polynesians on their voyages, and the evolution of
the rats took different courses on different islands, the phylogeny provides
information about prehistoric settlement events.

1.3 Graphs and trees

We start with an obligatory list of graph-theoretic terms used throughout
this work, recalling some basic terminology from graph theory (see, for ex-
ample, Bollobás 1979, Bondy and Murty 1976) and data structures (see for
example, Cormen, Leiserson, and Rivest 1990). A graph G = (V,E) is de-
fined by the set of vertices V and the set of edges E. In an undirected graph,
each element of E is an unordered pair of vertices, whereas in a directed
graph, each element is an ordered pair of vertices. If edge e is defined by the
pair (u, v), then u and v are called the endpoints of e. Using a shorthand
notation, we write e = uv (which is equivalent to e = vu in an undirected
graph). The edge uv is also said to connect u to v.
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The degree of a vertex u in an undirected graph (V,E) is the number of
edges of the form uv. The in-degree of a vertex u in a directed graph (V,E)
is the number of edges of the form vu ∈ E. The out-degree of u is the number
of edges of the form uv ∈ E.

A path is an alternating sequence of vertices and edges

v1, e1, v2, e2, . . . , ek−1, vk

such that for every i, ei connects the vertex vi−1 to vi, and the vertices v1,. . . ,
vk−1 are all different. If v1 = vk and k > 1, then the path forms a cycle. The
length of the path is the number of edges in it (k−1 in this example). Notice
that zero-length paths consisting of a single vertex are permitted.

A graph G is connected if there is a path between any two of its vertices.
An undirected connected graph with no cycles is called an unrooted tree. A
rooted tree T = (V,E) is a directed graph with vertex set V and edge set E,
in which there exists exactly one vertex u ∈ V , such that there is exactly
one path from u to any vertex in T. The vertex u is called the root of T.
By “tree” we will always mean “rooted tree”. The vertices of a tree are also
referred to as nodes. A rooted tree is obtained from an unrooted tree by
directing its edges outwards from the root.

Lemma 1.1. If the graph T = (V,E) is a tree, then every non-root node has
in-degree one.

Proof. Let w ∈ V be an arbitrary non-root node. Since there is a path
from the root to every node v with vw ∈ E, which can be extended to reach w
through the edge vw, there can only be one edge vw ∈ E.

Let T = (V,E) be a tree. If uv ∈ E, then u is the parent of v and v
is a child of u. Lemma 1.1 states that every non-root node has exactly one
parent. A node that has no children is called a leaf. A node that has a parent
and at least one child also is called an inner node. Consequently, a node is
either the root, an inner node, or a leaf. A tree in which every non-leaf node
has two children is a binary tree. The ancestors of a node v are the nodes on
the path from the root to v. If a node u is an ancestor of another node v,
denoted by u ≺ v, then v is called a descendant of u. By definition, the parent
of an ancestor of a node v is also an ancestor of v. Similarly, the child of a
descendant of a node u is also a descendant of u. Every two nodes in the tree
have at least one common ancestor, the root. The lowest common ancestor
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w

subtree
rooted at w

root

u

v

lowest common ancestor
of u and v

parent

child

leaf

inner node

Figure 1.2: Example for a rooted tree. Edges point downwards.

of two nodes is their common ancestor that is reached by the longest path
from the root. Every pair of nodes has only one lowest common ancestor;
were this not the case, there would be more than one path leading from the
root to either of the two nodes. Figure 1.2 illustrates some of the defined
notions for trees.

Let u be a node of tree T = (V,E). The graph defined by the descendants
of u and the edges between them is called the subtree of T rooted at u. In
other words, the subtree of T rooted at u is the graph Tu = (Vu, Eu) with

Vu =
{
v ∈ V : u ≺ v

}
;

Eu =
{
vw ∈ E : v, w ∈ Vu

}
.

Figure 1.2 shows an example for a subtree.
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there

exist bijections f : V1 7→ V2 and g : E1 7→ E2 such that for each uv ∈ E1,
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g(uv) = f(u)f(v). Isomorphism is denoted by

G1 ' G2.

If, in addition, there exists a node set L ⊆ V1 such that for every u ∈ L,
f(u) = u, then we say that G1 and G2 are L-isomorphic, denoted by

G1 '
L

G2.

In particular, if G1 '
V1

G2, then G1 = G2.

1.4 Stochastic models

1.4.1 Sequence evolution

Let A = {a1, . . . , am} be an alphabet of size m > 1. Let A+ denote the set
of all sequences over A with positive length. Denote the set of sequences
that may arise in the studied evolutionary process by S ⊆ A+. From a
theoretical viewpoint, S = A+ is an obvious choice. However, “biological
languages” may impose constraints, as they do for example in the study
of a protein family characterized by some common features. We exclude
the empty sequence from S because it would only complicate the discussion
without any theoretical or practical advantage.

An evolutionary tree, or phylogeny, is defined by two components, a tree
and a probability distribution over sequences associated with the tree nodes.
Formally, a phylogeny is defined as a triple P = (V,E,P) with the following
properties.

• The graph T = (V,E) is a rooted tree. The nodes of T are called
taxonomic units, or shortly taxa.

• Every taxon u ∈ V is associated with a random taxon sequence X(u),
which is a random variable taking values on S. The joint probabil-
ity distribution for the vector of random sequences1 〈X(u) : u ∈ V 〉 is
defined by P.

1It is assumed without loss of generality that an ordering is fixed on V , say, by depth-
first traversal of the nodes (see Cormen et al. 1990).
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Since every taxon sequence can take at most countably infinite values, there
are no measurability concerns. Thus, for any collection of sequence sets
〈B(u) ⊆ S : u ∈ V 〉, the probability

P
⋂
u∈V

{
X(u) ∈ B(u)

}

is well-defined.
Let P = (V,E,P) be a phylogeny. The underlying rooted tree (V,E) de-

scribes the evolutionary ancestor-descendant relationships between the taxa.
By removing the direction of the edges we get an unrooted tree that sum-
marizes the “relatedness” of the taxa by taking away the aspect of time.
Let Ψ(P) denote the undirected graph obtained from the tree (V,E) by re-
moving the direction of the edges. The graph Ψ(P) is called the topology
of P.

1.4.2 Evolutionary tree reconstruction

Let P = (V,E,P) be an evolutionary tree. The problem of evolutionary tree
reconstruction is the one of deriving, or at least estimating, P from a set of ob-
served sequences drawn according to P. The problem is typically aggravated
by the fact that one can observe only a subset of all the generated sequences.
For example, it is rarely the case that one has access to gene sequences of
extinct species in molecular evolution studies (with notable exceptions such
as that of Noro et al. (1998) based on mammoth genes). Let L ⊆ V denote
the set of observable nodes. Generally, L should include all the leaves lest we
fail to have any information on some subtrees. In an epidemiological study
where the nodes represent virus sequences in individuals at different times (as
in the study of Leitner et al. 1996 on HIV), L may include some inner nodes
corresponding to sequences in samples taken from the same individual at
earlier times. An evolutionary tree reconstruction algorithm is an algorithm
that outputs a hypothetical evolutionary tree P∗ based on a set of observed
sequences associated with nodes in L ⊆ V .

The success of the algorithm is judged by how well it reconstructs the
evolutionary relationships between nodes in L. There are many possible
rooted trees in which those relationships are the same. In order to illustrate
and clarify this statement we describe two relationship-preserving operations
on rooted trees. Let T = (V,E) be a rooted tree. The first operation,
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u

v

w z

u

v w

z

Figure 1.3: The tree on the right-hand side is a topological minor of the
tree on the left-hand side over the set L = {u, v, w, z}.

INNER(uv, w), is that of adding a new inner node w 6∈ V on an arbitrary
edge uv ∈ E, which results in the tree

T′ =
(
V ∪ {w},

(
E − {uv}

)
∪ {uw,wv}

)
.

The second operation, LEAF(u′, w′), is that of adding a new leaf w′ 6∈ V by
connecting it to an arbitrary node u′ ∈ V , which leads to the tree

T′′ =
(
V ∪ {w′}, E ∪ {u′w′}

)
.

Clearly, no series of these two operations introduces new relationships be-
tween nodes of V . In other words, the ancestor-descendant relationships
between the original nodes remain the same. For a formal treatment, we in-
troduce the notion of topological minors. Let T1 = (V1, E1) and T2 = (V2, E2)
be two rooted or unrooted trees. Let f : V2 7→ V1 be a mapping from nodes
of T2 onto those of T1 such that if u 6= u′ then f(u) 6= f(u′) and if uu′ ∈ E2
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then there is a path from f(u) to f(u′) in T1. For every edge uu′ ∈ E2

define f ∗(uu′) as the path from f(u) to f(u′) in T1. The mapping f pre-
serves the topology of T2 if for all edges e, e′ ∈ E2, f ∗(e) and f ∗(e′) share
no edges. Now let T1 = (V1, E1) be an arbitrary rooted (or unrooted) tree,
and let L ⊆ V1 be an arbitrary node set. A rooted (respectively, unrooted)
tree T2 = (V2, E2) is a topological minor of T1 over L if L ⊆ V1 ∩ V2 and
there exists a topology preserving mapping f from V2 to V1 such that for
every u ∈ L, f(u) = u. We denote this fact by

T2 t
L

T1.

Figure 1.3 shows an example illustrating the concept of a topological minor.
Returning to the operations INNER and LEAF, any series of their application
to a tree T = (V,E) leads to a tree T′ such that T t

V
T′. Using the minimal

topological minors, we introduce an equivalency relation over trees. Let T1 =
(V1, E1) and T2 = (V2, E2) be two rooted or unrooted trees and let L ⊆ V1∩V2

be an arbitrary nonempty node set. The trees T1 and T2 are topologically
equivalent over L if there exists a tree T′ with T′ t

L
T1 and T′ t

L
T2. The fact

that T1 and T2 are topologically equivalent is denoted by

T1 ∼
L

T2.

Now we are ready to discuss the success criterion for an evolutionary tree
reconstruction algorithm. The algorithm recovers the topology if Ψ(P∗) ∼

L

Ψ(P), i.e., if the evolutionary relationships between taxa of L are derived
correctly. The main focus of our study is topology recovery. A topology
reconstruction algorithm outputs an unrooted tree Ψ∗, based on a set of
observed sequences associated with nodes in L ⊆ V . The output Ψ∗ is
the algorithm’s prediction of Ψ(P), so the algorithm is successful if Ψ∗ ∼

L

Ψ(P). Obviously, every evolutionary tree reconstruction algorithm can be
considered as a topology reconstruction algorithm.

In view of the general definition of phylogeny in §1.4.1, topology recovery
seems hopeless, since there is no dependence imposed between the underly-
ing tree and the taxon sequence distribution. Chapter 2 introduces several
models in which there is such a dependence, making topology recovery pos-
sible. Such models imply that the reconstruction is restricted to a hypothesis
class C, i.e., that P belongs to C, and that the reconstruction algorithm se-
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lects a topology based on that condition. Speaking generally, we hope that C

is large enough to include a tree that models evolution well in reality, yet
small enough to enable the use of an efficient algorithm. This philosophy
is borrowed from computational learning theory (Kearns and Vazirani 1994)
and statistical pattern recognition (Devroye, Györfi, and Lugosi 1996). This
dissertation presents a family of novel efficient algorithms that work on large
hypothesis classes used in molecular evolutionary studies. Leaving formal
definitions of efficiency for later, we state in advance that the algorithms are
efficient from both computational and statistical viewpoints — they run in
polynomial time in the size of the input, and require small amounts of data
for highly accurate topology recovery.



Chapter 2

Stochastic models of sequence
evolution

2.1 Introduction

In §1.4 we outlined a general framework of stochastic sequence evolution.
We noted that in order to achieve success in evolutionary tree reconstruc-
tion, there must be a known relationship between topology and sequence
probability space. This chapter discusses some hypothesis classes that are
widely used in molecular evolution studies, which incidentally do impose a
relationship between topology and sequence probabilities. In fact, in every
class studied, topology is a function of the random taxon sequence distribu-
tion.

2.2 Memoryless evolution

One particular feature of evolution is that inheritance depends solely on the
parents and not on the entire series of ancestors. The evolutionary changes
leading from the first mammals to Homo sapiens were not determined by
those leading from the first eukaryotes to the dinosaurs. This memoryless
feature suggests the use of Markov chain based models of evolution. Recalling
the notation X(u) for the random sequence associated with node u, we thus
impose that for every phylogeny P = (V,E,P), and every sequence set B ⊆ S,

15
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if u ≺ v ≺ w,

P
{
X(w) ∈ B

∣∣∣∣ X(v), X(u)
}

= P
{
X(w) ∈ B

∣∣∣∣ X(v)
}

with probability 1. In other words, the random taxon sequences form a
Markov chain on every path in an evolutionary tree.

Another particular feature of evolution is that evolutionary changes along
different branches are more or less independent from each other. One can
argue nonetheless that the evolution of ant-eaters does very much depend
on the evolution of ants, but at the molecular level, the simplification is
acceptable (Kimura (1983), among others, argues powerfully in support of
this assumption).

Based on the above discussion, we augment the definition of phylogeny
by the following — for lack of a better word — axiom1.

Axiom 2.1. Let P = (V,E,P) be a phylogeny. For every edge uv ∈ E,
the following holds. Let k > 1, and let w1, w2, . . . , wk ∈ V − {u, v} be a
collection of nodes such that none of them is in the subtree rooted at v, i.e.,
v 6≺ wi for every i = 1, 2, . . . , k. Then for arbitrary sequence sets Bu,Bv ⊆ S

with P
{
X(u) ∈ Bu

}
6= 0,

P
{
X(v) ∈ Bv

∣∣∣∣ X(u) ∈ Bu, X
(w1), . . . , X(wk)

}
= P

{
X(v) ∈ Bv

∣∣∣∣ X(u) ∈ Bu

}
with probability 1.

Definition 2.2. Define the following set of distributions for every evolution-
ary tree.

• The root sequence distribution is defined as the marginal distribution
of the random taxon sequence associated with the root.

• The sequence transition probabilities assigned to each edge uv are de-
fined by the conditional probability distribution of X(v) given X(u).

Axiom 2.1 reveals an important property of the joint probability distribu-
tion of random taxon sequences, namely, that the joint distribution is fully
determined by root sequence distribution and sequence transition probabili-
ties.

1This axiom was introduced in a less general version by Steel (1994b).
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Figure 2.1: Example of classifying sequence differences into three mutation
categories to obtain an alignment.

In light of the axiom, evolution can be interpreted as the broadcasting
of a sequence from the root towards the leaves. The transmitted sequence
undergoes certain random changes on each edge, governed by the sequence
transition probabilities. The original sequence is randomly picked from the
set S according to the root sequence distribution. The changes occurring
to a sequence are called mutations in a biological context, and are usually
classified in the following categories.

• Substitutions of characters in a sequence position.

• Deletions of characters from the parent sequence.

• Insertions of characters into the child sequence.

Decomposing the differences between two or more sequences into the above
categories is a fundamental problem in computational biology. Such a de-
composition results in an alignment of the sequences (see Figure 2.1). There
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is a vast body of research on sequence alignment problems; for a compre-
hensive overview see the work of Gusfield (1997) or Setubal and Meidanis
(1997).

It is necessary to mention that there is a certain level of co-dependence
between string alignment and evolutionary tree reconstruction. In order to
align sequences generated by an evolutionary tree, we may need to recover
the tree. On the other hand, most evolutionary tree reconstruction algo-
rithms need an aligned set of sequences. Unfortunately, finding the optimal
alignment for multiple sequences is NP-hard (Wang and Jiang 1994; Wang
et al. 1996), with or without a phylogeny at hand, although there are many
heuristics and suboptimal algorithms available (Gusfield 1997, Setubal and
Meidanis 1997). In our study we simply assume that only substitutions occur
on the edges, which corresponds to the practice of using aligned sequences
as input to evolutionary tree reconstruction algorithms.

We show two properties of phylogenies in Lemma 2.1 and Theorem 2.2,
which are useful in the later discussions. The following lemma generalizes the
property described by Axiom 2.1 from parent-child to ancestor-descendant
pairs.

Lemma 2.1. Let P = (V,E,P) be a phylogeny. Let u, v be an arbitrary
ancestor-descendant pair, i.e., u ≺ v, and let u′ denote the child of u on
the path towards v. Let k > 1 and let w1, w2, . . . , wk ∈ V − {u, v, u′}
be a collection of nodes such that none is in the subtree rooted at u′, i.e.,
u′ 6≺ wi for every i = 1, 2, . . . , k. Then for all sequence sets Bu,Bv ⊆ S

with P
{
X(u) ∈ Bu

}
6= 0,

P
{
X(v) ∈ Bv

∣∣∣∣ X(u) ∈ Bu, X
(w1), . . . , X(wk)

}
= P

{
X(v) ∈ Bv

∣∣∣∣ X(u) ∈ Bu

}
with probability 1.

Proof. We prove the lemma by induction in the path length l between u
and v.

Base case: l = 1. Then u′ = v, and the lemma holds by Axiom 2.1.
Induction step: Let l > 1, and assume that the lemma holds for path

lengths less than l. Let X = 〈X(w1), . . . , X(wk)〉. By conditioning on X(u′),
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and using the induction hypothesis,

P
{
X(v) ∈ Bv

∣∣∣∣ X(u) ∈ Bu,X
}

= E
[
P
{
X(v) ∈ Bv

∣∣∣∣ X(u′), X(u) ∈ Bu,X
} ∣∣∣∣∣ X(u) ∈ Bu,X

]

= E
[
P
{
X(v) ∈ Bv

∣∣∣∣ X(u′), X(u) ∈ Bu,
} ∣∣∣∣∣ X(u) ∈ Bu

]

= P
{
X(v) ∈ Bv

∣∣∣∣ X(u) ∈ Bu

}
.

The following theorem is crucial to our thesis. It establishes a relationship
between the pairwise conditional probabilities of three random sequences
associated with nodes that lie on a path in Ψ(P).

Theorem 2.2. Let P = (V,E,P) be a phylogeny. If u, v, w ∈ V are three
nodes such that v lies on the path between u and w in Ψ(P), then for all

sequence sets Bu,Bw ⊆ S with P
{
X(u) ∈ Bu

}
6= 0,

P
{
X(w) ∈ Bw

∣∣∣∣ X(u) ∈ Bu

}
=

∑
s : P
{
X(v)=s

}
6=0

P
{
X(w) ∈ Bw

∣∣∣∣ X(v) = s
}
P
{
X(v) = s

∣∣∣∣ X(u) ∈ Bu

}
. (2.1)

Proof. Rewrite Equation (2.1) in the following equivalent form.

P
{
X(w) ∈ Bw

∣∣∣∣ X(u) ∈ Bu

}
= E

[
P
{
X(w) ∈ Bw

∣∣∣∣ X(v)
} ∣∣∣∣∣ X(u) ∈ Bu

]
.

If w is a descendant of v, then

P
{
X(w) ∈ Bw

∣∣∣∣ X(u) ∈ Bu

}
= E

[
P
{
X(w) ∈ Bw

∣∣∣∣ X(v), X(u) ∈ Bu

} ∣∣∣∣∣ X(u) ∈ Bu

]
(conditioning on X(v))

= E
[
P
{
X(w) ∈ Bw

∣∣∣∣ X(v)
} ∣∣∣∣∣ X(u) ∈ Bu

]
. (by Lemma 2.1)
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Otherwise, u is a descendant of v. If P
{
X(w) ∈ Bw

}
= 0, then the theorem

trivially holds. If P
{
X(w) ∈ Bw

}
> 0, then

P
{
X(w) ∈ Bw

∣∣∣∣ X(u) ∈ Bu

}

=
P
{
X(w) ∈ Bw

}
P
{
X(u) ∈ Bu

} P{X(u) ∈ Bu

∣∣∣∣ X(w) ∈ Bw

}

=
P
{
X(w) ∈ Bw

}
P
{
X(u) ∈ Bu

} E[P{X(u) ∈ Bu

∣∣∣∣ X(v), X(w) ∈ Bw

} ∣∣∣∣∣ X(w) ∈ Bw

]

=
P
{
X(w) ∈ Bw

}
P
{
X(u) ∈ Bu

} E[P{X(u) ∈ Bu

∣∣∣∣ X(v)
} ∣∣∣∣∣ X(w) ∈ Bw

]
(by Lemma 2.1)

= E
[
P
{
X(w) ∈ Bw

∣∣∣∣ X(v)
} ∣∣∣∣∣ X(u) ∈ Bu

]
.

2.3 The general Markov model

In the general Markov model the only mutations are independently dis-
tributed substitutions, i.e., each character of the broadcasted sequence un-
dergoes changes independently. Deletions and insertions are not considered
in this model. Consequently all character sequences have the same length `.

Definition 2.3. The general Markov class CM is the set of every phylogeny P =
(V,E,P) such that the sequence transition probabilities on each edge e = uv ∈
E are defined by the m×m edge mutation matrices {M(k)

e : k = 1, 2, . . .} in
the following manner. For all ` > 0, and length ` sequences s = s1 · · · s` ∈ S

and t = t1 · · · t` ∈ S,

P
{
X(v) = t

∣∣∣∣ X(u) = s
}

=
∏̀
k=1

M(k)
e [sk, tk]. (2.2)

We generalize the notion of a mutation matrix for every pair of nodes as
the matrix of conditional probabilities on characters in the same positions of
sequences associated with the two nodes.
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Definition 2.4. Let u and v be arbitrary nodes in an evolutionary tree P.
Let X

(u)
k , X

(u)
k denote the k-th character of the random sequences associated

with nodes u and v, respectively. The m ×m M(k)
uv is defined by its entries

for every k > 0 as

M(k)
uv [i, j] =

P
{
X

(v)
k = j

∣∣∣ X(u)
k = i

}
if P

{
X

(u)
k = i

}
6= 0;

I{i = j} otherwise.

In particular, if v is a child of u on edge e = uv, then M(k)
uv [i, j] = M(k)

e [i, j]

in every sequence position k and characters i, j ∈ A such that P
{
X

(u)
k = i

}
6=

0.
The next theorem is an application of Theorem 2.2 to the general Markov

model, showing that mutation matrices multiply along paths.

Theorem 2.3. Let P = (V,E,P) be a phylogeny of the general Markov class.
Let u, v, w ∈ V be three nodes such that v lies on a path between u and w
in Ψ(P). In every sequence position k > 0, if P

{
X

(u)
k = i

}
6= 0 for every

symbol i ∈ A, then
M(k)

uv M(k)
vw = M(k)

uw.

Proof. Let i, i′ be two arbitrary symbols of A. We show that∑
j∈A

M(k)
uv [i, j]M(k)

vw [j, i′] = M(k)
uw[i, i′].

Define Bk,j for every j ∈ A to be the set of sequences in S in which
the k-th character is j. By Theorem 2.2,

M(k)
uw[i, i′] = P

{
X

(w)
k = i′

∣∣∣∣ X(u)
k = i

}
= P

{
X(w) ∈ Bk,i′

∣∣∣∣ X(u) ∈ Bk,i

}
= E

[
P
{
X(w) ∈ Bk,i′

∣∣∣∣ X(v)
} ∣∣∣∣∣ X(u) ∈ Bk,i

]

=
∑
j∈A

P
{
X(w) ∈ Bk,i′

∣∣∣∣ X(v)
k = j

}
P
{
X

(v)
k = j

∣∣∣∣ X(u) ∈ Bk,i

}
=
∑
j∈A

M(k)
vw [j, i′]M(k)

uv [i, j].

By expanding Theorem 2.3 to every node on a path we obtain the follow-
ing corollary.
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Corollary 2.4. Let u′ be a descendant of u, and let u, e1, u1, . . . , el, ul = u′

be the path from u to u′. In every sequence position k > 0, the following
holds. Let M(k) =

∏l
j=1 M(k)

ej
. For every character pair i, i′ ∈ A,

M
(k)
uu′ [i, i

′] =

M(k)[i, i′] if P
{
X

(u)
k = i

}
6= 0;

I{i = i′} otherwise.
(2.3)

Consequently, for all k, k′ > 0 and characters i, i′ ∈ A, if M(k) = M(k′), then

M
(k)
uu′ [i, i

′] = M
(k′)
uu′ [i, i

′], (2.4)

given that P
{
X

(u)
k = i

}
and P

{
X

(u)
k′ = i

}
are both positive or both equal to

zero.

2.4 The i. i. d. Markov model

Even though Corollary 2.4 suggests that the transition matrices may not
need to be indexed by the sequence position if the edge mutation matrices
are constant, it is important to notice that Equation (2.4) does not hold
generally unless u ≺ u′. It does hold in general, however, if the root sequence
consists of independent identically distributed (i.i.d.) characters. The class
of phylogenies for which this is true is called the i. i. d. Markov class. This
general model was introduced by Steel (1994b); its origins have been credited
to Farris (1973) and Cavender (1978).

Definition 2.5. The i. i. d. Markov model is a subclass of the general Markov
model, in which for every phylogeny P = (V,E,P) the following hold:

(i) The edge mutation matrices are constant across sequence positions. In
other words, on each edge e ∈ E there exists Me such that in every
sequence position k, M(k)

e = Me.

(ii) The root sequence distribution is defined by a sequence length distribu-
tion over the positive integers, and fixed root symbol frequencies over
the alphabet given by the vector

π(0) = 〈π(0)
1 · · ·π(0)

m 〉.
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Each character of the root sequence X(0) is independent identically dis-
tributed according to π(0). In other words, for every sequence length ` >
0, and sequence s1 · · · s` ∈ S,

P
{
X(0) = s1 · · · s`

}
= P

{∣∣∣X(0)
∣∣∣ = `

} ∏̀
k=1

π(0)
sk
. (2.5)

(iii) For every sequence position k > 0, if P
{∣∣∣X(0)

∣∣∣ ≥ k
}
6= 0, then for each

node u ∈ V and symbol i ∈ A, P
{
X

(u)
k = i

}
6= 0.

Condition (iii) is included in the definition in order to avoid unnecessary
complications due to degenerate cases. It is satisfied, for example, if all the
root base frequencies are positive and none of the edge mutation matrices
have all-zero columns. When the root sequence has length `, the generated
sequences can be viewed as the result of ` random node labelings. In each
labeling the nodes are labeled by random symbols of the alphabet A. The k-
th character of each sequence is generated by the k-th labeling. Every labeling
is carried out starting from the root and proceeding towards the leaves in the
following manner. The root is labeled by a symbol drawn according to the
distribution defined by the root symbol frequencies, so that for every i ∈ A,
P {root label = i} = π

(0)
i . On edge e, the child’s label is randomly selected

based on the parent’s label so that

P
{

child’s label is j
∣∣∣ parent’s label is i

}
= Me[i, j].

In the i. i. d. Markov model, Equation (2.4) can be extended to any node
pair as shown by the next lemma. Consequently, the mutation matrices do
not need to be indexed by sequence position.

Lemma 2.5. Let P = (V,E,P) be a phylogeny in the i. i. d. Markov model.

For all nodes u, v ∈ V , and sequence lengths k′ > k > 0, if P
{∣∣∣X(u)

∣∣∣ ≥ k′
}
6=

0, then
M(k)

uv = M(k′)
uv .

Proof. Let w be the root of P. We prove the lemma in three cases,
depending on whether u ≺ v, v ≺ u, or neither.
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Case I. Node v is a descendant of node u. By Equation (2.5), and
Definition 2.4,

P
{
X

(u)
k = i

}
= P

{∣∣∣X(w)
∣∣∣ ≥ k

}∑
j∈A

π
(0)
j M(k)

wu[j, i];

P
{
X

(u)
k′ = i

}
= P

{∣∣∣X(w)
∣∣∣ ≥ k′

}∑
j∈A

π
(0)
j M(k′)

wu [j, i].

Since
∣∣∣X(w)

∣∣∣ =
∣∣∣X(u)

∣∣∣, and P
{∣∣∣X(w)

∣∣∣ ≥ k
}
≥ P

{∣∣∣X(w)
∣∣∣ ≥ k′

}
, P
{
X

(u)
k = i

}
and P

{
X

(u)
k′ = i

}
are either both positive or both equal to zero. Hence M(k)

uv =

M(k′)
uv is implied by Corollary 2.4. Notice that the equations hold even if u is

the root.
Case II. Node u is a descendant of v. We show that for every two

symbols i, j ∈ A, M(k)
uv [i, j] = M(k′)

uv [i, j]. Since P
{∣∣∣X(u)

∣∣∣ ≥ k′
}
6= 0, and k <

k′, P
{
X

(u)
k = i

}
6= 0 because P

{
X

(u)
k′ = i

}
6= 0. Thus, by Definition 2.4,

M(k)
uv [i, j] = P

{
X

(v)
k = j

∣∣∣∣ X(u)
k = i

}

=
P
{
X

(u)
k = i

∣∣∣∣ X(v)
k = j

}
P
{
X

(v)
k = j

}
P
{
X

(u)
k = i

}

= M(k)
vu [j, i]

∑
j′∈A π

(0)
j′ M(k)

wv [j
′, j]∑

j′∈A π
(0)
j′ M

(k)
wu[j′, i]

. (∗)

Similarly,

M(k′)
uv [i, j] = M(k′)

vu [j, i]

∑
j′∈A π

(0)
j′ M(k′)

wv [j′, j]∑
j′∈A π

(0)
j′ M

(k′)
wu [j′, i]

. (∗∗)

By Case I, and since u and v are descendants of the root w,

M(k)
wu = M(k′)

wu , M(k)
wv = M(k′)

wv , and M(k)
vu = M(k′)

vu .

Thus by Equations (∗) and (∗∗), M(k)
uv [i, j] = M(k′)

uv [i, j].
Case III. Neither u ≺ v nor v ≺ u. Let v′ be the lowest common ancestor
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of u and v. By Cases I, II, and Theorem 2.3,

M(k)
uv = M

(k)
uv′M

(k)
v′v = M

(k′)
uv′ M

(k′)
v′v = M(k′)

uv .

Subsequently we omit indexing on the sequence position.

Definition 2.6. Define the random taxon label ξ(u) associated with each
node u, as a random variable such that 〈ξ(u) : u ∈ V 〉 is distributed identically

to 〈X(u)
1 : u ∈ V 〉.

Furthermore, for every node pair u, v ∈ V , define the m × m mutation
matrix by its entries as

Muv[i, j] = M(1)
uv [i, j] = P

{
ξ(v) = j

∣∣∣ ξ(u) = i
}
.

Finally, for every node w ∈ V , define the symbol frequencies

π
(w)
i = P

{
ξ(w) = i

}
,

forming the vector of taxon label distribution

π(w) = 〈π(w)
1 , . . . , π(w)

m 〉.

By property (iii) of Definition 2.5, π
(w)
i > 0 for every node w ∈ V and

symbol i ∈ A. Theorem 2.3 has the following corollaries in the i. i. d. Markov
model.

Corollary 2.6 (of Theorem 2.3). Let P = (V,E,P) be a phylogeny in the
i. i. d. Markov model. Let u, v, w ∈ V be three nodes such that v lies on the
path between u and w in Ψ(P). Then

MuvMvw = Muw.

Corollary 2.7 (of Theorem 2.3). Let P = (V,E,P) be a phylogeny in the
i. i. d. Markov model. Let u, u′ ∈ V be an arbitrary ancestor-descendant pair,
and let u, e1, u1, . . . , el, ul = u′ be the path from u to u′. Then

Muu′ =
l∏

k=1

Mek .



CHAPTER 2. STOCHASTIC MODELS 26

2.5 Subclasses of the i. i. d. Markov model

Every edge mutation matrix is defined by m(m−1) parameters in the i. i. d.
Markov model. Taking the root symbol frequencies also into account, a phy-

logeny P = (V,E,P) is defined by
(
|E|m(m−1) + (m−1)

)
free parameters.

Several models have been proposed in which evolutionary trees are defined by
fewer parameters. A survey and comparison of many such models are given
among others by Swofford et al. (1996) and Zharkikh (1994). The main
themes in the subclasses are (1) restricting the set of possible edge mutation
matrices to a subset of stochastic matrices, which form an algebraic group,
and (2) restricting the root label distribution. This section reviews the most
common restrictions made in the literature of molecular evolution.

Constant substitution rates From the evolutionary biologist’s viewpoint,
it is important to relate the mutation matrices to a time scale. Phylogenies
used in evolutionary biology have weighted edges, and the edge weights corre-
spond to time between speciation events. Evolutionary time is incorporated
into the i. i. d. Markov model by defining the mutation matrix on each edge e
as the transition matrix of a time-invariant Markov process running for a cer-
tain time τe. When the Markov processes running on the edges have the same
instantaneous transition matrix Q, then Me = exp(Qτe) on every edge e.
The matrix Q is the constant substitution rate matrix. This assumption
lies at the heart of the molecular clock theory, originating from Zuckerkandl
and Pauling (1962, 1965) and Margoliash (1963). The theory has since raised
much debate (e.g., Goodman 1976; Wilson et al. 1977; Kimura 1981b; Li and
Gojobori 1983; Wu and Li 1985; Ayala 1997). Many special subclasses of the
i. i. d. Markov model have been defined by specifying constant substitution
rates with some particular features. A discussion of such models focusing
on substitution rates was conducted by Tavaré (1986) and Rodŕıguez et al.
(1990). Constant substitution rates with no restriction on the rate matrix
were introduced by Lanave et al. (1984) and Barry and Hartigan (1987).

In some cases canonical substitution rate matrices are measured in labo-
ratory conditions and then used for estimating evolutionary time. The most
important examples are those of the “point accepted mutation” or PAM
matrices (Dayhoff, Schwartz, and Orcutt 1978), and the BLOSUM matrices
(Henikoff and Henikoff 1992), both for amino acid sequences.
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Stationary taxon label distribution An interesting special case of the
i. i. d. Markov model occurs when the edge transition matrices share the
same stationary distribution, which is in turn the root symbol distribution;
i.e., π(0)Me = π(0) on each edge e. As a consequence, the random labels are
identically distributed in the phylogeny. This assumption is usually made in
conjunction with the constant substitution rate assumption, in which case
π(0)Q = 0 holds.

General time-reversible model A subclass of the i. i. d. Markov model
often found in the literature (see, e.g., Lanave et al. 1984 and Tavaré
1986) comprises phylogenies in which the random taxon labels form a time-
reversible Markov chain along any path. In particular, for a phylogeny P =
(V,E,P) in the general time-reversible model,

Muv[i, j]π
(u)
i = Muv[j, i]π

(u)
j

for every edge uv ∈ E and all symbols i, j ∈ A. Consequently, every mutation

matrix can be written as Muv = M∗
uv diag

(
π(u)

)
, where diag

(
π(u)

)
is the

diagonal matrix derived from π(u) and M∗
uv is a symmetric matrix (Zharkikh

1994). Furthermore, time reversibility implies that on every edge uv, π(u) =
π(v), i.e., that the random taxon labels are distributed identically.

Transition matrices for modeling molecular evolution Molecular
evolutionary models often reduce the number of free parameters in transi-
tion matrices, based on either biological or computational considerations. We
have already mentioned the PAM matrices (Dayhoff et al. 1978) that model
amino acid substitutions. There is also a number of nucleotide substitution
rate models discussed in the literature and routinely used in practice. Such
models were introduced predominantly with the assumptions of constant sub-
stitution rates and a stationary taxon label distribution. These assumptions
are not always necessary, and we attempt to generalize the models to the
time-independent framework used so far, similarly to Barry and Hartigan
(1987) and Zharkikh (1994). Figure 2.2 summarizes the particularities of
many substitution rate models. The set of models shown in the figure is not
exhaustive, but it includes the most commonly used models incorporated
in standard molecular phylogeny packages such as Phylip (Felsenstein 1993)
and PAUP (Swofford 1990).
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Jukes-Cantor (JC) model (Jukes and
Cantor 1969).
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Kimura’s two parameter (K2P)
model (Kimura 1980).
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Kimura’s three parameter (K3P)
model (Kimura 1981a).
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Five parameter (TK) model of
(Takahata and Kimura 1981).
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Five parameter (HKY) model with
πA + πG + πT + πC = 1 (Hasegawa,

Kishino, and Yano 1985).
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β 1
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β

β 2

β 3

α
α

β

β 4

β

Six parameter (GIN) model
(Gojobori, Ishii, and Nei 1982;

Kimura 1981a).

Figure 2.2: Common nucleotide substitution rate models.
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2.5.1 Jukes-Cantor model

The first nucleotide substitution rate model was proposed by Jukes and Can-
tor (1969). It has later been generalized by Neyman (1971) to an arbitrary
alphabet, omitting the constant substitution rate assumption. We follow
Neyman’s proposal and present his generalized model. Each edge muta-
tion matrix in this model has solely one free parameter, so that there ex-
ists 0 ≤ pe ≤ 1 for each edge e such that

Me[i, j] =


pe
m−1

if i 6= j;

1− pe if i = j.

Despite its simplicity, the Jukes-Cantor model is very well-suited to dis-
cuss the characteristics of the i. i. d. Markov model (of which we do take
advantage). Due to the fact that one parameter defines the mutation ma-
trix, many calculations are easier to carry out than in the case of more general
models. To illustrate our point, we prove the following lemma (see also, e.g.,
Farach and Kannan 1999).

Lemma 2.8. Let P = (V,E,P) be a phylogeny in the Jukes-Cantor model.
For every ancestor-descendant node pair u ≺ v, there exists 0 ≤ puv ≤ 1 such
that

Muv[i, j] =


puv
m−1

if i 6= j;

1− puv if i = j.

In particular, if the path leading from u to v is u, e1, u1, e2, . . . , el, ul = v,
then

1− m

m− 1
puv =

l∏
k=1

(
1− m

m− 1
pek

)
. (2.6)

Proof. We prove the lemma by induction in the path length l.
Base case. If l = 1, then v is a child of u and the lemma is true by

definition of the edge mutation matrices in this model.
Induction step. If l > 1, then let v′ be the parent of v, e = uv′, and

assume that the lemma holds for u ≺ v′. Let i 6= j be two symbols of the
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alphabet. Since P
{
ξ(u) = i

}
6= 0,

Muv[i, j] = P
{
ξ(v) = j

∣∣∣ ξ(u) = i
}

=
∑
k∈A

P
{
ξ(v) = j

∣∣∣ ξ(v′) = k
}
P
{
ξ(v′) = k

∣∣∣ ξ(u) = i
}

= (1− puv′)
pe

m− 1
(k = i, k 6= j)

+
puv′

m− 1
(1− pe) (k 6= i, k = j)

+(m− 2)
puv′

m− 1

pe
m− 1

(k 6= i, k 6= j)

=
puv′

m− 1
+

pe
m− 1

−m puv′pe
(m− 1)2

.

Thus (
1− m

m− 1
Muv[i, j]

)
=
(

1− m

m− 1
puv′

)(
1− m

m− 1
pe

)
,

and the lemma follows from the induction hypothesis.

Definition 2.7. Let MJC be the class of m×m stochastic matrices defined as
follows. A stochastic matrix M belongs to MJC if and only if there exists 0 ≤
p ≤ 1 such that the entries of M can be written as

M[i, j] =


p

m−1
if i 6= j;

1− p if i = j.

The hypothesis class CJC is the set of phylogenies in the i. i. d. Markov model
in which every edge mutation matrix belongs to MJC.

Lemma 2.9. The set MJC is closed under matrix multiplication.

Proof. The lemma follows from Lemma 2.8.

Another useful implication of Lemma 2.8 is the following corollary.

Corollary 2.10. Let P = (V,E,P) be a phylogeny in the Jukes-Cantor



CHAPTER 2. STOCHASTIC MODELS 31

model. For every three nodes u, v, w ∈ V , if u ≺ v ≺ w, then

1− m

m− 1
P
{
ξ(u) 6= ξ(w)

}
=

(
1− m

m− 1
P
{
ξ(u) 6= ξ(v)

})(
1− m

m− 1
P
{
ξ(v) 6= ξ(w)

})
.

2.5.2 Kimura’s two and three parameter models

A G

TC

α

β

γ

α

γ

β

β

γ
α

γ

β

α

Kimura’s three parameter model
(Kimura 1981a) distinguishes three
types of substitutions: purine-purine
or pyrimidine-pyrimidine transitions,
and two types of purine-pyrimidine
transversions, with substitution
rates α, β, and γ, respectively. In
Kimura’s two parameter model, all
transversions are equivalent, i.e.,
β = γ. The Jukes-Cantor model can
also be considered as a specific case
of the three parameter model with
α = β = γ.

Zharkikh (1994) points out a weakness in Kimura’s models and the Jukes-
Cantor model: namely, that if the mutation matrices are symmetric, then
the stationary taxon label distribution is uniform at every node. In other
words, the eigenvector of the substitution rate matrix with eigenvalue 0 is
〈1/4, 1/4, 1/4, 1/4〉.

Fact 2.11. Let α > 0, β > 0, γ > 0, and define the matrix Q as

Q =



−(α + β + γ) α β γ

α −(α + β + γ) γ β

β γ −(α + β + γ) α

γ β α −(α + β + γ)


.
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The spectral decomposition of Q can then be written as

Q = VΛU

with

V =



1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1


,

Λ =



0 0 0 0

0 −2(α + β) 0 0

0 0 −2(α + γ) 0

0 0 0 −2(β + γ)


,

U =



1
4

1
4

1
4

1
4

1
4
−1

4
−1

4
1
4

1
4
−1

4
1
4
−1

4

1
4

1
4
−1

4
−1

4


.

Kimura’s three parameter model gives a good opportunity to illustrate
that the molecular clock assumption, i.e., the use of substitution rate ma-
trices, results in loss of generality. Given the spectral decomposition of a
substitution rate matrix Q as shown by Fact 2.11, the corresponding muta-



CHAPTER 2. STOCHASTIC MODELS 33

tion matrices {Mτ : τ ≥ 0} can be written as

Mτ = eQτ

=



1− p− q − r p q r

p 1− p− q − r r q

q r 1− p− q − r p

r q p 1− p− q − r


(2.7a)

with

p =
1

4

(
1− e−2(α+β)τ − e−2(α+γ)τ + e−2(β+γ)τ

)
,

q =
1

4

(
1− e−2(α+β)τ + e−2(α+γ)τ − e−2(β+γ)τ

)
,

r =
1

4

(
1 + e−2(α+β)τ − e−2(α+γ)τ − e−2(β+γ)τ

)
.

(2.7b)

If complex substitution rates are not allowed, then not every stochastic ma-
trix of the form on the right-hand side of Equation(2.7a) has a correspond-
ing substitution rate matrix. For example, Equation (2.7b) implies that
p+ q + r < 3/4.

The extensions of Kimura’s models in the next two definitions and the
lemma are self-explanatory.

Definition 2.8. Let MK2P be the class of 4 × 4 stochastic matrices defined
as follows. A matrix M belongs to MK2P if and only if there exists p, q ≥ 0
with p + 2q ≤ 1 such that

M =



1− p− 2q p q q

p 1− p− 2q q q

q q 1− p− 2q p

q q p 1− p− 2q


.

The hypothesis class CK2P is the set of phylogenies in the i. i. d. Markov
model in which every edge mutation matrix belongs to MK2P.
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Definition 2.9. Let MK3P be the class of 4 × 4 stochastic matrices defined
as follows. A matrix M belongs to MK3P if and only if there exists p, q, r ≥ 0
with p + q + r ≤ 1 such that

M =



1− p− q − r p q r

p 1− p− q − r r q

q r 1− p− q − r p

r q p 1− p− q − r


The hypothesis class CK3P is the set of phylogenies in the i. i. d. Markov
model in which every edge mutation matrix belongs to MK3P.

Lemma 2.12. The sets MK2P and MK3P are closed under matrix multipli-
cation.

Proof. Let M,M′ ∈MK3P with

M =



1− p− q − r p q r

p 1− p− q − r r q

q r 1− p− q − r p

r q p 1− p− q − r


,

M′ =



1− p′ − q′ − r′ p′ q′ r′

p′ 1− p′ − q′ − r′ r′ q′

q′ r′ 1− p′ − q′ − r′ p′

r′ q′ p′ 1− p′ − q′ − r′


.

Using the spectral decomposition of M and M′,

M = U−1ΛU
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with

U =



1
4

1
4

1
4

1
4

1
4
−1

4
−1

4
1
4

1
4
−1

4
1
4
−1

4

1
4

1
4
−1

4
−1

4


,

Λ = diag(1, 1− 2p− 2q, 1− 2p− 2r, 1− 2q − 2r),

and

M = U−1Λ′U

with

Λ′ = diag(1, 1− 2p′ − 2q′, 1− 2p′ − 2r′, 1− 2q′ − 2r′).

Consequently,
M′′ = MM′ = U−1(ΛΛ′)U.

Expanding the matrix multiplication on the right-hand side,

M′′

=



1− p′′ − q′′ − r′′ p′′ q′′ r′′

p′′ 1− p′′ − q′′ − r′′ r′′ q′′

q′′ r′′ 1− p′′ − q′′ − r′′ p′′

r′′ q′′ p′′ 1− p′′ − q′′ − r′′


with

(1− 2p′′ − 2q′′) = (1− 2p− 2q)(1− 2p′ − 2q′),

(1− 2p′′ − 2r′′) = (1− 2p− 2r)(1− 2p′ − 2r′),

(1− 2q′′ − 2r′′) = (1− 2q − 2r)(1− 2q′ − 2r′),

and thus M′′ ∈MK3P. The claim for MK2P is proven similarly.
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2.5.3 Asymmetric mutation models

As we mentioned before, the major drawback of substitution rate models
with symmetric matrices is that the stationary taxon label distribution is
uniform. Since nucleotide frequencies are often unequal in a gene, several
models have been proposed that allow for more general stationary distribu-
tions. Hasegawa, Kishino, and Yano (1985), for example, proposed a model
based on Kimura’s two parameter model that explicitly incorporates arbi-
trary base frequencies. The five parameter nucleotide substitution model of
Takahata and Kimura (1981) on the other hand implies a stationary distri-
bution in which πA = πT and πG = πC, i.e., adenine and thymine have the
same frequencies, and guanine and cytosine frequencies are also equal. In
practice the substitution rates are estimated from the mutation matrices,
which are in turn estimated from the sequence samples at hand, in a more
or less straightforward manner. The dependencies between the substitution
rates and the mutation matrix on an edge are implied by the substitution
rate model. With the assumption of time-reversibility such dependencies ap-
ply to any node pair, since the mutation matrices multiply along any path
(cf. Corollary 2.7), and the set {exp(Qτ) : τ ≥ 0} is closed under matrix
multiplication. The closedness of the class is always desirable with any sub-
stitution rate model so that the particularities of the model can be exploited
for any node pair and not only for neighbors. By Lemmas 2.9 and 2.12, the
constant substitution rate assumption can be omitted in the Jukes-Cantor
model and in Kimura’s two and three parameter models, while preserving
the closeness of the matrix classes. Relaxing the assumption in more com-
plicated substitution models, however, is not always straightforward. We
discuss the difficulties in detail in conjunction with the Hasegawa-Kishino-
Yano and Gojobori-Ishii-Nei models. The substitution model of Takahata
and Kimura (1981) does not seem to offer an elegant generalization and we
prefer to avoid a lengthy technical analysis.
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2.5.4 Hasegawa-Kishino-Yano model

A G

TC

πGα

π T
βπ C

β

πAα
π T

βπ C
β

π A
β

π G
β

πCα

π A
β

π G
β

πTα
The five parameter model of
Hasegawa, Kishino, and Yano (1985)
generalizes Kimura’s two parameter
model so that arbitrary stationary
base frequencies (πA, πG, πT, πC) are
allowed. Two types of mutations
are considered: transitions (α) and
transversions (β).

Fact 2.13. Let α, β > 0,

πA, πG, πT, πC > 0, and πA + πG + πT + πC = 1,

and define the matrix Q as

Q =



µ1 πGα πTβ πCβ

πAα µ2 πTβ πCβ

πAβ πGβ µ3 πCα

πAβ πGβ πTα µ4


with µi = −∑j 6=i Q[i, j]. The spectral decomposition of Q can then be written
as

Q = VΛU
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with

V =



1 πT + πC
πG

πA+πG
0

1 πT + πC − πA
πA+πG

0

1 −(πA + πG) 0 πC
πT+πC

1 −(πA + πG) 0 − πT
πT+πC


,

Λ =



0 0 0 0

0 −β 0 0

0 0 −(πA + πG)α− (πT + πC)β 0

0 0 0 −(πA + πG)β − (πT + πC)α


,

U =



πA πG πT πC

πA
πA+πG

πG
πA+πG

− πT
πT+πC

− πC
πT+πC

1 −1 0 0

0 0 1 −1


.

When the substitution rate matrix has the form given by Fact 2.13, the
corresponding edge mutation matrices {Mτ : τ ≥ 0} can be written as

Mτ = eQτ =



ν1 πGp1 πTq πCq

πAp1 ν2 πTq πCq

πAq πGq ν3 πCp2

πAq πGq πTp2 ν4


,

νi = 1−
∑
j 6=i

Mτ [i, j],

(2.8a)
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with

p1 =
(πA + πG) + (πT + πC)e

−βτ − e−((πA+πG)α+(πT+πC)β)τ

πA + πG
,

p2 =
(πT + πC) + (πA + πG)e

−βτ − e−((πT+πC)α+(πA+πG)β)τ

πT + πC
,

q = 1− e−βτ .

(2.8b)

We mention in passing that Zharkikh (1994) makes a mistake in presenting
the model by asserting p1 = p2, which is not true in general. Using the
model without assuming constant substitution rates presents some difficul-
ties: namely, that stochastic matrices in the form of the right-hand side in
Equation (2.8a) do not form a closed set under matrix multiplication. On the
other hand, since the eigenvectors depend only on the stationary distribution,
matrices with fixed 〈πA, πG, πT, πC〉 do form a closed set.

Definition 2.10. Let

πA, πG, πT, πC > 0, πA + πG + πT + πC = 1, π = 〈πA, πG, πT, πC〉.

Let MHKY(�) be the class of 4 × 4 matrices defined as follows. A stochastic
matrix M belongs to MHKY(�) if and only if there exists p1, p2, q ≥ 0 such
that

M =



ν1 πGp1 πTq πCq

πAp1 ν2 πTq πCq

πAq πGq ν3 πCp2

πAq πGq πTp2 ν4


,

with νi = 1−∑j 6=i M[i, j].

Lemma 2.14. The set MHKY(�) is closed under matrix multiplication.
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Proof. Let M,M′ ∈MHKY(�) be arbitrary matrices with

M =



ν1 πGp1 πTq πCq

πAp1 ν2 πTq πCq

πAq πGq ν3 πCp2

πAq πGq πTp2 ν4


,where νi = 1−

∑
j 6=i

M[i, j], and

M′ =



ν1 πGp
′
1 πTq

′ πCq
′

πAp
′
1 ν2 πTq

′ πCq
′

πAq
′ πGq

′ ν3 πCp
′
2

πAq
′ πGq

′ πTp
′
2 ν4


,where ν ′i = 1−

∑
j 6=i

M′[i, j].

Using the spectral decomposition of M and M′,

M = U−1ΛU

with

U =



πA πG πT πC

πA
πA+πG

πG
πA+πG

− πT
πT+πC

− πC
πT+πC

1 −1 0 0

0 0 1 −1


,

Λ = diag
(

1, 1− q, 1− (πA + πG)p1 − (πT + πC)q, 1− (πT + πC)p2 − (πA + πG)q
)
,

and

M′ = U−1Λ′U,

with

Λ′ = diag
(

1, 1− q′, 1− (πA + πG)p
′
1 − (πT + πC)q

′, 1− (πT + πC)p
′
2 − (πA + πG)q

′
)
.
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Subsequently
M′′ = MM′ = U−1(ΛΛ′)U.

Expanding the matrix multiplication on the right-hand side,

M′′ =



ν1 πGp
′′
1 πTq

′′ πCq
′′

πAp
′′
1 ν2 πTq

′′ πCq
′′

πAq
′′ πGq

′′ ν3 πCp
′′
2

πAq
′′ πGq

′′ πTp
′′
2 ν4


,where ν ′′i = 1−

∑
j 6=i

M′′[i, j]

with

(1− q′′) = (1− q)(1− q′),(
1− (πA + πG)p

′′
1 − (πT + πC)q

′′
)

=
(

1− (πA + πG)p1 − (πT + πC)q
)(

1− (πA + πG)p
′
1 − (πT + πC)q

′
)
,(

1− (πT + πC)p
′′
2 − (πA + πG)q

′′
)

=
(

1− (πT + πC)p2 − (πA + πG)q
)(

1− (πT + πC)p
′
2 − (πA + πG)q

′
)
.

Hence the stochastic matrix M′′ is an element of MHKY(�).
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2.5.5 Gojobori-Ishii-Nei model

A G

TC

α

β 1

α

β
β

β 2

β 3
α

α

β

β 4

β
Kimura (1981a) introduced a substi-
tution rate model with six parameters
that was further analyzed later by Go-
jobori, Ishii, and Nei (1982). The lat-
ter study reported the eigenvalues and
eigenvectors of the substitution rate
matrix and related them to the entries
of the corresponding mutation matrix.

Fact 2.15. Let α, β, β1, β2, β3, β4 > 0, and define the matrix Q as

Q =



−(2α + β1) α β1 α

β −(2β + β2) β β2

β3 α −(2α + β3) α

β β4 β −(2β + β4)


.

The spectral decomposition of Q can be written as

Q = U−1ΛU

with

U =



(α+β3)β
(2α+β1+β3)(α+β)

(β+β4)α
(2β+β2+β4)(α+β)

(α+β1)β
(2α+β1+β3)(α+β)

(β+β2)α
(2β+β2+β4)(α+β)

β−β3

2β−β1−β3
− α−β4

2α−β2−β4

β−β1

2β−β1−β3
− α−β2

2α−β2−β4

1 0 −1 0

0 −1 0 1


,

Λ = diag(0,−2α− 2β,−2α− β1 − β3,−2β − β2 − β4).
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Based on the spectral decomposition given by Fact 2.15 we can obtain
the set of edge mutation matrices{

U−1eΛτU : τ ≥ 0
}

corresponding to the rate matrix Q = U−1ΛU. Carrying out the expansion
shows that the edge mutation matrices have the form

M =



1− p1 − p2 − r1 p1 r1 p2

q1 1− q1 − q2 − r2 q2 r2

r3 p1 1− p1 − p2 − r3 p2

q1 r4 q2 1− q1 − q2 − r4


.

(2.9)
The parameters pi, qi, ri are not independent, each one of them is a function
of seven variables — the six parameters of Q and the time factor τ . We
mention that Zharkikh (1994) errs again in the presentation of the model by
asserting p1 = p2 and q1 = q2, which does not hold in general. Even though
the parameters on the right-hand side of Equation 2.9 are neither completely
independent, nor arbitrary, it is natural to relax the constant substitution
rate assumption by defining a class of stochastic matrices in that form.

Definition 2.11. Let MGIN be the class of stochastic matrices defined as
follows. A matrix M belongs to MGIN if and only if there exist

p1, p2, q1, q2, r1, r2, r3, r4 ≥ 0

such that

M =



1− p1 − p2 − r1 p1 r1 p2

q1 1− q1 − q2 − r2 q2 r2

r3 p1 1− p1 − p2 − r3 p2

q1 r4 q2 1− q1 − q2 − r4


.

Lemma 2.16. The class MGIN is closed under matrix multiplication.

Proof. By taking two arbitrary matrices M,M′ ∈ MGIN, one can verify
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that for their product M′′ = MM′,

M′′[1, 2] = M′′[3, 2], M′′[1, 4] = M′′[3, 4],

M′′[2, 1] = M′′[4, 1], M′′[2, 3] = M′′[4, 3]

do hold. Consequently M′′ ∈MGIN.

2.5.6 Reconstructible mutation matrices

Consider the mutation matrix

M =

2
3

1
3

1
3

2
3

 ,
which may be a mutation matrix in the Jukes-Cantor model for a binary
alphabet. If uv and vw are two edges in Ψ(P) for an evolutionary tree P and
Muv = Mvw = M, then by Corollary 2.6,

Muw = MuvMvw =

5
9

4
9

4
9

5
9

 .
On the other hand, the same mutation matrix arises also if

Muv = Mvw = M′ =

 1
3

2
3

2
3

1
3

 .
This trivial example illustrates that edge mutation matrices are not necessar-
ily determined by a subset of the mutation matrices. Additional assumptions
based on, say, biological assumptions may restrict the number of solutions.
In the case of M′ the probability of mutations is twice as large as that of
unchanging characters, which is unlikely in most contexts. A mild condition
suggested by Chang (1996) on a subclass of the i. i. d. Markov model is
offered by the next definition.

Definition 2.12. (Chang 1996) A class M of stochastic matrices is recon-
structible from rows if for each M ∈M, and permutation matrix Π different
from the identity matrix, ΠM 6∈M.
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Definition 2.12 is useful for setting a condition on the uniqueness of
the edge mutation matrices in evolutionary tree reconstruction (see Theo-
rem 5.1). In our example the matrices M and M′ cannot both be members
of a class M if M is reconstructible from rows. Chang (1996) offers the ex-
ample of the matrix class MDLC, with DLC standing for “diagonal largest in
column.” For each M ∈ MDLC, M[j, j] > M[i, j] for all i 6= j; MDLC is thus
reconstructible from rows. Similarly, we define the class MDLR of matrices
with the “diagonal largest in row” property, where for each M ∈ MDLR,
M[i, i] > M[i, j] for all i 6= j. Obviously, MDLR is also reconstructible
from rows. In the case of most biomolecular applications, mutations occur
typically with small probabilities. Consequently, in each row i of an edge
mutation matrix M, ∑

j 6=i
M[i, j] < M[i, i].

All such matrices belong to MDLR. For instance, edge mutation matrices in
the Jukes-Cantor model with mutation probabilities less than (1−1/m) also
belong to MDLR.



Chapter 3

Similarity and evolutionary
distance

3.1 Introduction

A number of evolutionary tree reconstruction algorithms are based on a no-
tion of evolutionary distance between nodes of the phylogeny. Evolutionary
distance measures the dissimilarity between two random taxon sequences.
When analyzing the evolutionary relationships between a set of species, for
example, distance between two species is often directly related to the time
passed since their evolution took a different course. Distance is a standard
term in the literature of evolutionary trees, but the notion of similarity varies
with different authors (see, for example, Swofford et al. 1996). In fact, sim-
ilarity rarely enters the discussion in most studies, and if so, the term is
cursorily used as an intermediate tool in analyzing various features of evolu-
tionary distances. We choose a different path, by defining similarity first, and
then defining distance as a function of similarity. The main justification for
this choice is that the particular notion of similarity we use is more general
than that of distance. For example, many applied studies encounter the unde-
sirable situation where the estimated distance is infinite or negative between
two taxon sequences. Furthermore, estimation problems are more manifest
when using similarities, simplifying our discussion a great deal. The next
series of definitions (3.1, 3.2, 3.3) defines similarity and distance as functions
of sequence distributions over S× S. They are applied to joint distributions
of taxon sequence pairs.

46
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Definition 3.1. Let S be a function that maps distributions over S× S onto
the closed interval [−1, 1]. Let P = (V,E,P) be a phylogeny, and for each
node pair 〈u, v〉 ∈ V 2, let Puv denote the joint probability distribution of their
random taxon sequences 〈X(u), X(v)〉. The function S is a similarity metric
over P if and only if it has the following three properties.

(S) The function S is symmetric; i.e., for all nodes u, v ∈ V ,

S(Puv) = S(Pvu). (3.1a)

(M) The function S is multiplicative; i.e., for any three nodes u, v, and w
where v lies on the path from u to w in Ψ(P),

S(Puw) = S(Puv)S(Pvw). (3.1b)

(I) For two arbitrary nodes u and v where P
{
X(u) = X(v)

}
= 1,

S(Puv) = 1. (3.1c)

In particular, S(Puu) = 1.

Definition 3.2. Let S be a function that maps distributions over S × S

onto [−1, 1]. Define the function D mapping distributions over S×S onto [0,∞]
as

D(P) =

− ln|S(P)| if S(P) 6= 0,

∞ if S(P) = 0.

Let P be an arbitrary evolutionary tree. The function D is a distance metric
(corresponding to S) over P if and only if S is a similarity metric over P.

Definition 3.3. Let C be a set of phylogenies. If S is a similarity metric
over every P ∈ C, then S is a similarity metric over C, and the corresponding
function D defined by Definition 3.2 is a distance metric over C.

In what follows we use the shorthand notations

S(u, v) = S(Pu,v), and

D(u, v) = D(Puv),

if the evolutionary tree to which the nodes belong is understood from the
context.
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Fact 3.1. Let D be a distance metric corresponding to similarity metric S
over a phylogeny P = (V,E,P). By the properties of S listed in Definition 3.1,
D has the following properties.

(S) D is symmetric; i.e., for all nodes u, v ∈ V ,

D(u, v) = D(v, u). (3.2a)

(A) D is additive; i.e., for any three nodes u, v, w ∈ V where v lies on the
path from u to w in Ψ(P),

D(u, w) = D(u, v) +D(v, w). (3.2b)

(In case of infinite distances, the conventional arithmetic extensions
are applied: ∞+ x = x+∞ =∞+∞ =∞.)

(O) For arbitrary nodes u, v ∈ V where P
{
X(u) = X(v)

}
= 1,

D(u, v) = 0. (3.2c)

In particular, D(u, u) = 0.

In this chapter we show several examples of similarity metrics over classes
of phylogenies. In order to show that a particular function S is a similarity
metric, we have to show that S satisfies Properties (S), (M), and (I) of
Definition 3.1. Analyzing whether Properties (S) and (I) hold is usually
straightforward. The challenge arises from proving that Property (M) holds
for S. The next lemma eases this task.

Lemma 3.2. Let S be a function that maps distributions over S×S onto the
interval [−1, 1]. Let P = (V,E,P) be a phylogeny. Assume that the following
hold for S and P.

(M*) For three arbitrary nodes u, v, w ∈ V ,

(M*.1) if u ≺ v ≺ w, then

S(u, w) = S(u, v)S(v, w); (3.3a)

(M*.2) if v is the lowest common ancestor of u and w, then

S(u, w) = S(u, v)S(v, w). (3.3b)
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If, in addition, Properties (S) and (I) of Definition 3.1 hold, then Prop-
erty (M) also holds, and therefore S is a similarity metric over P.

Proof. Let u, v, w be three nodes such that v lies on the path between u
and w in Ψ(P). We prove that Equation (3.1b) holds in four cases.

Case I: u ≺ v ≺ w.

Case II: v is the lowest common ancestor of u and w.

Case III: w ≺ v ≺ u.

Case IV: None of the above.

Property (M) holds in Cases I and II by assumption of the lemma. In Case III,
by Properties (S) and (M*.1),

S(u, v)S(v, w) = S(v, u)S(w, v) = S(w, u) = S(u, w).

In Case IV, we assume without loss of generality that v ≺ u. Let v′ be the
lowest common ancestor of v and w. By previous cases, and Property (M*),

S(u, v)S(v, w) = S(u, v)
(
S(v, v′)S(v′, w)

)
=
(
S(u, v)S(v, v′)

)
S(v′, w)

= S(u, v′)S(v′, w)

= S(u, w).

Consequently, Property (M) holds for S and P in all four cases, and thus S
is a similarity metric over P.

Definitions 3.1, 3.2, and 3.3 permit many similarity and distance met-
rics to apply to the same evolutionary tree or class of evolutionary trees.
As a trivial result, similarities and distances can be arbitrarily scaled while
preserving the properties prescribed by the definitions.

Fact 3.3. If S is a similarity metric on an evolutionary tree P, and the
corresponding distance metric is D, then

1. for every positive integer k, Sk is also a similarity metric on P, with
corresponding distance metric k ·D;
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2. for every positive number c, |S|c is also a similarity metric on P, with
corresponding distance metric c ·D.

3.2 Distance metrics

3.2.1 Jukes-Cantor distance

Recall that CJC is the class of phylogenies in which every edge mutation
matrix belongs to MJC (see Definition 2.7). Corollary 2.10 suggests that

S(u, v) = P
{
ξ(u) = ξ(v)

}
− 1

m− 1
P
{
ξ(u) 6= ξ(v)

}
is a good candidate for a similarity metric over CJC. Properties (S) and (I)
required by Definition 3.1 are obviously satisfied. Corollary 2.10 proves that
Property (M*.1) of Lemma 3.2 is satisfied. Theorem 3.4 below proves that
Property (M) is satisfied in general for three nodes on a path.

Definition 3.4. Define the functions SJC and DJC on distributions over S×S

as follows. Let P be an arbitrary distribution over S × S, let the random
sequence pair 〈X,X ′〉 be distributed according to P and let X1, X

′
1 denote the

first characters of X,X ′, respectively.

SJC(P) = P
{
X1 = X ′1

}
− 1

m− 1
P
{
X1 6= X ′1

}
;

DJC(P) =

− ln

∣∣∣∣SJC(P)

∣∣∣∣ if SJC(P) 6= 0;

∞ if SJC(P) = 0.

(3.4a)

If, in particular, P ∈ CJC is an arbitrary phylogeny in the Jukes-Cantor
model, and P is the joint distribution of the random taxon sequences associ-
ated with two arbitrary nodes u, v in P, then Equation (3.4a) can be written
equivalently as

SJC(u, v) = P
{
ξ(u) = ξ(v)

}
− 1

m− 1
P
{
ξ(u) 6= ξ(v)

}
;

DJC(u, v) =

− ln
∣∣∣∣SJC(u, v)

∣∣∣∣ if SJC(u, v) 6= 0;

∞ if SJC(u, v) = 0.

(3.4b)
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The function DJC is referred to as Jukes-Cantor distance.

Theorem 3.4. The function SJC is a similarity metric over CJC.

Proof. Let P = (V,E,P) be a phylogeny in the Jukes-Cantor model. We
verify that Properties (S), (I), and (M) of Definition 3.1 hold for SJC and P.
By Equation (3.4b) in the definition of SJC , for every node pair u, v ∈ V ,

SJC(u, v) = SJC(v, u);

thus Property (S) is satisfied. If P
{
X(u) = X(v)

}
= 1, then P

{
ξ(u) = ξ(v)

}
=

1, and thus Property (I) also holds.
We take advantage of Lemma 3.2 to prove that Property (M) holds. The

function SJC satisfies Property (M*.1) by Corollary 2.10. We prove that
Property (M*.2) is also satisfied. Let u, v, w ∈ V be three nodes such that v
is the lowest common ancestor of u and w. Let

puv = P
{
ξ(u) 6= ξ(v)

}
;

pvw = P
{
ξ(v) 6= ξ(w)

}
.

By Lemma 2.8, for every three symbols i, j, k ∈ A,

P
{
ξ(u) = i

∣∣∣ ξ(v) = k
}

=


puv
m−1

if i 6= k,

1− puv if i = k;

P
{
ξ(w) = j

∣∣∣ ξ(v) = k
}

=


pvw
m−1

if j 6= k,

1− pvw if j = k.
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Consequently,

P
{
ξ(u) 6= ξ(w)

}
=
∑
k∈A

P
{
ξ(u) 6= ξ(w)

∣∣∣ ξ(v) = k
}
P
{
ξ(v) = k

}
=
∑
k∈A

P
{
ξ(v) = k

} ∑
i,j∈A
i6=j

P
{
ξ(u) = i, ξ(w) = j

∣∣∣ ξ(v) = k
}

=
∑
k∈A

P
{
ξ(v) = k

}(
(m− 1)(1− puv)

pvw
m− 1

+ (m− 1)
puv
m− 1

(1− pvw)

+ (m− 1)(m− 2)
puv
m− 1

pvw
m− 1

)
= puv + pvw −

m

m− 1
puvpvw.

Therefore,

SJC(u, w) = P
{
ξ(u) = ξ(v)

}
− 1

m− 1
P
{
ξ(u) 6= ξ(w)

}
= 1− m

m− 1
P
{
ξ(u) 6= ξ(w)

}
=

(
1− m

m− 1
P
{
ξ(u) 6= ξ(v)

})(
1− m

m− 1
P
{
ξ(v) 6= ξ(w)

})
= SJC(u, v)SJC(v, w).

Property (M*) of Lemma 3.2 is thus satisfied by SJC and P. By Lemma 3.2,
Property (M) is also satisfied. Therefore, SJC is a similarity metric over CJC.

We pointed out in Fact 3.3 that distances and similarities can be scaled
in a practically arbitrary manner. As an example, Jukes and Cantor (1969)
originally defined their evolutionary distance for the DNA alphabet as

D∗(u, v) = −3

4
ln
(

1− 4

3
P
{
ξ(u) 6= ξ(v)

})
,

whenever P
{
ξ(u) 6= ξ(v)

}
< 3/4. The reason for such scaling can be under-
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stood in the context of constant substitution rates. Let α > 0, and

Q =



−3α α α α

α −3α α α

α α −3α α

α α α −3α


.

By Equation (2.7),

Mτ = eQτ =



1− p p
3

p
3

p
3

p
3

1− p p
3

p
3

p
3

p
3

1− p p
3

p
3

p
3

p
3

1− p


with

p =
3

4

(
1− e−4ατ

)
.

If two nodes u, v are separated by time τ , then

D∗(u, v) = 3ατ,

which equals the expected number of substitutions over time τ for a Markov
process with instantaneous transition matrix Q.

A value of particular interest to evolutionary biologists is the time of
divergence between species (see Figure 3.1). Let the leaves u and v represent
two species in a phylogeny. It is assumed that their associated sequences
evolve independently with the same mutation rate Q over the same time τuv
from the sequence associated with the lowest common ancestor of the nodes.
The value τuv gives the time of divergence for the two species. From the



CHAPTER 3. SIMILARITY AND DISTANCE 54

u v

τuv τuv

Figure 3.1: Time of divergence τuv between two species u and v. The asso-
ciated sequences X(u) and X(v) evolve independently for the same time τuv,
with the same constant substitution rate. Consequently, u and v are separated
by (2τuv) time.

above calculations τuv can be obtained as

τuv =τ/2 = − 1

8α
ln

(
1− 4

3
P
{
ξ(u) 6= ξ(v)

})

=
1

6α
D∗(u, v)

=
1

8α
DJC(u, v).

One can measure the substitution rate α, for example, in laboratory condi-
tions The measured substitution rate can be used to estimate the time of
divergence. Since it is necessary in any case to apply additional scaling fac-
tors to the distance, we see little theoretical advantage in using D∗ instead
of DJC in this study.
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3.2.2 Kimura’s distance

Let P = (V,E,P) be a phylogeny in Kimura’s three parameter model. Each
edge mutation matrix Me with e = uv ∈ E can be written as

Me =



1− p− q − r p q r

p 1− p− q − r r q

q r 1− p− q − r p

r q p 1− p− q − r


.

As a specific consequence,

P
{
ξ(v) ∈ {A, G}

∣∣∣∣ ξ(u) ∈ {T, C}
}

= P
{
ξ(v) ∈ {T, C}

∣∣∣∣ ξ(u) ∈ {A, G}
}

= q + r.
(3.5)

Equation (3.5) implies that if we use a purine-pyrimidine encoding (A or
G vs. T or C), then the encoded sequences generated by P have the same
distribution as if they had been generated by an evolutionary tree in the
Jukes-Cantor model with a binary alphabet! Consequently, the function

S(Puv) = 1− 2

(
P
{
ξ(u) ∈ {A, G}, ξ(v) ∈ {T, C}

}

+ P
{
ξ(u) ∈ {T, C}, ξ(v) ∈ {A, G}

})

is a similarity metric over P. Applying the same reasoning to the other two
groupings of the nucleotides, we obtain Theorem 3.5.

Definition 3.5. Define the functions S1, S2, S3, SK3, and DK3 on distri-
butions over S × S with S ⊆ {A, G, T, C}+ as follows. Let P be an arbitrary
distribution over S × S, let the random sequence pair 〈X,X ′〉 be distributed
according to P, and let X1, X

′
1 denote the first characters of X,X ′, respec-
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tively.

S1(P) = 1− 2

(
P
{
X1 ∈ {A, G}, X ′1 ∈ {T, C}

}

+ P
{
X1 ∈ {T, C}, X ′1 ∈ {A, G}

})
;

S2(P) = 1− 2

(
P
{
X1 ∈ {A, T}, X ′1 ∈ {G, C}

}

+ P
{
X1 ∈ {G, C}, X ′1 ∈ {A, T}

})
;

S3(P) = 1− 2

(
P
{
X1 ∈ {A, C}, X ′1 ∈ {T, G}

}

+ P
{
X1 ∈ {T, G}, X ′1 ∈ {A, C}

})
;

SK3(P) = S1(P)S2(P)S3(P);

DK3(P) =

− ln

∣∣∣∣SK3(P)

∣∣∣∣ if SK3(P) 6= 0,

∞ if SK3(P) = 0.

(3.6a)

If, in particular, P ∈ CK3P is an arbitrary phylogeny in Kimura’s three pa-
rameter model, and P is the joint distribution of the random taxon labels
associated with two arbitrary nodes u, v in P, then Equation (3.6a) can be
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written equivalently as

S1(u, v) = 1− 2

(
P
{
ξ(u) ∈ {A, G}, ξ(v) ∈ {T, C}

}

+ P
{
ξ(u) ∈ {T, C}, ξ(v) ∈ {A, G}

})
;

S2(u, v) = 1− 2

(
P
{
ξ(u) ∈ {A, T}, ξ(v) ∈ {G, C}

}

+ P
{
ξ(u) ∈ {G, C}, ξ(v) ∈ {A, T}

})
;

S3(u, v) = 1− 2

(
P
{
ξ(u) ∈ {A, C}, ξ(v) ∈ {T, G}

}

+ P
{
ξ(u) ∈ {T, G}, ξ(v) ∈ {A, C}

})
;

SK3(u, v) = S1(u, v)S2(u, v)S3(u, v);

DK3(u, v) =

− ln

∣∣∣∣SK3(u, v)

∣∣∣∣ if SK3(u, v) 6= 0,

∞ if SK3(u, v) = 0.

(3.6b)

The function DK3 is referred to as Kimura’s three parameter distance.

Theorem 3.5. All four functions S1, S2, S3, and SK3 are similarity metrics
over CK3.

Proof. We use a coupling argument and Theorem 3.4. Let P = (V,E,P)
be an arbitrary phylogeny in CK3P and define the evolutionary tree P1 =
(V,E,P1), encoding sequences generated by P as follows. Denote the random
taxon sequences generated by P as 〈X(u) : u ∈ V 〉, and those generated by P1

as 〈Y (u) : u ∈ V 〉. The random taxon sequence generation by P1 is coupled
with that of P so that

Y
(u)
i =

U if X
(u)
i ∈ {A, G};

Y if X
(u)
i ∈ {T, C}.

Subsequently, P1 is in the Jukes-Cantor model with the alphabet {U, Y}.
Applying S1 to P gives the same result as applying SJC to P1. Consequently,
S1 is a similarity metric over P by Theorem 3.4. We can prove analogously
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that S2 and S3 are similarity metrics. Hence SK3 = S1S2S3 is also a similarity
metric over P.

3.2.3 Paralinear distance

Definitions 3.4 and 3.5 showed examples of similarity metrics over restricted
classes of evolutionary trees. In general, however, neither of the functions SJC

and SK3 is a similarity metric over an arbitrary phylogeny in the i. i. d.
Markov model. Corollary 2.6 suggests a way to arrive at such a general
similarity metric. By Corollary 2.6,

f(u, v) = det Muv

satisfies Property (M) of Definition 3.1. In addition, the function f also

satisfies Property (I) since if P
{
X(u) = X(v)

}
= 1, then Muv is the iden-

tity matrix. Unfortunately, Property (S) is not satisfied in general, be-
cause det Muv = det Mvu does not always hold in the i. i. d. Markov model. A

convenient solution to this problem is to use f(u, v)f(v, u) or
√
f(u, v)f(v, u)

as a similarity metric.

Definition 3.6. Define the functions SL and DL on distributions over S×S as
follows. Let P be an arbitrary distribution over S×S, let the random sequence
pair 〈X,X ′〉 be distributed according to P, and let X1, X

′
1 denote the first

characters of X,X ′, respectively. Define the m×m transition matrices MP,
M′

P by their entries as

MP[i, j] = P
{
X ′1 = j

∣∣∣∣ X1 = i
}

;

M′
P[i, j] = P

{
X1 = j

∣∣∣∣ X ′1 = i
}
.

Then

SL(P) =

√(
det MP

)(
det M′

P

)
, and

DL(P) =

− lnSL(P) if SL(P) 6= 0

∞ if SL(P) = 0.

(3.7a)
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If, in particular, P is an arbitrary phylogeny in the i. i. d. Markov model,
and P is the joint distribution of the random taxon labels associated with two
arbitrary nodes u, v in P, then Equation (3.7a) can be written equivalently as

SL(u, v) =

√(
det Muv

)(
det Mvu

)
;

DL(u, v) =

− lnSL(u, v) if SL(u, v) 6= 0,

∞ if SL(u, v) = 0.

(3.7b)

The function DL is referred to as paralinear distance.

Theorem 3.6. (Chang and Hartigan 1991, Lake 1994, and Chang

1996.) SL is a similarity metric in the i. i. d. Markov model.

Proof. Properties (S) and (I) of Definition 3.1 are trivially satisfied. By
Corollary 2.6, if the nodes u, v, w of a phylogeny P in the i. i. d. Markov
model lie on a path in Ψ(P), then Muw = MuvMvw and Mwu = MwvMvu.
Thus

SL(u, w) =

√(
det Muw

)(
det Mwu

)

=

√(
det Muv

)(
det Mvw

)(
det Mwv

)(
det Mvu

)

=

(√(
det Muv

)(
det Mvu

))(√(
det Mvw

)(
det Mwv

))
= SL(u, v)SL(v, w).

An alternative definition of DL is offered by the next lemma.

Lemma 3.7. Let P = (V,E,P) be an evolutionary tree in the i. i. d. Markov
model. For every node pair u, v ∈ V , define the m × m joint probability
matrix by its entries as

Juv[i, j] = P
{
ξ(u) = i, ξ(v) = j

}
.



CHAPTER 3. SIMILARITY AND DISTANCE 60

We claim the following.

det Juv = det Jvu; (3.8a)(
det Muv

)∏
i∈A

π
(u)
i = det Juv; (3.8b)(

det Muv

)∏
i∈A

π
(u)
i =

(
det Mvu

)∏
i∈A

π
(v)
i . (3.8c)

Proof. Equation (3.8a) holds because Jvu is the transpose of Juv. Since

P
{
ξ(u) = i, ξ(v) = j

}
= π

(u)
i P

{
ξ(v) = j

∣∣∣ ξ(u) = i
}
,

the matrix Juv can be obtained from Muv by multiplying the rows of Muv

with π
(u)
1 , . . . , π(u)

m , respectively. Consequently Equation (3.8b) holds. Switch-
ing the roles of u and v in Equation (3.8b),(

det Mvu

)∏
i∈A

π
(v)
i = det Jvu. (∗)

Equations (3.8a), (3.8b), and (∗) together imply Equation (3.8c).

Lemma 3.7 also shows that

(
det Muv

)(
det Mvu

)
=

(
det Juv

)2

(∏
i∈A π

(u)
i

)(∏
i∈A π

(v)
i

) ,
so the square roots on the right-hand sides of Equations (3.7a) and (3.7b)
always exist. In fact, Lake (1994) originally defines the distance as

DL(u, v) = − ln
| det Juv|(∏

i∈A π
(u)
i

)1/2(∏
i∈A π

(v)
i

)1/2
, (3.9)

while Equation (3.7b) is the preferred formula of Chang and Hartigan (1991)
and Chang (1996). Yet another equivalent definition is

DL(u, v) = − ln | det Muv|+
1

2

∑
i∈A

ln π
(u)
i −

1

2

∑
i∈A

lnπ
(v)
i .
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Corollary 3.8. If P is a phylogeny in the time-reversible model, then for
every node pair u, v,

DL(u, v) = − ln | det Muv|. (3.10)

This formula was first given by Barry and Hartigan (1987), who called it
“asynchronous distance”, since det Muv 6= det Mvu in general.

3.3 Uniqueness of evolutionary distances

There may be many similarity metrics defined over the same class of phyloge-
nies. In addition to the scaling described by Fact 3.3, substantially different
similarity metrics may also exist. For example, in the Jukes-Cantor model,
the functions SL, SK3, and SJC are all similarity metrics, yielding different
values in general. However, Properties (S), (I), and especially (M) of Defi-
nition 3.1 restrict the set of possible similarity and distance metrics over a
class. We show that in the class of phylogenies in the i. i. d. Markov model
with the assumptions of time-reversibility and constant substitution rates,
all distance metrics can be written in the same specific format.

Consider the class CTR(Q) of all phylogenies in the i. i. d. Markov model
with time-reversibility and constant substitution rate matrix Q. Since every
edge mutation matrix in a phylogeny of CTR(Q) is a power of eQ, and the
taxon label distributions are stationary, any distance metric over CTR(Q) is
a function of one free parameter, evolutionary time. Specifically, let P =
(V,E,P) be a phylogeny in CTR(Q), and let u, v ∈ V . Then Muv = exp(Qτ)
for some τ ≥ 0, and for any distance metric D,

D(u, v) = ϕQ(τ)

with some function ϕQ : [0,∞) 7→ [0,∞]. By Property (A) of Definition 3.2,

ϕQ(τ) + ϕQ(τ ′) = ϕQ(τ + τ ′).

Imposing continuity on ϕQ, it is not difficult to show that it must be a linear
function.
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Theorem 3.9. Let Q be a substitution rate matrix such that exactly one of its
eigenvalues equals zero. Let D be a distance metric over CTR(Q), the subclass
of the i. i. d. Markov model with time-reversibility and constant substitution
rate matrix Q. We claim the following.

(1) There exists a function ϕQ : [0,∞) 7→ [0,∞] such that for every node
pair u, v of a phylogeny belonging to CTR(Q),

D(u, v) = ϕQ

(
ln det Muv

ln det eQ

)
.

(2) If ϕQ is continuous at 0, i.e., limx→+0 ϕQ(x) = ϕQ(0), then for ev-
ery x, τ ≥ 0,

ϕQ(xτ) = xϕQ(τ). (3.11)

In particular,
ϕQ(τ) = τϕQ(1).

Proof. The joint distribution of 〈ξ(u), ξ(v)〉 is defined by π(u) and Muv.
Since the substitution rates are constant, there exists τ ≥ 0 such that

Muv = eQτ .

The vector π(u) is independent from u by time-reversibility and the fact
that Q has one eigenvector with eigenvalue 0. Consequently, D(u, v) depends
on the one free parameter τ , i.e., there exists ϕQ such that

D(u, v) = ϕQ(τ) = ϕQ

(
ln det Muv

ln det eQ

)
,

which is Claim (1). We prove Claim (2) of the theorem in three cases.
Case I. Equation (3.11) is proven by induction for non-negative integer x.

For x = 1, the equation holds trivially. For x = 0, the equation holds by
Property (O) of distance metrics. Assume that x > 1 and

ϕQ((x− 1)τ) = (x− 1)ϕQ(τ).

Let P ∈ CTR(Q) be a phylogeny such that it contains three nodes u, v, w,
where u ≺ v ≺ w, and Muv = exp(Qτ), Mvw = exp(Q(x − 1)τ). By
Corollary 2.6, Muw = exp(Qxτ). Subsequently, the additivity of D and the
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induction hypothesis imply that

ϕQ(xτ) = ϕQ((x− 1)τ) + ϕQ(τ) = ((x− 1) + 1)ϕQ(τ) = xϕQ(τ).

Thus ϕQ(xτ) = xϕQ(τ) for every non-negative integer x.
Case II.a. Let x = 1/k with a positive integer k. By Case I, ϕQ(τ) =

kϕQ(τ/k), and thus xϕQ(τ) = ϕQ(xτ).
Case II.b. Let x = k′/k with positive integers k, k′. By Cases I and II.a,

ϕQ(xτ) = k′ϕQ(τ/k) =
k′

k
ϕQ(τ).

Case III. Let x be a positive irrational number. Let {xk : k = 1, 2, . . .}
be an infinite decreasing series of positive rational numbers such that they
converge to x, i.e., limk→∞ xk = x. By previous cases, Property (A), and the
continuity assumption,

ϕQ(0) = lim
k→∞

ϕQ(xτ − xkτ)

= ϕQ(xτ)− lim
k→∞

xkϕQ(τ)

= ϕQ(xτ)− xϕQ(τ).

Since ϕQ(0) = 0, ϕQ(xτ) = xϕQ(τ).

Theorem 3.9 shows that although many distance metrics may be defined
for the same phylogeny, they only differ by scaling factors in the class CTR(Q).
For example, Gojobori et al. (1982) and Hasegawa et al. (1985) define dis-
tance metrics for the Gojobori-Ishii-Nei and Hasegawa-Kishino-Yano models
with the assumptions of time-reversibility and constant substitution rates.
The rather complicated distance metrics turn out to be identical to the par-
alinear distance with a scaling factor that depends on the eigenvalues of the
substitution rate matrix.

3.4 Empirical distance and similarity

Thus far the theme of our discussion has been the distribution of random
taxon sequences. With the introduction of evolutionary distance and simi-
larity, an explicit connection has been established between distribution and
topology in large classes of evolutionary trees. Given the set of all pairwise
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distances between nodes, reconstructing the topology is simply the problem
of finding a minimal spanning tree in a graph, which can be solved very ef-
ficiently by the well-known algorithms of Kruskal (1956) and Prim (1957).
Formally, let P = (V,E,P) be an evolutionary tree with a distance metric D.
Construct the full graph G over V with edge weights equal to the pairwise
distances between the endpoints on all edges. If all the distances are positive,
then the minimum length spanning tree of G is uniquely Ψ(P).

In practice it is impossible to obtain all the distances between nodes.
The difficulties stem already from the fact that non-leaf nodes in a phy-
logeny frequently represent extinct species and thus our knowledge about
them is limited. What we can reasonably hope for, instead, is knowledge
about the leaf nodes. Fortunately, the pairwise distances between leaves
are already sufficient to recover the topology of the evolutionary tree, due
to additivity of the distances. There are many algorithms that recover the
topology of a phylogeny P = (V,E,P) with leaves L ⊂ V from distances
between leaves rapidly, such as the O (|L|2) algorithms of Bandelt (1990)
and Gusfield (1997), or our Fit-Tree algorithm in §5.1.2. If we know the
distribution of the random taxon sequences, we can carry out the exact calcu-
lation of pairwise distances ideally required by these topology reconstruction
algorithms. When we have to reconstruct the topology from a sample of se-
quences instead, the distribution and therefore the distances are not exactly
calculated but only estimated from the sample. The simplest way to estimate
the distance (or similarity) of two nodes is to substitute the distribution of
their taxon sequences in the definition of the distance (or similarity) with the
empirical distribution calculated from their sample sequences. The estimates
obtained in this way are called empirical distances (or empirical similarities).
For example, let us suppose that the binary sample sequences X(u) = s1 · · · s`
and X(v) = t1 · · · t` are observed, associated with leaves u and v of an evolu-
tionary tree in the Jukes-Cantor model. The probability P

{
ξ(u) 6= ξ(v)

}
can

be estimated as

p̂uv =
1

`

∑̀
k=1

I{sk 6= tk} ,

which in turn can be plugged into Equation (3.4) as

D̂JC(u, v) = − ln
∣∣∣∣1− 2p̂uv

∣∣∣∣
to obtain an estimate of DJC(u, v). Proceeding similarly with each leaf pair
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we should obtain fairly good distance estimates if the sequences are “long
enough.” The pivotal question is how long the sequences have to be in order
to obtain the correct topology. Alternatively, we may wonder how successful
an evolutionary tree reconstruction algorithm can be if the available sample
sequences are not very long. Molecular evolution studies often build trees
from aligned sequences corresponding to the same gene in different species.
Gene sequence lengths typically fall between a few hundred and a few thou-
sand base pairs. The theoretically maximal amount of data available is lim-
ited by the size of the genomes. Therefore arbitrary precision in distance
estimation cannot be assumed. The distance estimates usually do not cor-
respond to any evolutionary tree in the sense that the distance metric used
would not give node distances equal to the estimates on any evolutionary
tree in the hypothesis class. Searching for a tree that would give distances
that are “closest” to the estimates is a tempting idea, but with most sensible
notions of “closest,” even the approximation version constitutes an NP-hard
problem by becoming a variant of the Steiner-tree problem (Day 1987; Agar-
wala et al. 1999). We choose a different route, which begins with analyzing
the speed with which various empirical distances converge to the true dis-
tances. The insight into the statistical nature of the problem gained from
this analysis allows us to design efficient algorithms that recover the topology
with high success.

In order to recover the evolutionary relationships between taxa, an al-
gorithm typically requires that the distances be estimated within a certain
error. Specifically, the success of the algorithm is guaranteed if for every
node pair (u, v) there exists an error bound εD, which possibly depends on
the node pair, such that ∣∣∣∣D̂(u, v)−D(u, v)

∣∣∣∣ < εD. (3.12)

Assuming that D̂(u, v) = − ln Ŝ(u, v), Equation (3.12) can be rewritten in
terms of the estimated similarity as

e−εD <
Ŝ(u, v)

S(u, v)
< eεD . (3.13)

In the rest of the chapter we derive explicit upper bounds on large deviations
of the empirical similarity. Our main tool in obtaining the bounds is Cher-
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noff’s method. Chernoff’s bounding method originates from his 1952 paper
and is now routinely used in many areas of computer science and discrete
mathematics (Alon and Spencer 1992). We illustrate the method in the proof
of the following lemma.

Lemma 3.10. Let η be a binomially distributed random variable with pa-
rameters ` and p; i.e., for every k = 0, . . . , `,

P
{
η = k

}
=

(
`

k

)
pk(1− p)`−k.

If p < 1
2
, then

P
{
η ≥ `

2

}
≤
(

1− (1− 2p)2
)`/2

.

Proof. Let η1, η2, . . . , η` be independent identically distributed random
variables such that

P
{
ηi = 1

}
= 1− P

{
ηi = 0

}
= p, i = 1, . . . , `.

Let c > 0 be a positive number. Since η and
∑`
i=1 ηi are identically dis-

tributed,

P
{
η ≥ `

2

}
= P

{∑̀
i=1

ηi ≥
`

2

}
= P

{
ec
∑`

i=1
ηi ≥ ec`/2

}
. (3.14)

By Markov’s inequality (see, e.g., Rényi 1970),

P
{
ec
∑`

i=1
ηi ≥ ec`/2

}
≤ Ee

c
∑`

i=1
ηi

ec`/2
. (∗)

Furthermore, by the independence of the random variables ηi,

Eec
∑`

i=1
ηi =

∏̀
i=1

Eecηi =
(

(1− p) + pec
)`
. (∗∗)

Therefore, by Equations (3.14), (∗), and (∗∗),

P
{
η ≥ `

2

}
≤ e−c`/2

(
(1− p) + pec

)`
.
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The right-hand side is minimized by choosing

c = ln
1− p
p

,

thus

P
{
η ≥ `

2

}
≤
(

p

1− p

)`/2(
2(1− p)

)`
=
(

4p(1− p)
)`/2

=
(

1− (1− 2p)2
)`/2

,

proving the lemma.

Chernoff’s method for bounding sums of random variables consists of the
exponential transformation in Equation (3.14) with a suitable choice of c in
the exponent.

3.4.1 Jukes-Cantor distance

Definition 3.7. Let P = (V,E,P) be a phylogeny in the Jukes-Cantor model.
Let u, v ∈ V be two nodes with associated taxon sequences X(u), X(v) ∈ S.
The empirical similarity ŜJC between u and v is defined as

ŜJC(u, v) =
1

`

∑̀
i=1

(
I
{
X

(u)
i = X

(v)
i

}
− 1

m− 1
I
{
X

(u)
i 6= X

(v)
i

})
, (3.15a)

with
` =

∣∣∣X(u)
∣∣∣ =

∣∣∣X(v)
∣∣∣ .

The empirical distance D̂JC between the two nodes is defined as

D̂JC(u, v) =

− ln

∣∣∣∣ŜJC(u, v)

∣∣∣∣ if ŜJC(u, v) 6= 0;

∞ if ŜJC(u, v) = 0.
(3.15b)

Sometimes it is also known that SJC(u, v) > 0 for all nodes u 6= v. For
example, if all the edge mutation probabilities are less than (1− 1/m), then
all the pairwise similarities are positive. Although with exponentially small

probability (bounded from above by
(

1− S2
JC(u, v)

)`/2
in case of m = 2 by

Lemma 3.10), Equation (3.15a) may give ŜJC(u, v) ≤ 0. Negative estimated
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similarities are often discounted, especially by biologists. More preferable
estimators can be defined in this case as, e.g.,

S̃JC(uv) =

ŜJC(u, v) if ŜJC(u, v) > 0,

κ` if ŜJC(u, v) ≤ 0;
(3.16a)

D̃JC(u, v) =

D̂JC(u, v) if ŜJC(u, v) > 0,

K` if ŜJC(u, v) ≤ 0;
(3.16b)

where κ` is a small constant that is less than or equal to the smallest positive
value of ŜJC , and K` is a large constant that is larger than or equal to the
maximum finite value of D̂JC on sample length `. From Equation (3.15a), it
follows that if ŜJC(u, v) > 0, then

ŜJC(u, v) ≥ `−1m− (` mod m)

m− 1
.

Consequently, we can pick any K` ≥ (ln `+ ln(m− 1)), and the values

κ` =
1

`(m− 1)
, and K` = ln `+ lnm

are viable choices in Equation (3.16). Trivially, ŜJC is an unbiased estimator
of SJC while ES̃JC(u, v) is larger than SJC(u, v) unless SJC(u, v) = 1.

Lemma 3.11. Let ŜJC be the estimate of SJC given by Equation (3.15a). Let

γ =
m

m− 1
.

For all nodes u, v of a phylogeny in the Jukes-Cantor model, if SJC(u, v) 6= 0,
then for every sample length ` and ε > 0,

P
{
ŜJC(u, v)

SJC(u, v)
≤ 1− ε

}
≤ exp

(
− 2

γ2
`S2

JC(u, v)ε2
)

; (3.17a)

P
{
ŜJC(u, v)

SJC(u, v)
≥ 1 + ε

}
≤ exp

(
− 2

γ2
`S2

JC(u, v)ε2
)
. (3.17b)

The lemma follows from Hoeffding’s inequality (1963), a Chernoff bound.
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Theorem 3.12. (Hoeffding 1963)

Let η1, η2, . . . , η` be independent random variables such that for every i,
there exists ai, bi ∈ R with P {ηi ∈ [ai, bi]} = 1. Then for any ε > 0,

P
{∑̀
i=1

(
ηi − Eηi

)
≥ ε

}
≤ exp

(
− 2ε2∑`

i=1(bi − ai)2

)
; (3.18a)

P
{∑̀
i=1

(
ηi − Eηi

)
≤ −ε

}
≤ exp

(
− 2ε2∑`

i=1(bi − ai)2

)
. (3.18b)

Proof of Lemma 3.11. Define the random variables {ηi : i = 1, . . . `} as

ηi =

−
1

m−1
if X

(u)
i 6= X

(v)
i ;

1 if X
(u)
i = X

(v)
i .

Equation (3.15a) can be rewritten as

ŜJC(u, v) =
1

`

∑̀
i=1

ηi.

The random variables {ηi} are independent and identically distributed, and

Eηi = SJC(u, v).

Subsequently, for SJC(u, v) > 0, the probabilities on the right-hand side of
Equation (3.17) can be rearranged as

P
{
ŜJC(u, v)

SJC(u, v)
≤ 1− ε

}
= P

{∑̀
i=1

(ηi − Eηi) ≤ −`SJC(u, v)ε
}

;

P
{
ŜJC(u, v)

SJC(u, v)
≥ 1 + ε

}
= P

{∑̀
i=1

(ηi − Eηi) ≥ `SJC(u, v)ε
}
.

The lemma follows now from Hoeffding’s inequality applied to the random

variables ηi, which take their values in the interval
[
− 1
m−1

, 1
]
.
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If SJC(u, v) < 0, then the rearrangement results in the equations

P
{
ŜJC(u, v)

SJC(u, v)
≤ 1− ε

}
= P

{∑̀
i=1

(ηi − Eηi) ≥ −`SJC(u, v)ε
}

;

P
{
ŜJC(u, v)

SJC(u, v)
≥ 1 + ε

}
= P

{∑̀
i=1

(ηi − Eηi) ≤ `SJC(u, v)ε
}
.

Applying Hoeffding’s inequality to the right-hand sides symbolically yields
the same upper bounds as before.

3.4.2 Kimura’s distance

Definition 3.8. Let P = (V,E,P) be a phylogeny in Kimura’s three pa-
rameter model. Let u, v ∈ V be two nodes with associated random se-
quences X(u), X(v). Let

` =
∣∣∣X(u)

∣∣∣ =
∣∣∣X(v)

∣∣∣ .
Define the indicator variables {Pi, Qi, Ri : i = 1, . . . , `} for the following
events.

X
(u)
i = A G T C A G T C A G T C

X
(v)
i = G A C T T C A G C T G A︸ ︷︷ ︸

Pi
︸ ︷︷ ︸
Qi

︸ ︷︷ ︸
Ri

The empirical similarity ŜK3 between u and v is defined as

ŜK3(u, v) = fK3

(
X(u), X(v)

)

=

(
`− 2

∑`
i=1(Pi +Qi)

)(
`− 2

∑`
i=1(Pi +Ri)

)(
`− 2

∑`
i=1(Qi +Ri)

)
`

.

(3.19a)

The empirical distance D̂K3 between the two nodes is defined as

D̂K3(u, v) =

− ln

∣∣∣∣ŜK3(u, v)

∣∣∣∣ if ŜK3(u, v) 6= 0,

∞ if ŜK3(u, v) = 0.
(3.19b)
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Let

P =
∑̀
i=1

Pi Q =
∑̀
i=1

Qi R =
∑̀
i=1

Ri. (3.20)

Equation (3.19a) can be rewritten as

ŜK3(u, v) =1− 4

`
(P +Q+R) +

4

`2
(P 2 + Q2 +R2) +

12

`2
(PQ+ PR +QR)

− 8

`3
(P 2Q+ PQ2 + P 2R + PR2 +Q2R +QR2)− 16

`3
PQR.

(3.21)

Notice that when

Muv =



1− p− q − r p q r

p 1− p− q − r r q

q r 1− p− q − r p

r q p 1− p− q − r


,

the vector 〈P,Q,R, ` − P − Q − R〉 in Equation (3.21) has a multinomial
distribution with parameters (`, p, q, r, 1− p− q− r). In order to analyze the
statistical properties of ŜK3, we use the following general lemma on multino-
mially distributed random variables.

Lemma 3.13. Let k > 1 be a positive integer, and let p1, p2, . . . , pk be
non-negative numbers such that

∑k
i=1 pi = 1. For all non-negative inte-

gers `, α1, α2, . . . , αk, define

E(`, α1, α2, . . . , αk) = E
k∏
i=1

ηαii ,

where the random vector 〈η1, . . . , ηk〉 has a multinomial distribution with pa-
rameters (`, p1, p2, . . . , pk) so that

P
{
η1 = i1, η2 = i2, . . . , ηk = ik

}
=

(
`

i1 i2 · · · ik

)
pi11 p

i2
2 . . . p

ik
k
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for all i1 + i2 + · · ·+ ik = `. The following induction rules hold.

E(`, 0, 0, . . . , 0) = 1; (3.22a)

E(`, α1, . . . , αk) = 0 if ` <
k∑
i=1

I{αi > 0}; (3.22b)

E(`, α1, . . . , αj−1, αj + 1, αj+1 . . . , αk) = E
[
ηj

k∏
i=1

ηαii

]

= `pj

αj∑
i=0

(
αj
i

)
E(`− 1, α1, . . . , αj−1, i, αj+1, . . . , αk) otherwise. (3.22c)

Proof. Equations (3.22a) and (3.22b) are trivial. We have to prove Equa-
tion (3.22c) only for j = 1 since the claim follows from symmetry for j > 1.
Assume that ` > 0 (for ` = 0, Equation (3.22b) applies). By the definition
of the expected value,

E
[
η1

k∏
i=1

ηαii

]

=
∑

i1+···+ik=`

(
`

i1 i2 · · · ik

)
iα1+1
1 iα2

2 · · · iαkk pi11 pi22 · · · p
ik
k

= `p1

∑
i1+···+ik=`

(`− 1)!

(i1 − 1)!i2! · · · ik!
(i1 − 1 + 1)α1iα2

2 · · · iαkk pi1−1
1 pi22 · · ·pikk

= `p1

∑
i+i2+···+ik=`−1

(
`− 1

i i2 · · · ik

)(
α1∑
j=0

(
α1

j

)
ij
)
iα2
2 · · · iαkk pi1pi22 · · · p

ik
k

= `p1

α1∑
j=0

(
α1

j

)
E(`− 1, j, α2, . . . , αk).

Corollary 3.14. Let 〈η1, η2, . . . , ηk〉 be a multinomially distributed random
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vector with parameters (`, p1, p2, . . . , pk). Then

Eη1 = `p1; (3.23a)

Eη1η2 = `(`− 1)p1p2; (3.23b)

Eη2
1 = `(`− 1)p2

1 + `p1; (3.23c)

Eη1η2η3 = `(`− 1)(`− 2)p1p2p3; (3.23d)

Eη2
1η2 = `(`− 1)(`− 2)p2

1p2 + `(`− 1)p1p2; (3.23e)

Eη3
1 = `(`− 2)(`− 2)p3

1 + 3`(`− 1)p2
1 + `p1; (3.23f)

E
k′∏
i=1

ηi = `(`− 1) · · · (`− k′ + 1)p1p2 · · ·pk′ for k′ ≤ k. (3.23g)

Lemma 3.15. Let ŜK3 be the estimator for SK3 defined by Definition 3.8.
Then for all nodes u, v of a phylogeny in Kimura’s three parameter model,

0 ≤ EŜK3(u, v)− SK3(u, v) ≤ 1

`
+

1

`2
≤ 2

`
. (3.24)

Proof. Let

Muv =



1− p− q − r p q r

p 1− p− q − r r q

q r 1− p− q − r p

r q p 1− p− q − r


.

By Equations (3.21) and (3.23),

EŜK3(u, v)− SK3(u, v) =
4

`

(
(p+ q + r)− 7(pq + pr + qr)− (p2 + q2 + r2)

+ 6(p2q + pq2 + p2r + pr2 + q2r + qr2) + 12pqr
)

+
16

`2

(
(pq + pr + qr)− 2pqr

− (p2q + pq2 + p2r + pr2 + q2r + qr2)
)
.

The maxima and minima of the two terms on the right-hand side of the
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equation can be found by derivation, yielding Equation (3.24).

Lemma 3.16. Let ŜK3 be the estimator for SK3 defined by Definition 3.8.
The following inequalities hold when the sample sequences have length `. For
all nodes u, v of a phylogeny in Kimura’s three parameter model, and for
all ε > 0,

if SK3(u, v) > 0, then

P
{
ŜK3(u, v)

SK3(u, v)
≤ 1− ε

}
≤ exp

(
−1

2
`S2

K3(u, v)ε2
)
, (3.25a)

P
{
ŜK3(u, v)

SK3(u, v)
≥ 1 + ε

}
≤ exp

(
−1

2
`
(
εSK3(u, v)− 2

`

)2
)

; (3.25b)

and if SK3(u, v) < 0, then

P
{
ŜK3(u, v)

SK3(u, v)
≤ 1− ε

}
≤ exp

(
−1

2
`
(
εSK3(u, v)− 2

`

)2
)
, (3.25c)

P
{
ŜK3(u, v)

SK3(u, v)
≥ 1 + ε

}
≤ exp

(
−1

2
`S2

K3(u, v)ε2
)
. (3.25d)

The lemma follows from McDiarmid’s inequality (1989), a Chernoff bound.

Theorem 3.17. (McDiarmid 1989)

Let η1, η2, . . . , η` be independent random variables taking values in a set W .
Let f : W ` 7→ R be a function such that for i = 1, 2, . . . , `,

sup
x1,...,x`
x′i∈W

∣∣∣∣f(x1, . . . , xi−1, xi, xi+1, . . . , x`)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , x`)

∣∣∣∣ ≤ ci.

Let c2 =
∑`
i=1 c

2
i . For every ε > 0,

P
{
f(η1, . . . , η`)− Ef(η1, . . . , η`) ≥ ε

}
≤ e−2ε2/c2 ; (3.26a)

P
{
f(η1, . . . , η`)− Ef(η1, . . . , η`) ≤ −ε

}
≤ e−2ε2/c2 . (3.26b)
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Proof of Lemma 3.16. By Equations (3.24), if SK3(u, v) > 0, then

P
{
ŜK3(u, v)

SK3(u, v)
≤ 1− ε

}
= P

{
ŜK3(u, v) ≤ SK3(u, v)− εSK3(u, v)

}
≤ P

{
ŜK3(u, v)− EŜK3(u, v) ≤ −εŜK3(u, v)

}
; (∗)

P
{
ŜK3(u, v)

SK3(u, v)
≥ 1 + ε

}
= P

{
ŜK3(u, v) ≥ SK3(u, v) + εSK3(u, v)

}
≤ P

{
ŜK3(u, v)− EŜK3(u, v) ≥ εŜK3(u, v)− 2

`

}
. (∗∗)

Consider the function fK3 introduced in Equation (3.19a), as a function of
the symbol pairs

(X
(u)
1 , X

(v)
1 ), (X

(u)
2 , X

(v)
2 ), . . . , (X

(u)
` , X

(v)
` ).

Replacing any of the symbol pairs by another pair from {A, G, T, C}2 changes
the value of fK3 by at most 2

`
. Thus McDiarmid’s inequality can be applied

to fK3 by plugging ci = 2
`

into Equation (3.26) to obtain bounds for the right-
hand sides of Equations (∗) and (∗∗) shown by Equations (3.25a) and (3.25b).
Equations (3.25c) and (3.25d) are obtained analogously.

McDiarmid’s inequality is very useful in deriving concentration inequal-
ities for complicated functions f of random variables, but may bring in
unattractive terms in the exponent, such as the (−2/`) in Equations (3.25b)
and (3.25c) due to the bias Ef(η) − f(Eη). The following lemma derives a
bound using Hoeffding’s inequality instead.

Lemma 3.18. Let ŜK3 be the estimator for SK3 defined by Definition 3.8.
For all nodes u, v of a phylogeny in Kimura’s three parameter model, if
SJC(u, v) 6= 0, then for every sequence length ` and ε > 0,

P
{
ŜK3(u, v)

SK3(u, v)
≤ 1− ε

}
≤ 6 exp

(
− 1

72
`S2

K3(u, v)ε2
)

; (3.27a)

P
{
ŜK3(u, v)

SK3(u, v)
≥ 1 + ε

}
≤ 6 exp

(
− 1

72
`S2

K3(u, v)ε2
)
. (3.27b)
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Proof. If SK3(u, v) > 0, then the left-hand side of Equation (3.27a) can
be rewritten as

P
{
ŜK3(u, v)

SK3(u, v)
≤ 1− ε

}
= P

{
ŜK3(u, v)− SK3(u, v) ≤ −εSK3(u, v)

}
. (∗)

. By Equations (3.19a) and (3.20),

ŜK3(u, v) = f(P,Q,R) =
(

1− 2
`
(P +Q)

)(
1− 2

`
(P +R)

)(
1− 2

`
(Q+R)

)
.

The function f is a Lipschitz function, since 0 ≤ P,Q,R ≤ ` and thus

|f(P,Q,R)− f(P ′, Q′, R′)| ≤ 4

(
|P − P ′|

`
+
|Q−Q′|

`
+
|R− R′|

`

)

≤ 12

`
max

{
|P − P ′|, |Q−Q′|, |R−R′|

}
.

Since SK3(u, v, w) = f(EP,EQ,ER), the right-hand side of Equation (∗) can
be bounded from above as

P
{
ŜK3(u, v)− SK3(u, v) ≤ −εSK3(u, v)

}
≤P

{
|P − EP | ≥ εSK3(u, v)

12

}

+ P
{
|Q− EQ| ≥ εSK3(u, v)

12

}

+ P
{
|R− ER| ≥ εSK3(u, v)

12

}
.

(∗∗)

Applying Hoeffding’s inequality (Theorem 3.12) to the random variables P ,
Q, and R, the right-hand side of Equation (∗∗) can be further bounded from
above by

P
{
ŜK3(u, v)− SK3(u, v) ≤ −εSK3(u, v)

}
≤ 6 exp

(
− 1

72
`S2

K3(u, v)ε2
)
.

Together with Equation (∗) this proves Equation (3.27a) if SK3(uv) > 0.
Equation (3.27b) and the bounds in the case when SK3(u, v) is negative are
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proven similarly.

3.4.3 Paralinear distance

In order to define empirical paralinear distance, we first introduce a method
to estimate the mutation matrices from a sample.

Definition 3.9. Let P = (V,E,P) be a phylogeny in the i. i. d. Markov
model. Let u, v be two nodes associated with random taxon sequences X(u)

and X(v). Let
` =

∣∣∣X(u)
∣∣∣ =

∣∣∣X(v)
∣∣∣ .

Define

Nij =
∑̀
k=1

I
{
X

(u)
k = i, X

(v)
k = j

}
i, j ∈ A;

Ni =
∑
j∈A

Nij i ∈ A.

The m×m empirical mutation matrix M̂uv is defined by its entries as

M̂uv[i, j] =


Nij
Ni

if Ni 6= 0;

I{i = j} if Ni = 0.
(3.28)

It is also possible to use a Laplace-style estimator for the entries of Muv

by defining, for example

M̃vv[i, j] =
Nij + 1/`

Ni +m/`
.

However, this estimator converges only with a speed of O (`−1), as opposed to
the exponential convergence of the entries in M̂uv shown by the next lemma.

Lemma 3.19. Let u and v be two nodes of a phylogeny in the i. i. d. Markov
model. For arbitrary symbols i, j ∈ A and ε > 0,

P
{
M̂uv[i, j]−Muv[i, j] ≥ ε

}
≤ exp

(
−(1− e−2)`π

(u)
i ε2

)
; (3.29a)

P
{
M̂uv[i, j]−Muv[i, j] ≤ −ε

}
≤ exp

(
−(1− e−2)`π

(u)
i ε2

)
. (3.29b)
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Proof. As a shorthand notation, define

p =Muv[i, j];

p̂ =M̂uv[i, j];

q = π
(u)
i .

We first prove Equation (3.29a). Let us assume that ε < 1−p = 1−Muv[i, j].
Otherwise the equation is trivial because M̂uv[i, j] is never larger than one.
The random variable Nij has a binomial distribution with parameters Ni

and p. Thus for every k = 0, 1, . . . , `, Hoeffding’s inequality (Theorem 3.12)
implies that

P
{
Nij ≥ k(p+ ε)

∣∣∣∣ Ni = k
}
≤ e−2kε2. (∗)

The inequality holds vacuously even for k = 0. Since the random variable Ni

has a binomial distribution with parameters ` and q, by Equation (∗),

P
{
p̂ ≥ p+ ε

}
=
∑̀
k=0

P
{
Nij ≥ k(p+ ε)

∣∣∣∣ Ni = k
}
P
{
Ni = k

}

≤
∑̀
k=0

(
`

k

)
qk(1− q)`−ke−2ε2 =

(
1− q + qe−2ε2

)`
.

(∗∗)

Define

φ(x) = − ln
(

1− q + qe−2x
)
.

Since the function φ is concave and φ(0) = 0, for every x < x′,

φ(x) ≥ x
φ(x′)

x′
.

In particular,

φ(ε2) ≥ ε2
φ
(

(1− p)2

)
(1− p)2

, (∗∗∗)
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since ε < 1− p. Therefore,

P
{
p̂ ≥ p+ ε

}
= exp

(
−`φ(ε2)

)
by Eq. (∗∗)

≤ exp

(
`ε2

ln(1− q − qe−2(1−p)2
)

(1− p)2

)
by Eq. (∗∗∗)

≤ exp

(
−`qε2 1− e−2(1−p)2

(1− p)2

)
x ≤ − ln(1− x)

≤ exp
(
−(1− e−2)`qε2

)
min
x∈[0,1]

1− e−2x2

x2
= 1− e−2

corresponding to Equation (3.29a). The proof of Equation (3.29b) is analo-
gous.

Definition 3.10. Let P = (V,E,P) be a phylogeny in the i. i. d. Markov
model. Let u, v be two nodes. The empirical similarity ŜL is defined using
the empirical mutation matrices of Definition 3.9 as

ŜL(u, v) =

√(
det M̂uv

)(
det M̂vu

)
. (3.30a)

The empirical distance D̂L between the two nodes is defined as

D̂L(u, v) =

− ln ŜL(u, v) if ŜL(u, v) 6= 0;

∞ if ŜL(u, v) = 0.
(3.30b)

By Lemma 3.19, the entries of M̂uv converge quickly to those of Muv. The
speed of convergence for row i is primarily determined by (1 − e−2)π

(u)
i ≈

0.9π
(u)
i . One can suspect that the determinants of the mutation matrices

and therefore the empirical similarity from Equation (3.30a) also converge
quickly. In order to establish the upper bounds we need an auxiliary lemma
regarding the difference between determinants of stochastic matrices.

Lemma 3.20. Let A and B be two m×m stochastic matrices and

L∞ (A,B) = max
{
|A[i, j]−B[i, j]| : i, j = 1, . . . , m

}
.
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Then
|det A− det B| ≤ m(m− 1)L∞ (A,B) . (3.31)

Proof. Define Akj as the the matrix obtained by deleting row k and
column j in A. We bound |det Akj| from above in the following manner. Let

Λ = diag
(

1−A[1, j], . . . , 1−A[k − 1, j], 1−A[k + 1, j], . . . , 1−A[m, j]
)

;

A′kj = Λ−1Akj;

i.e., A′kj is the matrix obtained from Akj by dividing rows i = 1, . . . , k − 1
with (1 − A[i, j]) and rows i = k, . . . ,m − 1 with (1 − A[i + 1, j]). The
matrix A′kj is a stochastic matrix, hence for every k′ 6= k,

|det Akj| =
∣∣∣∣(det Λ)(det A′kj)

∣∣∣∣ ≤ det Λ ≤ 1−A[k′, j].

Let A and B differ only in row k; i.e., A[i, j] = B[i, j] for every i 6= k
and every j. By expanding the determinants by row k, and choosing an
arbitrary k′ 6= k,

|det A− det B| =
∣∣∣∣∣
m∑
j=1

(−1)k+j(A[k, j]−B[k, j]) det Akj

∣∣∣∣∣
≤

m∑
j=1

|A[k, j]−B[k, j]|(1−A[k′, j])

≤ L∞ (A,B)
m∑
j=1

(1−A[k′, j]) = (m− 1)L∞ (A,B) . (∗)

Let m′ ≤ m be the number of different rows between A and B. Let A(0) =
A,A(1), . . . ,A(m′) = B be a series of matrices such that each one of them
differs by only one row from the previous one. By Equation (∗),

|det A− det B| ≤
m′∑
k=1

|det A(i) − det A(i−1)| ≤ m′(m− 1)L∞ (A,B) ,

implying Equation (3.31).

Lemma 3.21. Let u and v be two nodes of an evolutionary tree in the i. i. d.
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Markov model. Define
π

(u)
min = min

i∈A
π

(u)
i . (3.32)

For arbitrary ε > 0,

P
{∣∣∣∣det M̂uv − det Muv

∣∣∣∣ ≥ ε

}
≤ 2m2 exp

(
− 1− e−2

m2(m− 1)2
`π

(u)
minε

2

)
. (3.33)

Proof. By Lemmas 3.19 and 3.20,

P
{∣∣∣∣det M̂uv − det Muv

∣∣∣∣ ≥ ε

}

≤ P
{
∃i, j :

∣∣∣∣det M̂uv[i, j]− det Muv[i, j]

∣∣∣∣ > ε

m(m− 1)

}

≤ 2m2 exp

(
− 1− e−2

m2(m− 1)2
`π

(u)
minε

2

)
,

concluding the proof.

Theorem 3.22. Let P = (V,E,P) be a phylogeny in the i. i. d. Markov
model. Let

πmin = min
u∈V

π
(u)
min = min

u∈V
min
i∈A

π
(u)
i ; (3.34)

πspan = min
u,v∈V

∏
i∈A π

(u)
i∏

i∈A π
(v)
i

. (3.35)

For all nodes u, v ∈ V , sample length ` and ε > 0,

P
{∣∣∣∣∣ ŜL(u, v)

SL(u, v)
− 1

∣∣∣∣∣ ≥ ε

}
≤ 4m2 exp

(
− 1− e−2

m2(m− 1)2
`πminπspanS

2
L(u, v)ε2

)
.

(3.36a)

Moreover, if P is in the time-reversible model, then

P
{∣∣∣∣∣ ŜL(u, v)

SL(u, v)
− 1

∣∣∣∣∣ ≥ ε

}
≤ 4m2 exp

(
− 1− e−2

m2(m− 1)2
`πminS

2
L(u, v)ε2

)
. (3.36b)
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Proof. By Lemma 3.21,

P
{∣∣∣∣∣det M̂uv

det Muv
− 1

∣∣∣∣∣ ≥ ε

}
≤ 2m2 exp

(
− 1− e−2

m2(m− 1)2
`πmin

(
det Muv

)2

ε2
)
. (∗)

By Equations (3.7b) and (3.8c),

(
det Muv

)2

= S2
L(u, v)

∏m
i=1 π

(v)
i∏m

i=1 π
(u)
i

;

(
det Mvu

)2

= S2
L(u, v)

∏m
i=1 π

(u)
i∏m

i=1 π
(v)
i

.

Consequently, by Equation (∗),

P
{∣∣∣∣∣ ŜL(u, v)

SL(u, v)
− 1

∣∣∣∣∣ ≥ ε

}
≤P

{∣∣∣∣∣det M̂uv

det Muv
− 1

∣∣∣∣∣ ≥ ε

}

+ P
{∣∣∣∣∣det M̂vu

det Mvu
− 1

∣∣∣∣∣ ≥ ε

}

≤4m2 exp

(
− 1− e−2

m2(m− 1)2
`πminπspanS

2
L(u, v)ε2

)
,

proving the first half of the Theorem. If the mutation process is time-
reversible, then the base frequencies are stationary, and thus det Muv =
det Mvu. Hence

P
{∣∣∣∣∣ ŜL(u, v)

SL(u, v)
− 1

∣∣∣∣∣ ≥ ε

}
≤P

{∣∣∣∣∣det M̂uv

det Muv

− 1

∣∣∣∣∣ ≥ ε

}

+ P
{∣∣∣∣∣det M̂vu

det Mvu

− 1

∣∣∣∣∣ ≥ ε

}

≤4m2 exp

(
− 1− e−2

m2(m− 1)2
`πminS

2
L(u, v)ε2

)
.



Chapter 4

Algorithms

4.1 Efficient topology recovery

Joseph Felsenstein lists 168 phylogeny software packages on his web page
(Felsenstein 2000). Some packages implement more than one evolutionary
tree reconstruction algorithm, and there are many algorithms that have not
yet been implemented at all. It is beyond the scope of this dissertation to dis-
cuss in detail each algorithm invented so far, but we do present an overview
of major approaches to phylogeny reconstruction. We stress efficiency is-
sues in our review, both in terms of using computational resources and in
terms of using biological resources, i.e., available molecular sequence data.
Efficiency becomes especially consequential when one aspires to reconstruct
large evolutionary trees. As a trivial example, if an algorithm’s running
time is exponential in the number of taxa, then that algorithm is impractical
in reconstructing the topology of a tree with several hundred or thousand
leaves. Recall that our goal is topology reconstruction, i.e., the recovery
of the topology from sample sequences that an evolutionary tree generates
within the probabilistic framework introduced in §1.4. Let P = (V,E,P) be
an evolutionary tree. Let L ⊆ V be the set of observable nodes, including
every leaf. Ordinarily L comprises exactly the leaves of P. A topology recon-
struction algorithm (see §1.4.2) outputs a hypothetical topology Ψ∗ based on
a sample 〈X(u) : u ∈ L〉 drawn according to the probability distribution P.
In what follows we define the computational and statistical efficiency of a
topology reconstruction algorithm.

83
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Computational efficiency The topological equivalence relation ∼
L

defines

a finite number of equivalence classes over unrooted trees that include the
vertices in L. We can thus envisage using a topology reconstruction algorithm
that examines all possibilities in the hypothesis class C and picks one based on
the sample. Unfortunately, such an approach is not feasible even in the case of
moderately large phylogenies because the number of topological equivalence
classes is too large. Edwards and Cavalli-Sforza (1963) state (concurred also
by Harding (1971), Felsenstein (1978b), and Rohlf (1983)) that if L is the set
of leaves and |L| = n, then the number of different topology classes equals

(2n− 5)!! = 1 · 3 · · · (2n− 3)(2n− 5). (4.1)

At n = 30, for example, there are more than 8 · 1036 possibilities to choose
from, at n = 40, there are more than 1055 possibilities, and thus exhaustive
search is doomed to fail. A topology reconstruction algorithm is computa-
tionally efficient if it produces its output in a time that is polynomial in
the sample size, i.e., the number of characters in the sample. If the sample
sequences have length at most `, and |L| = n, then the running time of a
computationally efficient algorithm is bounded by a polynomial in ` and n.

Statistical efficiency Computational efficiency offers no hint of how suc-
cessful the algorithm can be in recovering the topology. Recall that a topol-
ogy reconstruction algorithm is successful if its output Ψ∗ is topologically
equivalent to Ψ(P) over the set of observed nodes L. The results of §3.4
show that empirical similarities and distances converge rapidly to their true
values in the i. i. d. Markov model. A topology reconstruction algorithm
building the tree from empirical distances should thus recover the topology
with increasing success as larger samples become available. Higher success
on longer sample sequences in more general sequence generation models is
only possible if more information is gained from a longer sample. As the
most extreme counterexample, if the random taxon sequence distribution
is completely arbitrary, then the sample conveys no information about the
topology, regardless of sample size.

Consistency is the formalization of the idea that a good topology recon-
struction algorithm should recover the topology in the i. i. d. Markov model
if an infinite amount of data is available, since then the random sequence dis-
tribution can be exactly calculated. We construct an infinite sample in the
following manner. Let ξ1, ξ2, . . . be a series of random vectors distributed
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independently and identically to the random labels 〈ξ(u) : u ∈ L〉 and define
the sample sequence {X` : ` = 1, 2, . . .} by

X` = 〈ξ1, . . . , ξ`〉.

Observe that X` has identical distribution to 〈X(u) : u ∈ L〉 given that the
sequences have length `. For a topology reconstruction algorithm F, the prob-

ability P
{
F

(
X`

)
∼
L

Ψ(P)
}

is its success probability on sequences of length `.

It is a self-explanatory requirement that the success probability should con-
verge to certainty as ` goes to infinity, i.e., convergence in probability, but
consistency is in fact defined as almost sure convergence to the true topology,
which is a stronger attribute. The algorithm F is consistent, if and only if

lim
`→∞

F

(
X`

)
∼
L

Ψ(P) (4.2)

with probability one. The algorithm F is consistent on the hypothesis class C

if it is consistent for all phylogenies P ∈ C.
Equation (4.2) expresses that the algorithm F recovers the topology if in-

finite amount of data is available. From a practical aspect, we are more con-

cerned about the success on bounded sample lengths. Let X(L) =
〈
X(u) : u ∈

L
〉

, and let
∣∣∣X(L)

∣∣∣ = minu∈L
∣∣∣X(u)

∣∣∣. Given an error probability 0 < δ < 1, the

sample complexity of F on a phylogeny P is defined as

`(δ) = min
`

{
` : P

{
F(X(L)) ∼

L
Ψ(P)

∣∣∣∣ |X(L)| ≥ `
}
≥ 1− δ

}
, (4.3)

i.e., the shortest sample length for which F recovers the topology with prob-
ability at least (1− δ). If there is no such finite length, then `(δ) =∞.

The algorithm F is statistically efficient if the sample complexity is poly-
nomial in the number of observed nodes n = |L| and the error probability δ,
i.e., if `(δ) is bounded by a polynomial in n and δ−1. Note that statistical
efficiency is meaningful in the case of any phylogeny and not only in the
i. i. d. Markov model.

Despite the abundance of available reconstruction algorithms (Swofford
et al. 1996; Felsenstein 1988), most algorithms fail to be either computa-
tionally or statistically efficient. In reality, numerous theoretical results on
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topology reconstruction consist of showing the inconsistency, or lack of com-
putational and statistical efficiency of certain algorithms. Very attractive
ideas often produce NP-hard problems preventing the creation of compu-
tationally efficient algorithms. Statistical efficiency is even more rarely at-
tained, a phenomenon to which we return in §4.4.6. We review the efficiency
issues in conjunction with the three major families of algorithms: maximum
likelihood, character-based, and distance-based methods. For simplicity, we
concentrate on the case of reconstructing an evolutionary tree in the general
Markov model from sequences associated with the leaves.

4.2 Maximum likelihood

One of the earliest proposals (Edwards and Cavalli-Sforza 1963) for evolution-
ary tree reconstruction is the use of maximum likelihood methods (Felsenstein
1973, 1981, 1983). Let P = (V,E,P) be a phylogeny with leaf set L ⊂ V .
Based on the random taxon sequence distribution P, the likelihood of P gen-
erating a sample x is well-defined as

P (x; P) = P
{
〈X(u) : u ∈ L〉 = x

}
.

The maximum likelihood algorithm selects the phylogeny P∗ from the hy-
pothesis class C for a given sample x that maximizes the likelihood, i.e., it
computes the function

FML(x) = arg max
P∗∈C

P (x; P∗). (4.4)

Chang (1996) proves that Ψ(FML) is a consistent topology estimate in the
i. i. d. Markov model if the determinants of the edge mutation matrices differ
from 0, and ±1. Unfortunately, the maximum in Equation (4.4) is hard to
compute exactly, even in the i. i. d. Markov model, offering little alternative
to exhaustive search examining all topologies. Moreover, the maximum is
not even necessarily unique (Steel 1994a; Tuffley and Steel 1997). The maxi-
mum likelihood method is thus not effective computationally. Heuristics such
as DNAML of Felsenstein (1993), FastDNAml of Olsen et al. (1994), and
TrExML of Wolf et al. (2000) offer no guarantees of statistical efficiency.
Even the heuristics are computationally expensive, and are rarely used for
trees with more than 30–40 leaves. Parallel implementations (Matsuda et al.
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1994; Trelles et al. 1998) can be used for trees with up to a few hundred
leaves, but may run for several hours or even days on contemporary super-
computers. While maximum likelihood is not computationally efficient in
reconstructing large trees, it can be used for reconstructing small subtrees,
which are then combined into one large tree. Such an approach is employed
among others in the Quartet Puzzling of Strimmer and von Haeseler (1996)
and the Disc Covering Method of Huson et al. (1999).

4.3 Character-based methods

Character-based methods are founded in some sense on an entirely opposite
philosophy to that of maximum likelihood, in that they select a topology
without any reference to sequence probabilities. The principles of character-
based methods can be traced back to the ideas of Willi Hennig (1950, 1966).
The main theme of character-based methods is the simultaneous derivation
of the topology and the unobserved sequences from the observed sequences.
The underlying concepts are better justified if we bear in mind that the meth-
ods were originally devised in the context of using morphological characters
such as “number of vertebrae”, “has wings”, etc., for which a probabilis-
tic mutation model is inadequate. However, character-based methods are
nowadays often used with molecular data, and possibly constitute the most
popular approach to phylogenetic analysis, despite theoretical and practical
drawbacks. Character-based methods are commonly further categorized into
the classes of compatibility methods and parsimony methods.

4.3.1 Compatibility methods

Compatibility as a basis for phylogenetic analysis was proposed by Le Quesne
(1969, 1972, 1974) (see also Estabrook 1972). The idea is that good char-
acters for evolutionary tree reconstruction are binary indicator characters
for traits that are acquired at most once, such as, for example, “has spinal
chord”. Such binary characters can also be based on molecular sequences,
and can be indicators for highly specific subsequences in genes. The char-
acter sequences associated with the nodes consist of the indicators for the
traits, so that each character position corresponds to exactly one feature. The
use of such uniquely evolved features leads to the idea of perfect phylogeny.
The perfect phylogeny for a sample is a rooted tree, where each sequence
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position is assigned an edge on which the character in that particular po-
sition changes from 0 to 1. Formally, let L be a set of terminal taxa with
associated sequences taken from {0, 1}`. A perfect phylogeny for a sample
〈x(u) : u ∈ L〉 is a rooted tree T = (V,E) over the leaf set L with a bijection
f : E 7→ {1, 2, . . . , `} that has the following property. For each node u ∈ V ,
if the path from the root to u is u0, e1, . . . , el, ul = u, then the characters of
the sequence x(u) = x

(u)
1 · · ·x

(u)
` are determined as

x
(u)
k =

1 if k ∈ {f(e1), . . . , f(el)};
0 otherwise.

The problem of perfect phylogeny (see, e.g., Warnow 1994) is that of deter-
mining whether a perfect phylogeny exists for a given sample, and determin-
ing it if it does. A solution to the problem was first proposed by Estabrook
et al. (1975). Gusfield (1991, 1997) gives fast algorithms for the problem
that run in O (n`) time when |L| = n. Compatibility methods seek to select
a maximal subset of character positions on which a perfect phylogeny can be
built. The selection of such a maximal subset is NP-hard as proven by Day
and Sankoff (1986).

The generalization of the perfect phylogeny problem to non-binary char-
acters requires that the edges of the derived tree are labeled with sequence
positions and character transitions by a mapping f : E 7→ {1, . . . , `} × A2

so that on edge e, if f(e) = 〈k, i, j〉, then the parent sequence on that edge
changes in position k from symbol i to j. As before, the path from the root
to a node determines the associated sequence, and for each position k and
symbol j ∈ A, there is at most one edge with f(e) = 〈k, i, j〉. Dress and Steel
(1993) and Kannan and Warnow (1994) present computationally efficient al-
gorithms for the generalized perfect phylogeny problem when |A| = 3, 4.
Furthermore, Agarwala and Fernández-Baca (1994) devised a polynomial
time algorithm for an arbitrary fixed alphabet, which was further improved
by Kannan and Warnow (1997). The problem is NP-hard in general, i.e., if
the alphabet size is part of the input (Bodlaender et al. 1992; Steel 1992).

4.3.2 Parsimony methods

Conceptually, parsimony methods extend the idea of compatibility. The
extension is the following. Let P = (V,E,P) be a phylogeny with leaf
set L ⊆ V . Character-based methods, including compatibility and parsi-
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mony, return a topology Ψ∗ = (V ∗, E∗) with L ⊂ V ∗, and a set of sequences

x =
〈
x(u) : u ∈ V ∗

〉
. Thus, there is a sequence x(u) associated with each

node u ∈ V ∗, based on the sample, such that for every leaf u ∈ L, the se-
quence x(u) is the sample sequence for u. Specifically, in the case of perfect
phylogeny, on each edge uv ∈ E∗, x(u) and x(v) differ in exactly one posi-
tion. Parsimony methods generalize this notion by introducing a sequence
pair-weighting function d : S × S 7→ [0,+∞], and seeking the best choice
of (Ψ∗,x) that minimizes the sum of the weights on the edges

d(Ψ∗,x) =
∑

uv∈E∗
d
(
x(u),x(v)

)
. (4.5)

Define the Hamming distance H between two sequences of equal length as
the number of positions in which they differ

H(s1s2 · · · s`, t1t2 · · · t`) =
∑̀
k=1

I{sk 6= tk} .

If it exists, the perfect phylogeny for a sample minimizes the sum for the
weighting function

d(s, t) =

0 if |s| = |t| and H(s, t) = 1;

∞ otherwise.

Of course this weighting function is not particularly interesting since the
minimum is either 0 or ∞. A popular choice in parsimony methods is Fitch
parsimony, which employs the Hamming distance as the weighting function

d(s, t) =

H(s, t) if |s| = |t|;
∞ otherwise.

Consequently, the selection by Fitch parsimony minimizes the total number
of character changes along the edges. As such, it can be considered as the
most succinct way of representing the differences in the sample by a topology,
which explains the name “parsimony”. The idea of using maximum parsi-
mony as the basis for topology reconstruction was already described in the
seminal paper of Edwards and Cavalli-Sforza (1963). The introduction of
the term parsimony is attributed to Camin and Sokal (1965) by Felsenstein
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(1988).
Generally, d(s, t) is defined as the sum of weighted substitutions between s

and t. In other words, it is defined via a function g : A × A 7→ [0,+∞] so
that

d(s1s2 · · · s`, t1t2 · · · t`) =
∑̀
k=1

g(sk, tk). (4.6)

Fitch parsimony uses g(i, j) = I{i 6= j}. Other character weighting functions
in the parsimony literature include Wagner parsimony and Dollo parsimony.
In Wagner parsimony (Kluge and Farris 1969; Farris 1970) g is additive and
symmetric, i.e.,

∀i, j : g(i, j) = g(j, i) ∀i, i′, j : g(i, j) + g(j, i′) = g(i, i′).

In Dollo parsimony (Farris 1977) the alphabet is ordered and

∀i > j : g(i, j) =∞.

More complicated choices of weighting functions include ones based on
PAM matrices (Dayhoff et al. 1978) and restriction site weights (Albert et al.
1992).

The minimization of the sum in Equation (4.5) raises two algorithmic
problems.

Minimum mutation problem. Given a topology Ψ∗ = (V ∗, E∗) with

leaf set L ⊂ V ∗ and an assignment
〈
x(u) : u ∈ L

〉
of length ` sequences

to the leaves, determine the sequence assignment x =
〈
x(u) : u ∈ V ∗

〉
that minimizes the penalty d(Ψ∗,x).

Parsimony optimization problem. Given a leaf set L and an assign-

ment
〈
x(u) : u ∈ L

〉
of length ` sequences to the leaves, determine the

topology Ψ∗ and assignment x that minimizes the penalty d(Ψ∗,x).

The first algorithm for the minimum mutation problem with Fitch par-
simony was given by Fitch (1971) and Hartigan (1973). The Fitch-Hartigan
algorithm runs in O (|V ∗|`) time. In the case where the weighting function d
is defined as the sum of weighted substitutions as in Equation (4.6), Sankoff
(1975) and Sankoff and Rousseau (1975) describe fast algorithms running
in O (|V ∗|`) time.
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Despite the tractability of the minimum mutation problem, the parsimony
optimization problem is NP-hard. In its simplest form, notably Fitch parsi-
mony with a binary alphabet, the problem is equivalent to the unweighted
Steiner tree problem on the `-dimensional binary hypercube. The Steiner tree
problem is that of selecting the minimum weight subtree in an edge-weighted
graph that spans a specific subset of nodes. Parsimony optimization is there-
fore equivalent to the Steiner tree problem by making nodes correspond to
sample sequences, with the specific feature that the underlying graph (i.e.,
the `-dimensional hypercube) is not part of the problem instance descrip-
tion. The unweighted Steiner tree problem on binary hypercubes is NP-hard
(Foulds and Graham 1982; Graham and Foulds 1982) and so is its weighted
version (Gusfield 1984) in general. Day (1983a) proves that the problem
is NP-hard for Wagner parsimony, and Day et al. (1986) prove that it is
NP-hard for other popular weighting functions, including Dollo parsimony.
There are results indicating that even the approximation problem is diffi-
cult (e.g., Fernández-Baca and Lagergren 1998). Therefore computational
efficiency for algorithms delivering exact solutions to the parsimony opti-
mization problem cannot be expected. Hendy and Penny (1982) describe
two branch-and-bound algorithms for the problem, which they recommend
to use for up to 16 leaves. Purdom et al. (2000) discuss recent improvements
of branch-and-bound algorithms for parsimony.

Heuristics usually start by deriving an initial topology Ψ∗0 with assigned
sequences x, and then search the space of possible topologies by swapping
edges and subtrees, recomputing the optimal sequence assignment x. The
initial topology is often obtained by a greedy algorithm that adds leaves
consecutively, described by Farris (1970) and first used by Kluge and Farris
(1969). Fast heuristic search methods have been incorporated into major
phylogeny packages such as Hennig86 (Farris 1988) and PAUP (Swofford
1990). Some recent ideas on accelerating the heuristic search have been
discussed by Goloboff (1996) and Moilanen (1999).

Statistical efficiency of the maximum parsimony heuristics has been not
established, although advocates of parsimony methods did report high suc-
cess rates on some simulated data. Siddall (1998), for example, carried out
extensive simulation experiments on four-leaf trees in the Jukes-Cantor model
and found that heuristic parsimony implemented in PAUP performed better
in certain cases than maximum likelihood and Neighbor-Joining (Saitou and
Nei 1987) on sample lengths 100, 500, and 1000. Hillis et al. (1994), Hillis
(1996), Rice and Warnow (1997), and Huson et al. (1998) also reported the
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Figure 4.1: An example showing the inconsistency of parsimony. The
evolutionary tree on the left-hand side has four leaves, u, v, w, and z. The
mutation model is the Jukes-Cantor model on a binary alphabet. The edge
mutation probabilities are p = 0.1, q = 0.3 and r = 0.01. The graph on
the right-hand side shows the ratio of labelings in which a wrong topology Ψ1,
shown on the top, is preferred over the true topology Ψ0, shown on the bottom,
for sample lengths up to 5000. The ratio is defined as follows. Let k0(i) be the
number of labelings in which Fitch parsimony assigns a lower penalty score to
the true topology Ψ0 than to the topology Ψ1 in the first i labelings. Similarly,
let k1(i) be the number of labelings in which Ψ1 is preferred over Ψ0. The
graph plots (k1(i) − k0(i))/(k1(i) + k0(i)). We intend to illustrate in this
random PostScript figure that with high probability, k1(i) > k0(i) for finite i,
and limi→∞(k1(i) − k0(i)) > 0, i.e., that Fitch parsimony selects the wrong
topology with high probability on finite samples and is inconsistent.

success of heuristic parsimony for short sample lengths in simulated experi-
ments on larger trees. Nevertheless, statistical efficiency and even consistency
of parsimony methods are not to be expected in general. Cavender (1978)
and Felsenstein (1978a) pointed out that maximum parsimony leads to a
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statistically inconsistent prediction of the topology on certain trees with four
leaves in the i. i. d. Markov model. Hendy and Penny (1989) reported that
the method is inconsistent also in the case of some trees with five leaves and
constant substitution rates. The inconsistency result is sometimes referred to
as “long branch attraction,” and is essentially due to the fact that edges with
high mutation probabilities can make otherwise remote leaves seem closely
related. Figure 4.1 shows a simple example with the following structure.
Let P = (V,E,P) be a phylogeny in the Jukes-Cantor model with a binary
alphabet, for which

V = {x, x′, u, v, w, z},
E = {xx′, xu, xv, x′w, x′z},

pxu = px′z = p, pxv = px′w = q, pxx′ = r.

Consider the following topologies.

Ψ0:

u

v w

z

Ψ1:

u

z v

w

The correct topology is Ψ0, while Ψ1 is one of the wrong topologies.
Felsenstein (1978a) discovered that for certain edge mutation probabilities,
Fitch parsimony prefers the topology Ψ1 over Ψ0, with high probability on
finite sample lengths and with asymptotical certainty as the sample length
grows toward infinity. In the random labelings, for which the topology Ψ0 is
preferred over Ψ1,

ξ(v) = ξ(u) ξ(w) = 1− ξ(u) ξ(z) = 1− ξ(u).

In labelings where Ψ1 is preferred over Ψ0,

ξ(v) = 1− ξ(u) ξ(w) = ξ(u) ξ(z) = 1− ξ(u).

Denote the first event by A0, the second by A1. For example, if r = 1/2
and q = 1− p, then

PA0 = 2p2(1− p)2, PA1 =
1

2

(
p4 + (1− p)4 + 2p2(1− p)2

)
.
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Thus maximum parsimony prefers the wrong topology Ψ1 if

p4 + (1− p)4 + 2p2(1− p)2 > 4p2(1− p)2

(1− 2p)4 > 0,

i.e., if p 6= 1/2. In general,

PA0 = (1− r)
(

2p(1− p)q(1− q)
)

+ r
(
p2q2 + (1− p)2(1− q)2

)
PA1 = (1− r)

(
p2(1− q)2 + (1− p)2q2

)
+ r

(
2p(1− p)q(1− q)

)
.

Thus PA1 > PA0, if

1− 2r >

(
(1− 2p) + (1− 2q)

)2

−
(

(1− 2p)− (1− 2q)
)2

(
(1− 2p) + (1− 2q)

)2

+
(

(1− 2p)− (1− 2q)
)2 .

In such a case Fitch parsimony is inconsistent, and in i. i. d. random labelings
generating a sample, A1 occurs more frequently than A0 with high proba-
bility. An example is depicted in Figure 4.1. The statistical inadequacy of
maximum parsimony is especially exposed by the results of Tuffley and Steel
(1997) showing that Fitch parsimony is equivalent to maximum likelihood in
the general Markov model. They credit Penny et al. (1994) with the result
in the special case of a binary alphabet. These results, in turn, also prove
that maximum likelihood is inconsistent in the general Markov model, as one
would expect given that the number of parameters estimated by maximum
likelihood is unbounded.

4.4 Distance-based methods

Compared to character-based and maximum likelihood methods, the fam-
ily of distance-based methods comprises a vast variety of algorithmic ap-
proaches. The idea underlying these approaches is fairly simple. Since evo-
lutionary distances determine the evolutionary tree topology, estimated dis-
tances should offer a sufficient basis for topology recovery. For a more formal
discussion, let D be a distance metric over a class C of evolutionary trees,
and let P = (V,E,P) be a phylogeny in C. For a set L ⊆ V of observed
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Figure 4.2: Three possible topologies on four leaves. The quartet topologies
are denoted by uv|wz, uv|wz, and uv|wz, respectively.

nodes, the |L| × |L| distance matrix ∆ consists of the distances between the
observed nodes

∆ =
[
D(u, v) : u, v ∈ L

]
. (4.7)

Distance-based algorithms construct a hypothetical phylogeny P∗ or topol-
ogy Ψ∗ after a preprocessing step in which ∆ is estimated from the sample.
The sample preprocessing produces an estimated distance matrix

∆̂ =
[
D̂(u, v) : u, v ∈ L

]
, (4.8)

where D̂(u, v) is the estimated distance between nodes u and v calculated
from the sample sequences X(u) and X(v). Disregarding the origin of the
estimated distance matrix ∆̂, distance-based algorithms can be interpreted
as clustering methods (Hartigan 1975; Barthélemy and Guénoche 1991) for
“objects” in L, and in fact some methods arise from problems unrelated to
molecular sequence data, for example in cognitive psychology (Sattath and
Tversky 1977; Cunningham 1978; de Soete et al. 1987). Our discussion
builds largely on studying how well ∆̂ can estimate the matrix ∆ based on
an analysis of the random taxon sequence distributions.

4.4.1 The four-point condition

Let P = (V,E,P) be a phylogeny with leaf set L. Let D be a distance metric
on P. By additivity, if the path between two arbitrary leaves u, v ∈ L of Ψ(P)
is u0 = u, e1, . . . , el, ul = v, then D(u, v) =

∑l
k=1 D(uk−1, uk). Equipping each

edge of Ψ(P) with a weight equal to the distance between the edge endpoints,
D(u, v) is the sum of the edge weights on the path between u and v in Ψ(P).
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In this respect, the distance matrix ∆ in Equation (4.7) is produced by an
edge-weighted unrooted tree. Such an interpretation leads to the question
of relationships between weighted trees and distance matrices. Stating the
problem more explicitly, how can we tell whether a matrix corresponds to a
weighted unrooted tree?

Definition 4.1. Let ∆ be an |L| × |L| matrix whose columns and rows are
indexed by elements of a set L such that each entry ∆[u, v] ∈ [0,∞]. The
matrix ∆ is a tree metric over L if and only if there exists an unrooted
tree T = (V,E) with edge weights d : E 7→ [0,∞] such that L ⊂ V comprises
the leaves, and for all u, v ∈ E, ∆[u, v] equals the sum of edge weights on the
path between u and v. If such a tree T exists, then T is said to fit ∆. The
edge weights d are also referred to as edge lengths.

The problem is thus to characterize tree metrics in general. The solution
was first given independently by Smolenskĭı (1962) and Hakimi and Yau
(1964). They prove that ∆ is a tree metric if and only if the following
properties hold.

Identity: for every u ∈ L, ∆[u, u] = 0.

Symmetry: for all u, v ∈ L, ∆[u, v] = ∆[v, u].

Three-point condition: for every triple of different elements u, v, w ∈ L,
∆[u, v] + ∆[v, w] ≥ ∆[u, w].

Furthermore they prove that if ∆ has only positive finite entries outside the
diagonal, then there is a unique tree (in the sense of topological equivalence
over L) that fits ∆. By further studying tree metrics, another fundamental
characteristic, known as the four-point condition, has been discovered, which
is described as follows. A quartet is a set of four leaves in a tree. By Equa-
tion (4.1) there are three different quartet topologies. Figure 4.2 shows the
three possibilities. For the quartet {u, v, w, z} the three possible topologies
are denoted by uv|wz, uw|vz and uz|vw. When the matrix ∆ contains evo-
lutionary distances, as in Equation (4.7), then by additivity of D, the quartet
topology is uv|wz if

∆[u, v] + ∆[w, z] < ∆[u, w] + ∆[v, z] = ∆[u, z] + ∆[v, w]. (4.9)
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Furthermore, for any set of four leaves {u, v, w, z},

∆[u, v] + ∆[w, z] ≤ max
{
∆[u, w] + ∆[v, z],∆[u, z] + ∆[v, w]

}
. (4.10)

Equation (4.10) is the four-point condition for the quartet {u, v, w, z}.
Theorem 4.1. A matrix ∆ for a set L is a tree metric if and only if Equa-
tion (4.10) holds for every set {u, v, w, z}. If ∆ is a tree metric and the
four-point condition of Equation (4.10) has strict inequality for every quar-
tet, then there is a unique tree (in the sense of topological equivalence over L)
that fits ∆.

Theorem 4.1 was independently discovered by Zaretskĭı (1965), Buneman
(1971), and Patrinos and Hakimi (1972). If Equation (4.10) has strict in-
equality for every quartet, then all the quartet topologies are determined by
Equation (4.9) and the topology can be recovered from the quartet topologies
(Colonius and Schulze 1981; Bandelt and Dress 1986). Phrased differently,
if ∆ is a tree metric with finite positive entries, then there is a unique tree T

in which Equation (4.9) holds for every topological minor uv|wz on four
leaves. When ∆ is not a tree metric, however, it is NP-hard to determine
the tree T that has the maximum number of topological minors on quartets
satisfying Equation (4.9) (Steel 1992).

Many distance-based algorithms work by deducing the topologies of a
set of quartets from the estimated distance matrix ∆̂, and by employing a
combinatorial method that derives a hypothetical topology Ψ∗ based on the
quartet topologies. Typically, for a set {u, v, w, z} of leaves, the topology
uv|wz is deduced if

∆̂[u, v] + ∆̂[w, z] < ∆̂[u, w] + ∆̂[v, z]

∆̂[u, v] + ∆̂[w, z] < ∆̂[u, z] + ∆̂[v, w].
(4.11)

Equation (4.11) is the relaxed four-point condition. Unlike in Equation (4.9)
the equality of the right-hand sides is not required. The long list of distance-
based algorithms using a combinatorial approach in conjunction with quar-
tet topologies includes Buneman’s (1971) algorithm, ADDTREE of Sattath
and Tversky (1977), the Q∗ method of Berry and Gascuel (1997), Quartet
Puzzling of Strimmer and von Haeseler (1996), the refined Buneman method
(Berry and Bryant 1999), and the Short Quartet methods (Erdős et al. 1997,
1998, 1999a, 1999b).
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4.4.2 The LogDet metric

Theorem 4.1 gives a sufficient and necessary condition for a matrix ∆ to be
a tree metric. While an evolutionary distance metric over a phylogeny P

gives rise to a tree metric, the converse is not always true, i.e., not every tree
metric corresponds to an evolutionary distance. Specifically, we describe
the LogDet metric (Steel 1994b; Lockhart et al. 1994) as being the most
important example.

Theorem 4.2. (Steel 1994b.) Let P = (V,E,P) be a phylogeny in the
i. i. d. Markov model with leaf set L ⊂ V . Recall from Lemma 3.7 that Juv
denotes the joint probability matrix for arbitrary nodes u, v ∈ V . Define the
|L× |L| matrix ∆LD with rows and columns indexed by the leaves as

∆LD[u, v] =

− ln|det Juv| if det Juv 6= 0;

∞ if det Juv = 0.
(4.12)

The matrix ∆LD is a tree metric known as the LogDet metric.

Proof. We show that ∆LD defines a tree metric over Ψ(P) = (V ′, E ′)
by explicitly calculating the edge weights d required by Definition 4.1. By
Lemma 3.7, ∆LD can be written in terms of the paralinear distance DL as

∆LD[u, v] = − ln|det Juv|

= − ln
|det Juv|(∏

i∈A π
(u)
i

)(∏
i∈A π

(v)
i

) − 1

2

∑
i∈A

ln π
(u)
i −

1

2

∑
i∈A

ln π
(v)
i

= DL(u, v)− 1

2

∑
i∈A

ln π
(u)
i −

1

2

∑
i∈A

ln π
(v)
i .

Define the edge weights d : E ′ 7→ [0,∞] as follows. For every edge uv ∈ E ′,

d(uv) =

DL(u, v)− 1
2

∑
i∈A ln π

(u)
i if u is a leaf;

DL(u, v) otherwise.

Obviously, d(uv) ≥ DL(u, v) ≥ 0 for every edge uv. Let u′ and v′ be two
arbitrary leaves of Ψ(P). Let

u′ = u0, e1, u1, e2, . . . , el, ul = v′
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be the path between them. By Theorem 3.6, DL is additive along this path
and thus

l∑
k=1

d(ek) =
(
DL(u′, u1)− 1

2

∑
i∈A

ln π
(u′)
i

)
+DL(u1, u2) + · · ·

+DL(ul−2, ul−1) +
(
DL(ul−1, v

′)− 1

2

∑
i∈A

ln π
(v′)
i

)

=DL(u′, v′)− 1

2

∑
i∈A

ln π
(u′)
i − 1

2

∑
i∈A

ln π
(v′)
i = ∆LD[u′v′].

Consequently, Ψ(P) with edge weights d satisfies Definition 4.1 and thus ∆LD

is a tree metric.

While ∆LD can be viewed in light of Equation (4.12) as a function over
distributions on sequence pairs, it is not an evolutionary distance according
to our definition. For example, it does not satisfy Condition (O) of Fact 3.1,

i.e., if P
{
ξ(u) = ξ(v)

}
= 1, then ∆LD[u, v] is not zero. Furthermore, it does

not satisfy additivity (Condition (A)) since for three nodes u, v, w on a path,(
− ln|det Juv|

)
+
(
− ln|det Jvw|

)
6= − ln|det Juw|

in general (also pointed out by e.g., Gu and Li 1996). Nevertheless, ∆LD can
be estimated from the sample sequences associated with the leaves, and the
resulting matrix can be the input of a distance-based algorithm.

Definition 4.2. Let P = (V,E,P) be a phylogeny in the i. i. d. Markov model
with leaf set L ⊂ V . Let u and v be two nodes associated with random taxon
sequences X(u) and X(v). Let ` =

∣∣∣X(u)
∣∣∣ =

∣∣∣X(v)
∣∣∣. The m×m empirical joint

probability matrix Ĵuv is defined by its entries as

Ĵuv[i, j] =
1

`

∑̀
k=1

I
{
X

(u)
k = i, X

(v)
k = j

}
. (4.13)

Definition 4.2 suggests a convenient way to estimate ∆LD as ∆̂LD[u, v] =
− ln|det Ĵuv|. In the following we study the convergence of Ĵuv to Juv.
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Lemma 4.3. Let Ĵuv be the empirical joint probability distribution matrix of
Definition 4.2. Then

E det Ĵuv =
(

1− 1

`

)(
1− 2

`

)
· · ·

(
1− m− 1

`

)
det Juv. (4.14)

Proof. By definition of the determinant,

det Ĵuv =
∑′

j1,...,jm

(−1)κ(j1,...,jm)
m∏
i=1

Ĵuv[i, ji],

where
∑′

denotes the sum over permutations and κ(·) equals ±1 depending
on whether the number of switched pairs in the permutation is odd or even.

Since the vector
〈
`Ĵuv[i, j] : i, j = 1, . . . , m

〉
is multinomially distributed,

Equation (3.23g) applies and thus

E det Ĵuv =
∑′

j1,...,jm

(−1)κ(j1,...,jm)
m∏
i=1

Ĵuv[i, ji]

=
∑′

j1,...,jm

(−1)κ(j1,...,jm) `(`− 1) · · · (`−m + 1)

`m

m∏
i=1

Juv[i, ji]

=
(

1− 1

`

)(
1− 2

`

)
· · ·

(
1− m− 1

`

)
det Juv,

which is tantamount to Equation (4.14).

Definition 4.3. Let P = (V,E,P) be an evolutionary tree in the i. i. d.
Markov model with leaf set L. The |L| × |L| empirical LogDet metric is
defined by its entries using the empirical joint probability matrix as

∆̂LD[uv] =

− ln|det Ĵuv| if det Ĵuv 6= 0;

∞ if det Ĵuv = 0.

The |L| × |L| bias-corrected LogDet metric is defined by its entries as

∆̃LD[u, v] = ∆̂LD[u, v] +
m−1∑
k=1

ln
(

1− k

`

)
.
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Theorem 4.4. Let P = (V,E,P) be a phylogeny in the i. i. d. Markov
model. For all leaves u and v, and sample length `, the following hold. Define
γ`,m = (1− 1

`
)(1− 2

`
) · · · (1− m−1

`
),

d̂uv = det Ĵuv, (4.15a)

d̃uv =
det Ĵuv
γ`,m

. (4.15b)

For every ε > 0,

P
{

d̃uv
det Juv

≤ 1− ε
}
≤ exp

(
−
γ2
`,m(m− 1)2(m−1)

2
`det2Juvε

2

)
; (4.16a)

P
{

d̃uv
det Juv

≥ 1 + ε

}
≤ exp

(
−
γ2
`,m(m− 1)2(m−1)

2
`det2Juvε

2

)
; (4.16b)

P
{∣∣∣∣∣ d̂uv

det Juv
− 1

∣∣∣∣∣ ≥ ε

}
≤ 2m2 exp

(
−(m− 1)2(m−1)

2m4
`det2Juvε

2

)
. (4.17)

We need the next lemma for the proof of Theorem 4.4.

Lemma 4.5. Let J1 and J2 be two m×m matrices with non-negative entries
such that

∑m
i=1

∑m
j=1 Jk[i, j] = 1 for k = 1, 2. Then

∣∣∣∣det J1 − det J2

∣∣∣∣ ≤ 2m2

(m− 1)m−1
L∞ (J1,J2) , (4.18a)

with L∞ (J1,J2) = maxi,j

∣∣∣∣J1[i, j]− J2[i, j]
∣∣∣∣. Furthermore, if J1 and J2 differ

in two entries only, i.e., if there exist ε > 0, i1, j1, i2, j2 ∈ {1, . . . , m} such
that

J2[i, j] =


J1[i, j]− ε if i = i1 and j = j1;

J1[i, j] + ε if i = i2 and j = j2;

J1[i, j] otherwise,

then ∣∣∣∣det J1 − det J2

∣∣∣∣ ≤ 2ε(m− 1)−(m−1). (4.18b)

We leave the proof of the lemma to the end of this chapter.
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Proof of Theorem 4.4. We prove first Equations (4.16a) and (4.16b)
by using McDiarmid’s inequality (Theorem 3.17). Define the i. i. d. random

vector variables ηk =
〈
X

(u)
k , X

(v)
k

〉
for k = 1, . . . , `. Then d̃uv = f(η1, . . . ,η`)

where the function f is defined by Equation (4.13) and (4.15b). By Equa-
tions (4.15b) and (4.18b), f(x1, . . . ,x`) changes by at most

2

`γ`,m
(m− 1)−(m−1)

if one of the xk values is altered. Hence Equations (4.16a) and (4.16b) follow
from McDiarmid’s inequality applied to the function f .

By Equation (4.18a), if

max
i,j

∣∣∣∣Ĵuv[i, j]− Juv[i, j]

∣∣∣∣ < ε|det Juv|
2m2(m− 1)−(m−1)

,

then
∣∣∣∣det Ĵuv − det Juv

∣∣∣∣ < ε|det Juv|. Thus,

P
{∣∣∣∣∣ d̂uv

det Juv
− 1

∣∣∣∣∣ ≥ ε

}
= P

{∣∣∣∣det Ĵuv − det Juv

∣∣∣∣ ≥ ε|det Juv|
}

≤
∑
i,j

P
{∣∣∣∣Ĵuv[i, j]− Juv[i, j]

∣∣∣∣ ≥ ε|det Juv|
2m2(m− 1)−(m−1)

}

≤ 2m2 exp

(
−(m− 1)2(m−1)

2m4
`det2Juvε

2

)
,

proving Equation (4.17).

4.4.3 Numerical taxonomy

By Definition 4.1, an unrooted tree T = (V,E) with leaf set L ⊂ V and edge
weights d : E 7→ [0,∞] gives rise to a tree metric ∆T,d. The rows and columns
of ∆T,d are indexed with the leaves. Each entry is the sum of edge weights on
the path between the leaf of the row index and the leaf of the column index.
The problem of numerical taxonomy is that of finding an optimal ∆T,d that

is “closest” to an estimated input matrix ∆̂. Evident choices for measuring
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the “closeness” of two matrices are the L1, L2, and L∞ distances, defined as

Lα(∆1,∆2) =


(∑

i,j

∣∣∣∣∆1[i, j]−∆2[i, j]

∣∣∣∣α
)1/α

if α 6=∞;

maxi,j

∣∣∣∣∆1[i, d]−∆2[i, j]

∣∣∣∣ if α =∞.

For a formal definition, let

F : [0,∞]|L|
2 × [0,∞]|L|

2 7→ [0,∞]

be a lack-of-fit function on pairs of |L| × |L| matrices. The numerical tax-
onomy problem is the minimization of F(∆̂,∆∗) for an input matrix ∆̂
where ∆∗ is a tree metric sought. This problem was stated explicitly by
Cavalli-Sforza and Edwards (1967a). The numerical taxonomy problem is
the cornerstone of a whole school of phylogeny reconstruction, known as
phenetics (Sokal and Sneath 1963; Sneath and Sokal 1973). Cavalli-Sforza
and Edwards (1967a) seek a tree metric ∆∗ that minimizes the L2 distance
between the matrices. In particular, they seek to minimize

F(∆̂,∆∗) =
∑
i,j

(
∆̂[i, j]−∆∗[i, j]

)2

.

The L2 problem also frequently arises in mathematical psychology (Cunning-
ham 1978; de Soete 1983; Hubert and Arabie 1995; Smith 1998). Another
classic approach in molecular systematics is that of Fitch and Margoliash
(1967). They seek to minimize the “percent standard deviation” by using

F(∆̂,∆∗) =
∑
i,j

(
∆̂[i, j]−∆∗[i, j]

∆̂[i, j]

)2

.

Farris (1972) is usually credited with first proposing the use of the L1 metric
for measuring the lack-of-fit. As our final example, Waterman et al. (1977)
propose the minimization of the function

F(∆̂,∆∗) =
∑
i,j

(
∆̂[i, j]−∆∗[i, j]

(∆̂[i, j])2

)2

.
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The topology reconstruction method of Fitch and Margoliash uses exhaus-
tive search among possible topologies and essentially consists of a procedure
calculating the edge weights, i.e., returning a topology Ψ∗ that minimizes

min
d

F(∆̂,∆Ψ∗,d).

Bulmer (1991) generalizes the approach by introducing an algorithm to select
optimal edge weights for a given topology when F is a generalized least-
squares function defined as

F(∆̂,∆∗) =
∑
i,j,k,l

fi,j,k,l

(
∆̂[i, j]−∆∗[i, j]

)(
∆̂[k, l]−∆∗[k, l]

)
.

Bulmer also uses exhaustive search. These exhaustive search methods are
feasible only for trees with up to 10–20 leaves. In fact, when F is the L1 or
L2 metric, then the optimization problem is NP-hard (Křivánek and Morávek
1986; Day 1987). The problem is also NP-hard for the L∞ metric, i.e., if

F(∆̂,∆∗) = max
i,j

∣∣∣∣∆̂[i, j]−∆∗[i, j]

∣∣∣∣,
shown by Agarwala et al. (1999). Agarwala et al. also show that the ap-
proximation version is difficult in that finding a tree metric ∆∗ with

L∞
(
∆̂,∆∗

)
<

9

8
min
T,d

L∞
(
∆̂,∆T,d

)
is NP-hard. On the other hand, they also describe an algorithm, called Single
Pivot, which finds a tree metric in O (|L|3) time such that

L∞
(
∆̂,∆∗

)
< 3 min

T,d
L∞

(
∆̂,∆T,d

)
.

Cohen and Farach (1997) has introduced the closely related Double Pivot
algorithm, which runs in O (|L|4) time.

4.4.4 Minimum evolution

Numerical taxonomy is concerned with finding the tree that best fits a given
estimated distance matrix ∆̂ according to some lack-of-fit measure. Another
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approach to phylogeny reconstruction is that of minimum evolution defined
as follows. For an unrooted tree T = (V,E) with edge weights d : E 7→ [0,∞]
define the sum of edge weights score as

ME(T, d) =
∑
e∈E

d(e).

ME(T, d) is also referred to as tree length. Let F be a lack-of-fit function
over |L| × |L| matrices, typically chosen to be the L2 distance. Minimum
evolution methods aim at finding the topology Ψ∗ for a given input matrix ∆̂
that minimizes

ME(Ψ∗, d∗) with d∗ = arg min
d

F(∆̂,∆Ψ∗,d∗). (4.19)

Notice the common theme of the optimality criteria in both minimum evolu-
tion and numerical taxonomy: the edge weights are fitted for a given topology,
and the fitting is evaluated by using a penalty function. The edge weights
are fitted by minimizing a lack-of-fit function on the arising tree metric. The
penalty function is the same lack-of-fit function in the case of numerical tax-
onomy. In the case of minimum evolution, the penalty function is the sum
of edge weights. The principle of minimum evolution can be traced back
to Kidd and Sgaramella-Zonta (1972) and has been extensively studied by
Rzhetsky and Nei (1992b, 1992a, 1993). In particular, Rzhetsky and Nei

(1993) prove that if the distance estimates are unbiased, i.e., if E
[
∆̂
]

equals
the true tree metric, and F is the L2 distance, then the expected value
of ME(Ψ∗, d∗) is minimal among possible topologies. In addition, they also
describe an O (|L|3) time algorithm to solve the least-squares optimization
for calculating the edge weights d∗. Gascuel (1997b) describes an O (|L|2)
algorithm for the optimization crediting Vach and Degens (1991) with in-
troducing the first algorithm to have the same asymptotical running time.
Bryant and Waddell (2000) also describe an O (|L|2) algorithm for the same
problem, along with an O (|L|3) time algorithm for weighted least-squares
fitting of the edge weights as proposed by Fitch and Margoliash (1967), and
an O (|L|4) algorithm for generalized least-squares edge weight fitting as pro-
posed by Bulmer (1991).

As with other general optimization criteria, exhaustive search among phy-
logenies to minimize ME(·) is feasible only for trees with up to 10–20 leaves.
Its NP-hardness has not been proven, although Day (1983a) proves that if
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the lack-of-fitness is a simple function forcing the tree metric to have entries
at least as large as the input matrix, i.e.,

F(∆̂,∆∗) =

0 if ∆̂[i, j] ≤∆∗[i, j] for all i, j;

∞ otherwise,

then the minimization of ME is NP-hard.
Saitou and Nei (1987) introduced their Neighbor-Joining algorithm as a

heuristic method to approximate the optimal tree albeit without pertaining
theoretical guarantees. Studier and Keppler (1988) described a version of
Neighbor-Joining running in O (|L|3) time, which was subsequently proven
to be equivalent to the original method (Gascuel 1994). Neighbor-Joining
today is the most popular distance-based algorithm. Its statistical efficiency
has been studied in many simulated experiments by Saitou, Nei, and their
colleagues (e.g., Sourdis and Nei 1988; Saitou and Imanishi 1989; Jin and
Nei 1991; Nei et al. 1998), generally finding that it is one of the most suc-
cessful topology reconstruction algorithms available. Other minimum evolu-
tion related heuristics include the algorithm of Rzhetsky and Nei (1992a),
the stepwise search algorithm of Kumar (1996), Gascuel’s BioNJ and UNJ
(1997a, 1997b, 2000). and the Weighbor algorithm of Bruno et al. (2000).

4.4.5 Statistical efficiency of distance-based algorithms

Despite the large number of evolutionary tree reconstruction algorithms pro-
duced in the last thirty-some years, theoretical investigations concerning the
algorithms’ efficiency are fairly recent. A seminal paper in this direction is
that of Farach and Kannan at the STOC conference of 1996. However, unlike
in our framework, they interpret the problem of evolutionary tree reconstruc-
tion as that of estimating the distribution of random taxon sequences.

Definition 4.4. Let P0 = (V0, E0,P0) and P1 = (V1, E1,P1) be two evolu-
tionary trees in the i. i. d. Markov model on the same set of leaves

L ⊆ V0 ∩ V1.

Let |L| = n. For every vector x ∈ A|L|, define p0(x) as the probability that a
random leaf labeling according to the distribution P0 produces x. Define p1(x)
similarly, as the probability that a random leaf labeling according to the dis-
tribution P1 produces x. The variational distance V between P0 and P1 is



CHAPTER 4. ALGORITHMS 107

defined as

V(P0,P1) =
∑

x∈A|L|

∣∣∣∣p0(x)− p1(x)

∣∣∣∣.
Let C be a subclass of the i. i. d. Markov model and let P = (V,E,P) be

a phylogeny in the class. The random taxon distribution learning problem
is that of deriving an evolutionary tree P∗ from sample sequences associated
with the leaves of P such that V(P,P∗) ≤ ε for a given ε. Farach and Kannan
(1999) prove that if C is the class of phylogenies in the Jukes-Cantor model
over a binary alphabet, then for sample lengths `� lnn,

V(P,P∗) ≤ O

 n
√

logn

minu,v∈V

∣∣∣∣SJC(u, v)
∣∣∣∣√`


with 1− o (1) probability where P∗ is the tree produced by the Single Pivot
algorithm of Agarwala et al. (1999). Ambainis et al. (1997) have extended
this result to to the i. i. d. Markov model with constant substitution rates
and time-reversibility by showing that the variational distance is bounded by

V(P,P∗) ≤ O

 n
√

logn

minu,v∈V

∣∣∣∣SL(u, v)

∣∣∣∣√`


with high probability when the Single Pivot algorithm is used with the par-
alinear distance. The sample length bounds of Farach and Kannan (1999)
and Ambainis et al. (1997) depend on the smallest similarity in the tree.
An important theoretical contribution has been made by Cryan et al. (1998)
describing a computationally efficient algorithm for the i. i. d. Markov model
over a binary alphabet, which for all ε, δ > 0, builds an evolutionary tree P∗

such that
V(P,P∗) < ε

with probability at least (1 − δ) from samples of a length polynomial in n,
(1/ε), and (1/δ).

The study of sample complexity in conjunction with topology recovery
was initiated by Steel et al. (1996) followed by a series of articles (Erdős
et al. 1999a; Erdős et al. 1999b; Erdős et al. 1997). Analyzing the success
conditions of certain distance-based algorithms, Erdős et al. (1999b) prove
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the following theorem in particular.

Theorem 4.6. (Erdős et al. 1999b.) Let ∆T,d be an |L| × |L| tree
metric for a topology T = (V,E) over the leaf set L with edge weights d.
Let dmin = mine∈E d(e). For an arbitrary |L| × |L| matrix calculated in the
preprocessing step of a distance-based algorithm, the following statements
hold.

(a) A hypothetical exact algorithm for minimizing L∞
(
∆̂, ·

)
returns T if

L∞
(
∆̂,∆T,d

)
< dmin/4.

(b) The Single Pivot and Double Pivot algorithms (Agarwala et al. 1999;

Cohen and Farach 1997) return T if L∞
(
∆̂,∆T,d

)
< dmin/8.

(c) If L∞
(
∆̂,∆T,d

)
< dmin/2, then ∆̂ is a tree metric and T fits it,

and thus algorithms using the relaxed four-point condition of Equa-
tion (4.11) to deduce quartet topologies and combining them into a tree
(e.g., Buneman 1971) return T.

A similar result on success conditions for Neighbor-Joining and related
algorithms is proven by Atteson (1997).

Theorem 4.7. (Atteson 1997.) Let ∆T,d be an |L| × |L| tree metric for
a topology T = (V,E) over the leaf set L with edge weights d. Let dmin =
mine∈E d(e). For an arbitrary |L| × |L| matrix calculated in the preprocess-

ing step of a distance-based algorithm, if L∞
(
∆̂,∆T,d

)
< dmin/2, then the

following statements hold.

(a) ADDTREE (Sattath and Tversky 1977) returns T.

(b) Neighbor-Joining (Saitou and Nei 1987) returns T.

(c) BioNJ and UNJ (Gascuel 1997a; Gascuel 1997b) return T.

Erdős et al. (1999b) and Atteson (1997) analyze the convergence rate
of the empirical Jukes-Cantor distance to obtain sample complexity bounds
based on Theorems 4.6 and 4.7. Erdős et al. (1999b) also analyze the con-
vergence rate of the LogDet metric estimation, although in a less exact way
than Theorem 4.4 and only for the empirical LogDet metric. Theorems 4.6,
4.7, and our results on the convergence of empirical distances in §3.4, pro-
duce the following general theorem on the sample complexity of a number of
distance-based algorithms.
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ADDTREE, Single Pivot,

Neighbor-Joining, Double Pivot

BioNJ,UNJ,

Buneman

JC β0 = 2
(

m
m−1

)2

β0 = 32
(

m
m−1

)2

K3P β0 = 288 β0 = 4608

Paralinear β0 = 4m
2(m−1)2

1−e−2 πminπspan β0 = 64m
2(m−1)2

1−e−2 πminπspan

Paralinear, t.r.1 β0 = 4m
2(m−1)2

1−e−2 β0 = 64m
2(m−1)2

1−e−2

LogDet, empirical β0 = 8
γ2
`,m

(m−1)2(m−1) β0 = 128
γ2
`,m

(m−1)2(m−1)

LogDet, b.c.2 β0 = 8m4

(m−1)2(m−1) β0 = 128m4

(m−1)2(m−1)

JC β1 = 1

K3P β1 = 6

Paralinear β1 = 2m2

Paralinear, t.r.1 β1 = 2m2

LogDet, empirical β1 = 1

LogDet, b.c.2 β1 = m2

1 t.r. = time-reversible; 2 b.c. = bias-corrected

Figure 4.3: Constants in the sample complexity bound of Equation (4.20)
stating that for all the distances and algorithms considered, `(δ) ≤ β0(2 lnn+
ln 1

δ
+ ln β1)/(S2

minS
2
1). Different constants are given for the paralinear dis-

tance in the i. i. d. Markov model and for the paralinear distance in the i. i. d.
Markov model with time-reversibility. For the LogDet metric, different con-
stants are shown depending on whether the empirical or the bias-corrected
estimates of Definition 4.3 are used.
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Theorem 4.8. Let P be a phylogeny in the i. i. d. Markov model with topol-
ogy Ψ = (V,E) and leaf set L of size |L| = n. Let ∆ be a tree metric
generated by Ψ with edge weights d : E 7→ [0,∞]. When ∆ is the LogDet
metric, or is derived from the Jukes-Cantor, Kimura’s three parameter, or
Lake’s paralinear distance, then the following sample complexity bounds hold
for the distance-based algorithms listed in Theorems 4.6 and 4.7. Let

S1 = 1−max
e∈E

exp
(
−d(e)

)
Smin = min

u,v∈L
exp

(
−∆[u, v]

)
.

For every confidence level δ > 0, the sample complexities of the algorithms
are bounded from above as

`(δ) ≤ β0

2 lnn + ln 1
δ

+ ln β1

S2
minS

2
1

, (4.20)

with the constants β0, β1 shown in Figure 4.3.

Proof. The proof relies on Lemma 3.11 for the Jukes-Cantor distance, on
Lemma 3.18 for Kimura’s three parameter distance, on Theorem 3.22 for the
paralinear distance, and on Theorem 4.4 for the LogDet metric to calculate
sample lengths ensuring the conditions of Theorems 4.6 and 4.7. Define
the |L| × |L| matrices S and Ŝ by S[u, v] = exp(−∆[u, v]) and Ŝ[u, v] =
exp(−∆̂[u, v]) where ∆̂ is the estimator for ∆ calculated in the preprocessing
step of a distance-based algorithm. In order to simplify the discussion, we
summarize the results concerning the convergence rates of empirical distances
and the LogDet metric estimates by stating that for every estimator there
exist constants a, b > 0 such that for all ε > 0,

P
{

Ŝ[u, v]

S[u, v]
≤ 1− ε

}
≤ a exp

(
−b`(S[u, v])2ε2

)
;

P
{

Ŝ[u, v]

S[u, v]
≥ 1 + ε

}
≤ a exp

(
−b`(S[u, v])2ε2

)
.

(∗)

Let us consider the Neighbor-Joining method. By Theorem 4.7, if each es-
timated entry ∆̂[u, v] is within (mine d(e)/2) error from the entry ∆[u, v],
then Neighbor-Joining recovers the topology correctly. Obviously, for ev-
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ery u, v ∈ L, if mine d(e) > 0,

P
{∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ ≥ mine d(e)

2

}
=P

{
∆̂[u, v]−∆[u, v] ≥ mine d(e)

2

}

+ P
{

∆̂[u, v]−∆[u, v] ≤ −mine d(e)

2

}
.

By Equation (∗),

P
{

∆̂[u, v]−∆[u, v] ≥ mine d(e)

2

}

≤ a exp

(
−b`

(
S[u, v]

)2(
1−

√
1− S1

)2
)

≤ a exp

(
− b

4
`
(
S[u, v]

)2

S2
1

)
.

Similarly,

P
{

∆̂[u, v]−∆[u, v] ≤ −mine d(e)

2

}

≤ a exp

(
−b`

(
S[u, v]

)2(
(1− S1)−1/2 − 1

)2
)

≤ a exp

(
− b

4
`
(
S[u, v]

)2

S2
1

)
.

Consequently,

P
{∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ ≥ mine d(e)

2

}
≤ 2a exp

(
− b

4
`
(
S[u, v]

)2

S2
1

)

≤ 2a exp

(
− b

4
`S2

minS
2
1

)
.
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Hence

P
{

max
u,v

∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ ≥ mine d(e)

2

}

≤
∑
u,v

P
{∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ ≥ mine d(e)

2

}
≤ n2a exp

(
− b

4
`S2

minS
2
1

)
.

Therefore, if

` ≥ 4
2 lnn + ln(1/δ) + ln a

bS2
minS

2
1

, (∗∗)

then

P
{

max
u,v

∣∣∣∣∆̂[u, v]−∆[u, v]
∣∣∣∣ ≥ mine d(e)

2

}
≤ 1

δ
;

i.e., Neighbor-Joining is successful with at least (1 − δ) probability. Fur-

thermore, if L∞
(
∆̂,∆

)
< mine d(e)/2, then ADDTREE, BioNJ, UNJ and

Buneman’s algorithm also succeed. Sample complexity for the Single Pivot
and Double Pivot algorithms is bounded analogously, replacing the sample
bound of Equation (∗∗) with

` ≥ 64
2 lnn+ ln(1/δ) + ln a

bS2
minS

2
1

,

in order to attain L∞
(
∆̂,∆

)
< mine d(e)/8 with probability at least (1−δ).

The constants in Figure 4.3 are obtained by substituting the values for a
and b with ones in our convergence rate results.

Definition 4.5. Let P be a phylogeny in the i. i. d. Markov model with
topology Ψ = (V,E) and leaf set L ⊂ V . Let ∆ be a tree metric generated
by Ψ with positive finite edge lengths d : E 7→ (0,∞). For every ` > 0, let

∆̂
(`)

be an estimator for ∆ calculated from sample sequences of length `,
associated with the leaves. For all ` > 0, u, v ∈ L, define

Suv = exp
(
−∆[u, v]

)
;

Ŝ(`)
uv = exp

(
−∆̂

(`)
[u, v]

)
.
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The estimator
{
∆̂

(`)
}

is (a, b)-regular if and only if there exist a, b > 0, such

that for every sample length ` > 0, leaves u, v ∈ L, and ε > 0,

P
{
Ŝ(`)
uv

Suv
≤ 1− ε

}
≤ a exp

(
−b`S2

uvε
2
)

;

P
{
Ŝ(`)
uv

Suv
≥ 1 + ε

}
≤ a exp

(
−b`S2

uvε
2
)
.

Remark. We omit the upper index (`) on the sample length if it is obvious
from the context.

With Definition 4.5, Theorem 4.8 can be roughly stated as a result on
the sample complexity of distance-based algorithms using (a, b)-regular tree
metric estimators.

4.4.6 Sample complexity and tree radius

The sample complexity bounds of Theorem 4.8 are finite only if the tree
metric has positive finite entries. For evolutionary distance metrics this
corresponds to positive finite distances between tree nodes, which in turn
implies that for the corresponding similarity S, 0 < |S(u, v)| < 1 for all tree
nodes u, v. Equivalently, there must exist S0, S1 ∈ (0, 1) such that for every
edge uv,

S0 ≤
∣∣∣∣S(u, v)

∣∣∣∣ ≤ 1− S1. (4.21)

These bounds enter into our sample complexity results in Equation (4.20)
if we recognize that Smin ≥ Sk0 where k is the maximum path length in the
tree. The boundedness of distances and similarities on the edges is both nec-
essary and meaningful. If D(u, v) = ∞ on an edge uv, then for every node
pair u′, v′ for which the path between u′ and v′ in Ψ(P) includes the edge uv,
D(u′, v′) =∞. In that case the edge uv splits the nodes into two sets U and V
such that the path between every u′ ∈ U and every v′ ∈ V includes uv. The
evolutionary relationships between nodes of U and V cannot then be deduced
by any distance-based algorithm (see example in Figure 4.4). On the other
hand, D(u, v) = 0 on an edge uv also produces unresolvable relationships, as
Figure 4.4 illustrates. Moreover, D(u, v) = 0 corresponds to |det Muv| = 1 in
the i. i. d. Markov model for all the evolutionary distance functions consid-
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T1 T2

T3

u

v

T1

T2 T3

u

v

Figure 4.4: If the distance D(u, v) = 0 on an edge uv, then the evolu-
tionary relationships in the tree cannot be deduced unambiguously since the
two topologies shown lead to the same pairwise distances between nodes. The
ambiguity also arises if D(u, v) = ∞ allowing, among others, the same two
topologies.

ered, corresponding to the case in which Muv is a permutation matrix, which
is nonsense for DNA or protein sequences in a molecular biology context.
Chang (1996) proves that when P = (V,E,P) is an evolutionary tree in the
i. i. d. Markov model, the topology Ψ(P) is determined by P if and only if
for every edge uv ∈ E, det Muv 6= 0,±1.

Let us assume thus that the similarities are bounded as in Equation (4.21).
Due to the multiplicativity of similarities, the similarity between two nodes
may be exponentially small in the path length between them. In particular, if
the tree is unbalanced, then Smin in Equation (4.20) becomes exponentially
small in the number of leaves n. If there exist two leaves u, v with path
length k between them in Ψ(P), then Smin ≥ Sk0 . The lower bound is realized
when all similarities equal S0 between endpoints of the edges along the path.
A distance-based algorithm that depends on the accurate estimation of such
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small similarities requires exponential sample lengths to recover the topology.
In this light observe that Theorem 4.8 does not prove the statistical efficiency
of any distance-based algorithm. For statistical efficiency it is important to
make sure that only closely related nodes are used with large similarities, or
equivalently, with small distances. The limits of that effort are captured via
the following definition.

Definition 4.6. The outer radius %out(P) is defined as the smallest number
such that any two leaves in Ψ(P) are connected with a tree path containing
at most 2%out(P) edges. The inner radius %in(P) is defined as the smallest
number such that for every edge e ∈ Ψ(P) there is a path from each endpoint
to a leaf with at most %in(P) edges that does not go through e.

Remark. The value 2%out(P) is commonly referred to as the diameter
of the tree, but we choose this unusual way of presentation to emphasize the
parallels and differences between inner and outer radii.

It is trivial that 2%out(P) ≥ %in(P). Moreover, while %out(P) can be as large
as (n/2) for an evolutionary tree with n leaves, %in(P) is always logarithmic
in n.

Fact 4.9. The inner radius of an evolutionary tree P with n leaves is bounded
from above as

%in(P) ≤ 1 + blog2(n− 1)c.

Proof. The lemma is a result of the fact that the minimal topology for a
fixed %in is the one consisting of a single edge connected to the root of a full
binary tree with %in levels.

In fact, the inner and outer radii differ in their magnitudes even in average
cases as analyzed by Erdős et al. (1999a). The distributions considered
are uniform distributions of topologies and the Yule-Harding distribution
(Harding 1971; Brown 1994). The Yule-Harding distribution arises in the
following random tree construction mechanism. Let L = {u1, u2, . . . , un}
be a set of leaves. Generate a random permutation 〈ui1, ui2, . . . , uin〉 of the
leaves and connect ui1 to ui2 with a single edge. The remaining leaves are
added to the tree in the order they appear in the permutation. At step k,
leaf uik is connected to the tree built thus far by selecting a leaf uniformly
from ui1, . . . , uik−1

, and connecting uik to the incident edge.



CHAPTER 4. ALGORITHMS 116

Theorem 4.10. (Erdős et al. 1999a; Erdős et al. 1999b) For an
evolutionary tree P with n leaves and random rooted topology selected with
uniform probabilities,

%in(P) ≤ (2 + o(1)) log2 log2(2n)

with probability 1− o(1), and for every ε > 0,

%out(P) ≥ ε
√
n

with probability 1− O (ε2).
For an evolutionary tree P with n leaves and a random topology selected

under the Yule-Harding distribution,

%in(P) ≤ (1 + o(1)) log2 log2(n)

with probability 1− o(1), and

%out(P) = Ω (log n)

with probability 1− o(1).

Using Definition 4.6, the sample complexity bounds of Equation (4.20)
can be rewritten as

`(δ) ≤ β0
2 lnn+ ln(1/δ) + ln β1

S
4%out(P)
0 S2

1

.

The bound is exponential in the worst case. Moreover, it is exponential for
almost all trees under the uniform topology distribution. Noting the lack
of provable statistical efficiency of existing distance-based algorithms, Erdős
et al. propose a family of statistically efficient algorithms, known as Short
Quartet Methods (Erdős et al. 1998; Erdős et al. 1997; Erdős et al. 1999a;
Erdős et al. 1999b). They show that sample complexity of their algorithms
are bounded by

`(δ) ≤ β0
2 lnn+ ln(1/δ) + ln β1

S
4%in(P)+6
0 S2

1

, (4.22)

with some constants β0, β1 in the Jukes-Cantor model, and in the i. i. d.
Markov model with the empirical LogDet metric. Using their proofs for these
particular cases with our results on empirical distances, it can be shown that
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the same bounds are valid for Kimura’s three parameter distance, Lake’s
paralinear distance and our bias-corrected LogDet metric.

The statistical efficiency of the Short Quartet Methods is matched with
experimental success in simulations over caterpillar trees, in which each inner
node has at least one leaf child, and thus %out = n and %in = 3 (Erdős
et al. 1997). On more balanced, biologically motivated trees, however, they
perform poorly (Huson et al. 1999). In the next chapter we describe a
family of statistically efficient algorithms with sample complexity similar to
Equation (4.22). The theoretical efficiency is matched with high success rates
in simulated experiments on theoretically interesting as well as biologically
motivated large trees with high mutation probabilities.

4.A Technical proofs

Proof of Lemma 4.5. Assume that all entries of J1 and J2 are finite,
since otherwise the lemma is trivial. We prove Equation (4.18b) first. Define
the matrix J as follows.

J[i, j] =

J1[i, j] + ε if i = i2 and j = j2;

J1[i, j] otherwise.

We claim that

|det J− det J1| ≤ ε(m− 1)−(m−1) (∗)
|det J− det J2| ≤ ε(m− 1)−(m−1). (∗∗)

Expanding det J and det J1 by row i2,

|det J− det J1| ≤ ε|det J′|, (∗∗∗)

where J′ is the matrix obtained from J1 by deleting row i2 and column j2.
The matrix J′ has only non-negative entries, and∑

i,j

J′[i, j] ≤ 1.
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Since the arithmetic mean bounds the geometric mean,

|det J′| ≤ perm J′

≤
m−1∏
i=1

(
m−1∑
j=1

J′[i, j]

)
≤
 1

m− 1

m−1∑
i=1

(
m−1∑
j=1

J′[i, j]

)m−1

≤ (m− 1)−(m−1).

Hence Equation (∗) holds by Equation (∗∗∗). Equation (∗∗) is proven in the
same manner.

By Equations (∗) and (∗∗),

|det J1 − det J2| ≤ |det J− det J1|+ |det J− det J2|
≤ 2ε(m− 1)−(m−1),

proving Equation (4.18b).
We derive Equation (4.18a) by repeated applications of Equation (4.18b).

Define the series of matrices J1 = J′0,J
′
1, . . . recursively by the following

algorithm. The matrix J′k+1 is derived from the matrix J′k unless J′k = J2

using the procedure below.

1. Select an entry [i, j] for which
∣∣∣∣J′k[i, j]− J2[i, j]

∣∣∣∣ is maximal.

2. If J′k[i, j] > J2[i, j], then select an entry [i′, j′] with J′k[i
′, j′] < J2[i′, j′].

Otherwise select an entry [i′, j′] with J′k[i
′, j′] > J2[i′, j′].

3. Let J′k+1 ← J′k and set

J′k+1[i, j]← J2[i, j]

J′k+1[i′, j′]← J′k[i
′, j′] +

(
J′k[i, j]− J2[i, j]

)
.

Obviously, ∑
i,j

J′k[i, j] =
∑
i,j

J1[i, j] = 1 =
∑
i,j

J2[i, j].

Therefore, in each iteration step k, J′k must differ from J2 in at least two
entries. By symmetry, we may assume that J′k[i, j] > J2[i, j] in the k-
th iteration at Step (1). Then there must exist an entry [i′, j′] for which
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J′k[i
′, j′] < J2[i′, j′] since the entries add up to one. Thus each iteration step

can be carried out. Furthermore, the number of entries in which J′k and J2

differ decreases by at least one in each iteration. Consequently the algo-
rithm finishes in at most m2 steps. (In fact, it finishes in at most (m2 − 1)
steps since in the last iteration at least two entries are set equal to the cor-
responding entries in J2.) Since in each iteration step an entry with the

maximum

∣∣∣∣J′k[i, j]− J2[i, j]

∣∣∣∣ is selected,

max
i,j

∣∣∣∣J′k[i, j]− J2[i, j]
∣∣∣∣ ≤ max

i,j

∣∣∣∣J′k−1[i, j]− J2[i, j]
∣∣∣∣

for all k > 0. Hence by Equation (4.18b),

|det J1 − det J2| ≤
∑
k≥0

|det J′k+1 − det J′k|

≤
∑
k≥0

(
2(m− 1)−(m−1) max

i,j

∣∣∣∣J′k[i, j]− J2[i, j]

∣∣∣∣)

≤ 2m2(m− 1)−(m−1) max
i,j

∣∣∣∣J1[i, j]− J2[i, j]
∣∣∣∣,

which is tantamount to Equation (4.18a).



Chapter 5

Harmonic Greedy Triplets

5.1 Introduction

Chapter 4 reviewed existing topology reconstruction algorithms with spe-
cial emphasis on efficiency. In particular we pointed out that computational
difficulties are frequently encountered in conjunction with algorithms based
on optimization principles, such as maximum likelihood methods, character-
based methods, and those distance-based methods operating on principles
of numerical taxonomy or minimum evolution. Nei et al. (1998) and Gas-
cuel (2000) argue along the same lines, also criticizing the lack of statistical
efficiency of optimization algorithms based on performance in simulated ex-
periments. This chapter introduces a family of algorithms designed with the
goal of efficient topology recovery in mind. We avoid using penalty functions
in the design process, and instead evaluate fundamental ideas of topology
recovery by applying our results on the convergence speed of evolutionary
distances. The algorithms use the simplest structures possible to reconstruct
the topologies, namely, triplets of leaves. The rest of this section introduces
basic notions and techniques for topology recovery from triplets. From §5.2
on, we focus on our novel algorithms.

5.1.1 Triplets

Let T be an unrooted tree, typically the topology of a phylogeny. A triplet uvw
consists of three distinct leaves u, v, and w of T. There is an inner node o
at which the pairwise paths between the leaves intersect, as shown in Fig-
ure 5.1. The node o is called the center of uvw, and the triplet uvw defines

120



CHAPTER 5. HARMONIC GREEDY TRIPLETS 121

u v

w

o

u

v w

o

Figure 5.1: The triplet uvw with its center o.

the node o. Note that a star is formed by the edges on the paths between o
and the three leaves in uvw. Triplets of an evolutionary tree are the triplets
of its topology. Chang (1996) proves that triplets are the simplest substruc-
tures identifying an evolutionary tree in the i. i. d. Markov model as stated
by the next theorem.

Theorem 5.1. (Chang 1996) Let P = (V,E,P) be a phylogeny in the
i. i. d. Markov model with leaf set L ⊂ V . Assume that each edge mutation
matrix Me belongs to a matrix class M which is reconstructible from rows
(see §2.5.6), and det Me 6= 0,±1. Define the triplet label distribution for

each triplet uvw as the joint distribution of
〈
ξ(u), ξ(v), ξ(w)

〉
. The set of

triplet label distributions determine the topology Ψ(P) and the distribution P.

The set of pairwise joint distributions
{
Puv : u, v ∈ L

}
does not necessarily

determine P.

Early results of Smolenskĭı (1962), Hakimi and Yau (1964), and Farris
(1972) show that triplets can serve as basic building blocks to recover a



CHAPTER 5. HARMONIC GREEDY TRIPLETS 122

tree T that fits a given tree metric ∆ with edge weights d. Let T = (V,E)
be an unrooted tree with edge weights d : E 7→ [0,∞] and denote the set of
leaves by L. Let ∆ be the corresponding tree metric, i.e., the |L|×|L| matrix
whose rows and columns are indexed by the leaves in such a way that for all
u, v ∈ L, ∆[u, v] is the sum of edge weights on the path between u and v.
For all nodes u, v ∈ V define ∆uv as the sum of edge weights between u
and v. Obviously, ∆uv = ∆vu. If u and v are leaves, then ∆uv = ∆[u, v]. By
definition, for every triplet uvw with center o,

∆uv = ∆[u, v] = ∆uo + ∆vo;

∆uw = ∆[u, w] = ∆uo + ∆wo;

∆vw = ∆[v, w] = ∆vo + ∆wo.

Hence if ∆[u, v], ∆[u, w], and ∆[v, w] are finite, then

∆uo = ∆ou =
∆[u, v] + ∆[u, w]−∆[v, w]

2
; (5.1a)

∆vo = ∆ov =
∆[u, v] + ∆[v, w]−∆[u, w]

2
; (5.1b)

∆wo = ∆ow =
∆[u, w] + ∆[v, w]−∆[u, v]

2
. (5.1c)

In particular, if T is the topology of a phylogeny P with distance metric D
and the evolutionary distances in the tree are finite, then

D(u, o) =
D(u, v) +D(u, w)−D(v, w)

2
; (5.2a)

D(v, o) =
D(u, v) +D(v, w)−D(u, w)

2
; (5.2b)

D(w, o) =
D(u, w) +D(v, w)−D(u, v)

2
. (5.2c)

For brevity’s sake, we use the notation

TC(∆, u, vw) =
∆[u, v] + ∆[u, w]−∆[v, w]

2
. (5.3)

Notice that TC(∆, u, vw) = TC(∆, u, wv). Equation (5.1) can be written
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with this notation as

∆uo = ∆ou = TC(∆, u, vw);

∆vo = ∆ov = TC(∆, v, uw);

∆wo = ∆ow = TC(∆, w, uv).

Equation (5.1) shows how to calculate ∆z′z if exactly one of z, z′ is a leaf.
If both of them are inner nodes, then by taking a triplet uv′w′ with center z′

and a triplet uvw with center z,

∆z′z =
∣∣∣∣TC(∆, u, v′w′)− TC(∆, u, vw)

∣∣∣∣.
This equation suggests a simple algorithm for recovering trees from tree met-
rics, or building topologies from distances between leaves. The algorithm is
explicitly described by Waterman et al. (1977), and its basic idea can be
traced back to Smolenskĭı (1962) and Farris (1970, 1972). Figure 5.2 shows
a very similar algorithm, called Naive-Fit-Tree. Let L = {u1, . . . , un} be
a set of leaves with n ≥ 2, and let ∆ be a tree metric over L with pos-
itive finite entries outside the diagonal. The Naive-Fit-Tree algorithm
outputs a tree T = (V,E) with L ⊂ V and a |V | × |V | matrix ∆∗ with
rows and columns indexed by the nodes of T. For each leaf pair u, v ∈ L,
∆∗[u, v] = ∆[u, v] and for every edge w′w ∈ E, the entry ∆∗[w′, w] equals
the edge weight. For all nodes u, v, ∆∗[u, v] is the sum of edge weights along
the path between u and v. The algorithm adds leaves and inner nodes iter-
atively by applying Equation (5.1). After initializing T with two leaves, in
each step k = 3, . . . , n, the algorithm adds one leaf and one new inner node.
Lines N1–N2 initialize T as a tree consisting of two nodes. Line N6 selects
the edge vw on which the center of the triplet uiujuk falls. The center is
on the path between ui and uj in T, and it may be the node v or a new
inner node on edge vw. Line N7 tests whether it is a new node, and if so,
it exits the loop over i and j. Lines N9–N10 add the leaf uk and a new
inner node z to T. Line N11 sets the weights of the newly created edges.
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Algorithm Naive-Fit-Tree

Input: leaf set L = {u1, . . . , un} with n ≥ 2,
tree metric ∆ over L

Output: unrooted tree T = (V,E), matrix ∆∗.

N1 Set V ← {u1, u2}, E ← {u1u2}.
N2 Set ∆∗[u1, u2],∆∗[u2, u1]←∆[u1, u2]

N3 for each k = 3, . . . , n do

N4 for each i, j : 1 ≤ i < j < n do

N5 Set d← TC(∆, ui, ujuk).

N6 Let vw be the edge on the path between ui and uj such that
∆∗[ui, v] ≤ d and ∆∗[ui, w] > d.

N7 if ∆∗[ui, v] < d then exit from the for loop.

N8 Create new inner node z.

N9 Set V ← V ∪ {z, uk}.
N10 Set E ← (E − {vw}) ∪ {vz, wz, ukz}.
N11 Set ∆∗[v, z],∆∗[z, v]← d−∆∗[ui, v].

Set ∆∗[w, z],∆∗[z, w]← ∆∗[ui, w]− d.
Set ∆∗[uk, z],∆

∗[z, uk]← TC(∆, uk, uiuj).

N12 Update ∆∗ in rows and columns corresponding to z.

N13 Output T and ∆∗.

Figure 5.2: The Naive-Fit-Tree algorithm that builds a tree T fitting a
given tree metric ∆. The algorithm differs only in minor details from that
of Waterman et al. (1977).

Vv Vwv z w

uk

The actions performed by Line N12
are the following. The nodes of V are
grouped as

V = Vv ∪ Vw ∪ {z, uk, v, w}

so that for all nodes v′ ∈ Vv, w
′ ∈

Vw, the path between v′ and w′ goes
through v and w.
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For each node v′ ∈ Vv, we set

∆∗[v′, z],∆∗[z, v′]← ∆∗[v′, v] + ∆∗[v, z];

∆∗[v′, uk],∆
∗[uk, v

′]← ∆∗[v′, z] + ∆∗[z, uk].

For each node w′ ∈ Vw, we set

∆∗[w′, z],∆∗[z, w′]← ∆∗[w′, w] + ∆∗[u, z];

∆∗[w′, uk],∆
∗[uk, w

′]← ∆∗[w′, z] + ∆∗[z, uk].

An alternative solution to calculating all entries of ∆∗ is keeping track only
of the edge weights and using an oracle-like procedure that computes other
entries on request as the sum of edge weights on a path. This alternative
solution is preferred by Waterman et al. (1977) but otherwise their algorithm
is identical to Naive-Fit-Tree. It is not in our interest in the present
study to prove the correctness of Naive-Fit-Tree; Waterman et al. (1977)
provide the details.

5.1.2 Fitting a tree metric by using triplets

The Naive-Fit-Tree algorithm runs in O (n4) time since in each of the
(n−2) iterations of Line N3, the number of (i, j) pairs inspected is O (n2), and
for each pair, O (n) edges are examined in Line N6. Waterman et al. (1977)
do not discuss how to implement the algorithm more efficiently. Various
possibilities exist to accelerate the algorithm. A simple way of reducing the
time complexity is to restrict the set of (i, j) pairs in each iteration to those
with an arbitrarily fixed i. For example, with i = 1 across all iterations,
the running time is O (n3). We choose a different course to attain O (n2)
time complexity for an “offspring” of Naive-Fit-Tree. Other algorithms
with O (n2) time complexity are discussed among others by Hein (1989),
Culberson and Rudnicki (1989), Bandelt (1990), and Gusfield (1997). Our
implementation stores T as a vector T in which each entry represents a node.
The entries T[1], . . . , T[n] correspond to the leaves u1, . . . , un, respectively.
The entries T[n+1], . . . , T[2n−2] correspond to the inner nodes. For simplicity
we assume that uk = k for every leaf and the node set of T is V = {1, . . . , 2n−
2}. In this way for every node u, the corresponding entry is T[u]. In order to
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Procedure Add-On-Edge

Input: tree structure T, non-root node z, new leaf w, new inner node
i.

Output: none (updates T).

A1 Set z′ ← T[z].parent.

A2 Set T[z].parent ← i and T[w].parent← i.

A3 Set T[w].left, T[w].right← null.

A4 if z is left child . (i.e, T[z′].left = z)
then set T[z′].left← i, T[i].left← z, T[i].right← w.
else set T[z′].right← i, T[i].right← z, T[i].left← w.

A5 Set T[i].added, T[z].added← true.

Figure 5.3: The Add-On-Edge procedure, which adds a new inner node
i on the edge between z and its parent, and connects the leaf w to i.

follow which nodes are added, we maintain the attributes

T[i].added ∈ {true, false}

for i = 1, 2, . . . , 2n− 2 in the algorithm.
In order to test quickly whether an edge or inner node is on the path

between two leaves, we store T rooted at u1. For each entry T[i], the attributes

T[i].parent, T[i].left, T[i].right

define the parent-child relationships in T rooted at u1. Notice that every
edge z′z of T can be specified by z with z′ = T[z].parent. The addition of
a new inner node and a leaf is performed by the Add-On-Edge procedure
described in Figure 5.3. Let us introduce the notations

u↙z, z↘v,
w

↑
z
,

meaning that in the rooted tree represented by T, node u is in the left subtree
of z, node v is in the right subtree of z, and w is not in the subtree rooted
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Procedure Set-Length

Input: tree structure T, non-root node z, new leaf w, new inner node
i, edge lengths ∆∗i , ∆∗z, ∆∗w.

Output: none (updates T).

L1 Set T[z].length← ∆∗z, T[w].length← ∆∗w, and T[i].length← ∆∗i .

Figure 5.4: The Set-Length procedure, which simply sets the new edge
lengths after Add-On-Edge(T, z, w, i) is called.

at z. These relationships are preserved by the Add-On-Edge procedure.
We omit tracking all entries of ∆∗ and store only the edge weights in an

attribute
T[i].length

that contains the weight of the edge between i and its parent. The edge
weights are updated by the Set-Length procedure described in Figure 5.4,
which is called every time a new inner node and a leaf are added by the
Add-On-Edge procedure.

Finally, we keep track of defining triplets for inner nodes used by the
algorithm via an attribute T[i].def comprising the fields

T[i].def .left, T[i].def .right, T[i].def .up

for each inner node i. The fields of the attribute specify the directions in T

so that if u = T[i].def .left, v = T[i].def .right, and w = T[i].def .up, then

u↙i, i↘v,
w

↑
i
.

The proper upkeep of the T[i].def attributes is ensured by the Set-Deftrip

procedure described in Figure 5.5, which is called every time a new inner
node and a leaf are added by the Add-On-Edge procedure.

The Fit-Tree algorithm is described in Figure 5.7. Its running time is
O (n2) and it uses O (n) additional space to the one occupied by the tree
metric ∆. Line T1 initializes the tree comprising two leaves. Each iteration
on w adds the new leaf w and a new inner node i. The loop of Lines T3
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Procedure Set-Deftrip

Input: tree structure T, non-root node z, triplet uvw, new inner node
i.

Output: none (updates T).

D1 Set T[i].def .up← u.

D2 if z is left child

D3 then set T[i].def .left← v, T[i].def .right← w;

D4 else set T[i].def .right← w, T[i].def .left← v.

Figure 5.5: The Set-Deftrip procedure. After
Add-On-Edge(T, z, w, i) is called to add the new inner node i on
the edge between z and its parent, this procedure sets the .def attribute for
the node i. It is assumed that u is a leaf of the unrooted tree represented by

T with
u

↑
z
, and v is a leaf such that if z is the left child of its parent, then

v↙z, otherwise z↘v.

Procedure Init-Tree

Input: tree structure T, tree metric ∆, leaves u, v

Output: none (updates T)

I1 for each i = 1, . . . , 2n− 2 do set T[i].added← false.

I2 Set T[u].parent← null, T[u].left← v, T[u].right← null.

I3 Set T[v].parent← u, T[v].left← null, T[v].right← null.

I4 Set T[v].length←∆[u, v].

I5 Set T[u].added, T[v].added← true.

Figure 5.6: The Init-Tree procedure initializes T to contain two leaves
u and v and sets the edge length between them to the corresponding entry
in the tree metric ∆.
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Algorithm Fit-Tree

Input: tree metric ∆.

Output: tree structure T.

T1 Init-Tree(T,∆, 1, 2). . ( T consists of nodes {1, 2}.)
T2 for each w = 3, . . . , n do . (iteration on the remaining leaves)

T3 for each z = 2, . . . , 2n− 2 with T[z].added do

T4 Set z′ ← T[z].parent.

T5 if z′ is the root . (i.e, T[z′].parent = null)

T6 then set u← z′;

T7 else set u← T[z′].def.up.

T8 if z is a leaf . (i.e, T[z].left = null)

T9 then set v ← z, d′ ← 0;

T10 else v ← T[z].def .left, w′ ← T[z].def .right, d′ ← TC(∆, u, vw′).

T11 Set d← TC(∆, u, vw).

T12 if d < d′ and d′ − d < T[z].length

T13 then exit for loop. . (uvw defines new node on z′z)

T14 Set i← n+ w − 2. . (index for new inner node)

T15 Add-On-Edge(T, z, w, i).

T16 Set-Length(T, zw, i, T[z].length− (d′− d), d′− d,TC(∆, w, uv)).

T17 Set-Deftrip(T, z, uvw, i).

T18 Output T.

Figure 5.7: The Fit-Tree algorithm builds a weighted tree represented
in the tree data structure T from a tree metric ∆.

finds an edge z′z on which i can be added. The notation is illustrated in
Figure 5.8, which also illustrates why the test of Line T12 correctly identifies
new inner nodes. Lines T14–T17 update T.
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Figure 5.8: Notation for Lines T4–T12 of the Fit-Tree procedure. The
upper picture illustrates the selection of the leaves u, v, w,and w′. The lower
picture shows the relationships between d, d′, and T[z].length in the test of
Line T12.
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5.2 The Basic-HGT algorithm

5.2.1 Outline of Basic-HGT

In the rest of this chapter we describe a family of novel distance based algo-
rithms, based on a principle, which we call that of “harmonic greedy triplets.”
We reported the application of this principle in (Csűrös and Kao 1999). The
principle originates from the ideas leading to the Fit-Tree algorithm with
two sets of differences. First, since we seek to recover the topology from an
estimated tree metric, some precautions are taken in conjunction with deter-
mining triplet centers from estimated values using Equation (5.1). Secondly,
the pool of candidate triplets for adding a new node on an edge is larger than
the one used in the Fit-Tree algorithm. In order to fix the notation for
the ensuing discussion, we first describe the specification for the Harmonic
Greedy Triplets algorithms.

Input. The input to the algorithms is an estimated tree metric ∆̂ over the
leaf set L = {1, 2, . . . , n} with n ≥ 3. The matrix ∆̂ is an estimator for a
tree metric ∆ generated by an evolutionary tree topology Ψ = (V,E) with
positive finite edge weights d : E 7→ (0,∞).

Output. The output of the algorithms is a tree data structure T described
in §5.1 representing an unrooted tree Ψ∗ = (V ∗, E∗) with edge weights
d∗ : E∗ 7→ (0,∞).

Success condition. The algorithms are successful if Ψ∗ and Ψ are topo-
logically equivalent over the leaf set L, i.e., if

Ψ∗ ∼
L

Ψ.

As in §5.1.1, let ∆uv denote the sum of edge weights on the path between
arbitrary nodes u, v ∈ V . Similarly to Definition 4.5, define

Suv = exp
(
−∆uv

)
(5.4a)
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for all nodes u, v ∈ V , and

Ŝuv = exp
(
−∆̂[u, v]

)
(5.4b)

for all leaves u, v ∈ L. Our discussions related to the accuracy of ∆̂ assume
that it is an (a, b)-regular estimator for ∆ calculated from sample sequences
of length ` (see Definition 4.5), i.e, that there exist a, b > 0 such that for all
` > 0, leaves u, v ∈ L, and ε > 0,

P
{
Ŝuv
Suv
≤ 1− ε

}
≤ a exp

(
−b`S2

uvε
2
)

; (5.5a)

P
{
Ŝuv
Suv
≥ 1 + ε

}
≤ a exp

(
−b`S2

uvε
2
)
. (5.5b)

The formula

TC(∆, u, vw) =
∆[u, v] + ∆[u, w]−∆[v, w]

2

is employed in the Fit-Tree algorithm to compare triplet centers. The
Harmonic Greedy Triplets algorithms must use an estimated tree metric,
and employ the formula TC(∆̂, u, vw). Consequently, we are interested in
the difference between TC(∆, u, vw) and TC(∆̂, u, vw). The next lemma
provides a bound on that difference.

Definition 5.1. For every triplet uvw, define the average triplet size

Suvw =
3

e∆[u,v] + e∆[u,w] + e∆[v,w]

=
3

S−1
uv + S−1

uw + S−1
vw

.
(5.6)

Lemma 5.2. If ∆̂ is (a, b)-regular for some a, b > 0, then for every triplet
uvw and 0 < ε < 1,

P
{

TC(∆̂, u, vw)− TC(∆, u, vw) ≥ − ln(1− ε)
2

}
≤ 3a exp

(
− b

9
`S2

uvwε
2

)
.

(5.7)

Proof. See at end of chapter.
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Remark. A similar bound can be obtained in an easier way without ex-
plaining the appearance of the harmonic average. Since∣∣∣∣TC(∆̂, u, vw)− TC(∆, u, vw)

∣∣∣∣
≤

∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣+ ∣∣∣∣∆̂[u, w]−∆[u, w]

∣∣∣∣+ ∣∣∣∣∆̂[v, w]−∆[v, w]

∣∣∣∣
2

,

P
{∣∣∣∣TC(∆̂, u, vw)− TC(∆, u, vw)

∣∣∣∣ ≥ − ln(1− ε)
2

}

≤P
{∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ ≥ − ln(1− ε)
3

}

+ P
{∣∣∣∣∆̂[u, w]−∆[u, w]

∣∣∣∣ ≥ − ln(1− ε)
3

}

+ P
{∣∣∣∣∆̂[v, w]−∆[v, w]

∣∣∣∣ ≥ − ln(1− ε)
3

}
.

(∗)

Since Suv > 0 for u 6= v,

Smin(u, v, w) = min
{
Suv, Suw, Svw

}
≥ Suvw

3
.

Subsequently, using Equations (∗) and (5.5),

P
{∣∣∣∣TC(∆̂, u, vw)− TC(∆, u, vw)

∣∣∣∣ ≥ − ln(1− ε)
2

}

≤ 6a exp

(
− b

9
`
(
Smin(u, v, w)

)2

ε2
)

≤ 6a exp

(
− b

81
`S2

uvwε
2

) (5.8)

The use of harmonic average in the average triplet size offers a number of
inequalities involving similarities between triplet members. The next lemma
shows a few of them, which we use in the analysis of the Harmonic Greedy
Triplets algorithms.
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Lemma 5.3. Let o be the center of triplet uvw. If Suo ≤ Svo ≤ Swo, then
Suv ≤ Suw ≤ Svw, Suw ≥ 2

3
Suvw, and S2

vo ≥ 1
3
Suvw.

Proof. The lemma follows from the definition of Suvw and simple algebra.

Lemma 5.2 suggests that in order to minimize the error in calculating
triplet centers, we should favor triplets with large average triplet scores. The
Harmonic Greedy Triplets principle is that of employing a greedy selection
based on the estimated triplet score

Ŝuvw =
3

e∆̂[u,v] + e∆̂[u,w] + e∆̂[v,w]

=
3

Ŝ−1
uv + Ŝ−1

uw + Ŝ−1
vw

.

During the course of building a hypothetical topology Ψ∗, the Harmonic
Greedy Triplets algorithms maintain a set R of candidate triplet-edge pairs.
Each element of R is a pair of 〈uvw, e〉 where e is an edge in the partially
built Ψ∗, and the triplet uvw is such that u, v ∈ V ∗, w 6∈ V ∗, and the center
of uvw falls onto e. The algorithms have the following general outline.

1. Initialize Ψ∗ as a triplet uvw with center o.

2. Initialize the candidate set R.

3. repeat

4. Select a pair 〈uvw, e〉 from R with maximal Ŝuvw.

5. Add a new inner node on e connecting w to Ψ∗.

6. Delete all pairs from R containing either w or e.

7. Update R with respect to the newly created edges.

8. until all leaves are added.

The algorithms in the family differ mainly in their definitions of candidate
pairs, i.e., in Lines 2, 6, and 7. The following definitions offer possible choices
for candidate pairs.
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Definition 5.2. Let T be the tree data structure representing the hypothetical
topology Ψ∗ during the execution of the algorithm. For each node u ∈ Ψ∗,
define the set

def(u) =


{u} if u is a leaf in Ψ∗;{
T[u].def.up, T[u].def.left, T[u].def.right

}
if u is an inner node.

A pair 〈uvw, z′z〉 is relevant if and only if the following hold.

(i) uvw is triplet with u, v ∈ Ψ∗, w 6∈ Ψ∗, i.e, T[u].added = T[v].added =
true, T[w].added = false.

(ii) z′z is an edge in Ψ∗ with T[z].parent = z′.

(iii) The triplet uvw shares leaves with the defining triplets for z and z′, i.e,
def(z) ∩ {u, v} 6= ∅ and def(z′) ∩ {u, v} 6= ∅.

(iv) The edge z′z lies on the path between u and v in Ψ∗.

A pair 〈uvw, z′z〉 is strongly relevant if and only if the following hold.

(i) 〈uvw, z′z〉 is a relevant pair.

(ii) u ∈ def(z) and v ∈ def(z′).

Calculating the relevant pairs for a given edge e and new leaf w ∈ Ψ∗

is straightforward. Figure 5.9 shows how to calculate the set of strongly
relevant pairs for fixed e and w in O (1) time. The reason for restricting our
attention to relevant or strongly relevant pairs is that we want to compare
triplet centers only if the triplets share a leaf. If z is an inner node of Ψ∗

with def(z) = {u, v, w}, then we can test other triplets of the form uv′w′

and compare TC(∆̂, u, vw) to TC(∆̂, u, v′w′) to recognize identical triplet
centers. In order to compare the center of a triplet uv′w′ with the endpoints
of the edge z′z ∈ Ψ∗, 〈uv′w′, z′z〉 has to be a relevant pair.

5.2.2 Description of Basic-HGT

The HGT-Edge-Length procedure shown in Figure 5.10 calculates the
edge lengths for inserting a new inner node on an edge z′z as the center of
a triplet uvw, where 〈uvw, z′z〉 is a relevant pair. The returned lengths also
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condition u v

0. z′ is the root, z is a leaf z′ z

1. z′ is the root, z is not leaf z′ T[z].def .left

z′ T[z].def .right

2. z′ is not root, z is a leaf T[z′].def .up z

2a. T[z′].left = z T[z′].def .left z

2b. T[z′].right = z T[z′].def .right z

3. z′ is not root, z is not leaf T[z′].def .up T[z].def .left

T[z′].def .up T[z].def .right

3a. T[z′].left = z T[z′].def .left T[z].def .up

T[z′].def .right T[z].def .left

T[z′].def .right T[z].def .right

3b. T[z′].right = z T[z′].def .right T[z].def .up

T[z′].def .left T[z].def .left

T[z′].def .left T[z].def .right

Figure 5.9: Rules for calculating the strongly relevant pairs 〈uvw, z′z〉 for
an edge z′z with z = T[z′].parent and an arbitrarily fixed leaf w 6∈ Ψ∗. The
table shows the possible choices for u and v. For any edge, one of the cases
0, 1, 2, or 3 applies, with the appropriate subcase for 2 and 3, depending on
whether z is a left or a right child in T.

tell whether the center o of uvw falls onto z′z. For example, if a negative ∆∗zo
is returned, then the center is in the subtree rooted at z and does not fall
onto z′z.

The Basic-HGT algorithm employs a threshold ∆min ≥ 0 as an input
parameter, which specifies the minimum distance between triplet centers to
consider them separate. The HGT-Split-Edge procedure shown in Fig-
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Procedure HGT-Edge-Length

Input: tree structure T, estimated tree metric ∆̂, non-root node z,
triplet uvw.

Output: edge lengths ∆∗zo, ∆∗z′o

E1 Set z′ ← T[z].parent.

E2 Set x ∈ {u, v} ∩ def(z).
Set x′ ∈ {u, v} ∩ def(z′).

E3 Set ∆∗xo ← TC(∆̂, x, {u, v, w} − {x}).
E4 Set ∆∗x′o ← TC(∆̂, x′, {u, v, w} − {x′}).
E5 if z′ is the root then set ∆∗x′z′ ← 0;

else set ∆∗x′z′ ← TC(∆̂, x′, def(z′)− {x′}).
E6 if z is a leaf then set ∆∗xz ← 0;

else set ∆∗xz ← TC(∆̂, x, def(z)− {x}).
E7 Set d← ∆∗xo −∆∗xz and d′ ← ∆∗x′o −∆∗x′z′.

E8 if z′ is on the path between z and x then d← −d.

E9 if z is on the path between z′ and x′ then d′ ← −d′.
E10 Set ∆∗zo ← (d+ T[z].length − d′)/2.

Set ∆∗z′o ← (d′ + T[z].length − d)/2.

E11 return ∆∗zo and ∆∗z′o.

Figure 5.10: The HGT-Edge-Length procedure calculates the edge
lengths for adding the center of the triplet uvw on the edge between z and its
parent z′ = T[z].parent. It is assumed that 〈uvw, z′z〉 is a relevant pair. The
value ∆∗zo is our estimation for ∆zo for the center o of uvw. The edge length
∆∗z′o is the estimation for ∆z′o. The test of Line E8 consists of checking
whether z = x or T[z].def .up = x. The test of Line E9 consists of checking
whether z′ = x′, or z is a left child and T[z′].def.left = x′, or z is a right
child and T[z′].def.right = x′.
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Procedure HGT-Split-Edge

Input: tree structure T, estimated tree metric ∆̂, minimum distance
parameter ∆min, non-root node z, triplet uvw.

Output: true or false
. (whether the center of uvw falls onto the edge z′z)

S1 Set z′ ← T[z].parent.

S2 Set x ∈ {u, v} ∩ def(z).
Set x′ ∈ {u, v} ∩ def(z′).

S3 Set ∆∗xo ← TC(∆̂, x, {u, v, w} − {x}).
S4 Set ∆∗x′o ← TC(∆̂, x′, {u, v, w} − {x′}).
S5 if z′ is the root then set ∆∗x′z′ ← 0;

else set ∆∗x′z′ ← TC(∆̂, x′, def(z′)− {x′}).
S6 if z is a leaf then set ∆∗xz ← 0;

else set ∆∗xz ← TC(∆̂, x, def(z)− {x}).
S7 Set d← ∆∗xo −∆∗xz and d′ ← ∆∗x′o −∆∗x′z′.

S8 if |d| < ∆min or |d′| < ∆min then return false.

S9 if z′ is on the path between z and x then d+ ← −d else d+ ← d.
if z is on the path between z′ and x′ then d′+ ← −d′ else d′+ ← d′.

S10 Set ∆∗zo ← (d+ + T[z].length − d′+)/2.
Set ∆∗z′o ← (d′+ + T[z].length − d+)/2.

S11 if ∆∗zo ≥ T[z].length or ∆∗z′o ≥ T[z].length then return false.

S12 return true.

Figure 5.11: The HGT-Split-Edge procedure is analogous to the
HGT-Edge-Length procedure. It determines whether the center of a
triplet uvw falls onto the edge z′z using a minimum distance parameter
∆min. It is assumed that 〈uvw, z′z〉 is a relevant pair.

ure 5.11 determines for a relevant pair 〈uvw, z′z〉 whether the center of uvw
falls onto the edge z′z and whether it is at least ∆min away from both z
and z′. The procedure is almost identical to the HGT-Edge-Length pro-
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Procedure HGT-Init

Input: tree structure T, estimated tree metric ∆̂, triplet uvw.

Output: none (updates T).

J1 Init-Tree(T, ∆̂, uv).

J2 Set o← n + 1. . (index for new inner node)

J3 Add-On-Edge(T, v, w, o).

J4 Set-Length(T, v, w, o,TC(∆̂, v, uw),TC(∆̂, u, vw),TC(∆̂, w, uv)).

J5 Set-Deftrip(T, v, uvw, o).

Figure 5.12: The HGT-Init procedure initializes the tree structure T as
the triplet uvw with its center.

cedure with the exception of the additional tests. A relevant pair 〈uvw, z′z〉
for which HGT-Split-Edge returns true is called a splitting pair.

The Basic-HGT algorithm is detailed in Figure 5.13. Given ∆min and
an estimated tree metric ∆̂ derived from n sample sequences the algorithm
constructs a hypothetical topology Ψ∗ represented by the tree data struc-
ture T. The algorithm first constructs a star formed by a triplet and its
center in Line B2. It then inserts a leaf and a corresponding inner node per
iteration of the repeat at Line B5 until Ψ∗ has n leaves. For k = 3, . . . , n,
let Ψ∗k be the version of Ψ∗ with k leaves constructed during the run of the
Basic-HGT algorithm; i.e., Ψ∗3 is constructed at Line B2, and Ψ∗k with k ≥ 4
is constructed at Lines B9–B12 in the (k−3)-th iteration of the repeat. Note
that Ψ∗n is output at Line B17.

Lemma 5.4. For each k = 3, . . . , n− 1, the following statements hold at the
start of the (k − 2)-th iteration of the repeat at Line B5.

(i) For every edge z′z ∈ Ψ∗k, def(z′) ∩ def(z) 6= ∅.

(ii) The set R consists of the splitting pairs for the edges in Ψ∗k.

Proof. The statements are proved separately.
Statement (i). The proof is by induction on k. The base case follows

from the fact that the statement holds for Ψ∗3 constructed at Line B2. The
induction step follows from the use of a relevant pair at Line B7.
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Algorithm Basic-HGT

Input: estimated tree metric ∆̂, minimum distance parameter ∆min.

Output: tree structure T.

B1 Find a triplet u0v0w0 with the maximum Ŝu0v0w0.

B2 HGT-Init(T, ∆̂, u0v0w0).

B3 Set o← n + 1. . (index for first inner node)

B4 Let R be the set of splitting pairs for u0o, ov0, ow0.

B5 repeat

B6 if R = ∅ then fail and stop.

B7 Find 〈uvw, z′z〉 ∈ R with maximum Ŝuvw.

B8 Set o← o+ 1. . (index for new inner node)

B9 Add-On-Edge(T, z, w, o).

B10 Set (∆∗zo,∆
∗
z′o)← HGT-Edge-Length(T, ∆̂, z, uvw).

B11 Set-Length(T, z, w, o,∆∗zo,∆
∗
z′o,TC(∆̂, w, uv)).

B12 Set def(o)← {u, v, w}.
B13 Remove from R all pairs containing z′z or w.

B14 Add to R the splitting pairs for the edges z′o, oz, ow.

B15 for each edge x′x 6= z′o, oz, ow do
add to R the splitting pairs of the form u′ww′.

B16 until all leaves are added.

B17 Output T.

Figure 5.13: The Basic-HGT algorithm. Line B12 calls the Set-

Deftrip procedure after determining whether
o

↑
u

or
o

↑
v
.

Statement (ii). The proof is by induction on k based on the following
facts. Let x′x be an edge in Ψ∗k that also exists in Ψ∗k+1, i.e, that is not
selected at Line B7 at the (k − 2)-th iteration of the repeat. Let u′v′w′ be a
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triplet such that u′v′ ∈ Ψ∗k and w′ 6∈ Ψ∗k+1. Then at Line B13, 〈u′v′w′, x′x〉 is
a splitting pair in Ψ∗k if and only if it is also one in Ψ∗k+1. Also, after a new
leaf w and new inner node o are inserted on edge z′z at Line B9, each edge
x′x 6= z′o, oz, ow in Ψ∗k+1 may have new relevant pairs, which must be of the
form 〈u′ww′, x′x〉 with w′ 6∈ Ψ∗k+1. Such pairs are not relevant in Ψ∗k because
two leaves (w and w′) in the triplet are not yet added.
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5.2.3 Time and space complexity

Theorem 5.5. The Basic-HGT algorithm runs in O (n3) time using O (n2)
work space.

Proof. We analyze the time and space complexities separately as follows.
Time complexity. Line B1 takes O (n3) time. Line B4 takes O (n) time

to examine 3(n− 3) pairs of edges and triplets. Since the repeat at line B5
iterates at most n−3 times, it suffices to implement R so that each iteration
of the repeat takes O (n2) time. By the greedy policy at line B7, for each
edge z′z ∈ Ψ∗ and each leaf w 6∈ Ψ∗, R needs to maintain only the splitting
pair containing a triplet of the form uvw with the maximum Ŝuvw. We
organize such pairs by implementing R as a two-dimensional array where the
rows are indexed by z′z and the columns by z. Then, Lines B6 and B7 take
O (n2) time by traversing R. Line B13 simply sets to null every entry in the
row and column in R for z′z and w, taking O (n) time. Line B14 examines
O (n2) triplets for each edge z′o, oz, ow and updates R in O (n2) total time.
At line B15, w 6∈ def(x′) ∪ def(x). Consequently, u′ ∈ def(x) ∩ def(x) for a
relevant pair 〈u′ww′, x′x〉. Thus, this line examines O (n) triplets for each
x′x and updates R in O (n2) total time.

Space complexity. Ψ∗ stored in the tree data structure T takes O (n) work
space. The set R as a two-dimensional array takes up O (n2) space. The
other variables needed by the algorithm occupy O (1) space. Thus the total
work space is as claimed.

5.2.4 Lemmas for bounding the sample size

Our statistical analysis involves a number of intermediate results culminating
in Theorem 5.15 in §5.2.5 stating the statistical efficiency of the Basic-HGT

algorithm. The main idea is that the greedy selection favors triplets with
large average size, and the centers of the triplets are estimated within a small
error. Lemma 5.8 summarizes the analysis of the greedy selection. Our re-
sult concerning the error of triplet center estimation is stated in Lemma 5.9.
Lemma 5.10 extends Lemmas 5.8 and 5.9 to the set of all triplets. Lem-
mas 5.11, 5.12, and 5.13 prove certain invariants of the algorithm.

The Basic-HGT algorithm aims at recovering a topology Ψ = (V,E)
with positive edge weights d : E 7→ (0,∞). By Equation 5.4a, for each
edge uv ∈ E, d(uv) = ∆uv and thus Suv = e−d(uv). Since d(uv) > 0,
Suv ∈ (0, 1). Moreover, since on every path u0, e1, u1, . . . , el, ul in Ψ, ∆u0ul
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equals the sum of edge weights along the path, Su0ul =
∏l
k=1 Sukuk−1

, and
thus Suv ∈ (0, 1) for all nodes u, v ∈ V if u 6= v. Define

S0 = min{Suv : uv ∈ E}; (5.9a)

S1 = 1−max{Suv : uv ∈ E}. (5.9b)

If nodes w,w′ ∈ V are connected via a path of length l, then

0 < Sl0 ≤ Sww′ ≤ (1− S1)l < 1.

Lemma 5.6. For any two nodes u and v of Ψ with Suv < S, there is a node z
on the path between u and v such that SS

1/2
0 ≤ Suz ≤ SS

−1/2
0 .

Proof. The lemma follows from the definition of S0.

Lemma 5.7. Let %in be the inner radius of Ψ. Every inner node o ∈ V
except the root has a defining triplet uvw such that the path length between u
and o, v and o, and w and o are not larger than %in + 1, and thus

Suvw ≥ S
2(%in+1)
0 .

Every leaf of Ψ is in such a triplet.

Proof. The lemma is the direct consequence of the definition of inner
radius.

The Basic-HGT algorithm strives to recover Ψ by using triplets de-
scribed in Lemma 5.7. Define

Slg =
3
√

2

2

(√
2− 1√
2 + 1

)2

S2%in+4
0

≈ S2%in+4
0

16

; (5.10a)

Ssm =
Slg√

2
; (5.10b)

Smd =
Slg + Ssm

2
. (5.10c)

A triplet uvw is large if Suvw ≥ Slg; it is small if Suvw ≤ Ssm. Note that by
Lemma 5.7, each non-root inner node has a large defining triplet.
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Lemma 5.8. Assume that ∆̂ is (a, b)-regular with a, b > 0 calculated from
sample sequences of length `. The first inequality holds for all large triplets uvw;
the second inequality holds for all small triplets uvw.

P
{
Ŝuvw ≤ Smd

}
≤ a exp

(
−b(
√

2− 1)2

72
`S2

lg

)
; (5.11a)

P
{
Ŝuvw ≥ Smd

}
≤ a exp

(
−b(
√

2− 1)2

72
`S2

lg

)
. (5.11b)

Proof. See at the end of the chapter.

The input parameter ∆min in the Basic-HGT algorithm specifies the
threshold on the edge lengths in Ψ∗. Since two triplet centers are considered

separate by the algorithm if and only if
∣∣∣∣TC(∆̂, u, vw) − TC(∆̂, u, v′w′)

∣∣∣∣ ≥
∆min, we impose

∆min ≤
mine∈E d(e)

2
=
− ln(1− S1)

2
, (5.12a)

and define

ϑ =
∆min

mine∈E d(e)
=

∆min

− ln(1− S1)
≤ 1

2
. (5.12b)

The next lemma shows that a large triplet’s center is estimated within a
small error with high probability.

Lemma 5.9. Assume that ∆̂ is (a, b)-regular with a, b > 0 calculated from
sample sequences of length `. Let uvw be a triplet that is not small, i.e..,
Suvw > Ssm. Then

P
{∣∣∣∣TC(∆̂, u, vw)− TC(∆, u, vw)

∣∣∣∣ ≥ ∆min

2

}
≤ 7a exp

(
−b ϑ

2

162
`S2

lgS
2
1

)
.

(5.13)

Proof. See at the end of the chapter.

We next define and analyze two key events Eg and Ec as follows. The
subscripts g and c denote the words “greedy” and “center”, respectively.

• Eg is the event that Ŝuvw > Ŝu′v′w′ for every large triplet uvw and every
small triplet u′v′w′.
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• Ec is the event that for every small triplet uvw that is not small,∣∣∣∣TC(∆̂, u, vw)− TC(∆, u, vw)
∣∣∣∣ < ∆min

2
;∣∣∣∣TC(∆̂, v, uw)− TC(∆, v, uw)

∣∣∣∣ < ∆min

2
;∣∣∣∣TC(∆̂, w, uv)− TC(∆, w, uv)

∣∣∣∣ < ∆min

2
.

Lemma 5.10. The probabilities of the complementary events to Eg and Ec

are bounded from above as follows.

P
{
Ēg

}
≤ a

(
n

3

)
exp

(
−b(
√

2− 1)2

72
`S2

lg

)
; (5.14a)

P
{
Ēc

}
≤ 21a

(
n

3

)
exp

(
−b ϑ

2

162
`S2

lgS
2
1

)
. (5.14b)

Proof. Equation (5.14a). The event Ēg implies that there is a large

triplet uvw with Ŝuvw ≤ Smd or that there is a small triplet u′v′w′ with
Ŝu′v′w′ ≥ Smd. Thus, by Lemma 5.8,

P
{
Ēg

}
≤

∑
large uvw

P
{
Ŝuvw ≤ Smd

}
+

∑
small u′v′w′

P
{
Ŝu′v′w′ ≥ Smd

}

≤ a

(
n

3

)
exp

(
−b(
√

2− 1)2

72
`S2

lg

)
,

which is tantamount to Equation (5.14a). In order to prove Equation (5.14b),
we simply sum up Equation (5.13) three times for every triplet.

The Basic-HGT algorithm builds the series of hypothetical topologies
Ψ∗3 = (V ∗3 , E

∗
3), . . . ,Ψ∗n = (V ∗n , E

∗
n) such that Ψ∗n is the hypothetical recon-

struction of the topology Ψ = (V,E). Define Lk ⊂ V ∗k as the leaf set of Ψ∗k.
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By the iterative addition of leaves and internal taxa,

L3 ⊂ L4 ⊂ · · · ⊂ Ln, ∀k > 3:
∣∣∣Lk − Lk−1

∣∣∣ = 1;

V ∗3 ⊂ V ∗4 ⊂ · · · ⊂ V ∗n , ∀k > 3:
∣∣∣V ∗k − V ∗k−1

∣∣∣ = 2;

∀k > 3:
∣∣∣E∗k − E∗k−1

∣∣∣ = 3, ∀k > 3:
∣∣∣E∗k−1 − E∗k

∣∣∣ = 1.

For every node z ∈ V ∗k , there is a corresponding node f(z) ∈ V , where the
mapping f is established by the defining triplets. If z is a leaf, then f(z) =
z; otherwise f(z) equals the center of the triplet formed by def(z) in Ψ.
Notice that the mapping does not change with k in the sense that if z ∈
V ∗k′, V

∗
k′+1, . . . , V

∗
n , then f(z) is the same for all k ≥ k′. In the following we

omit the explicit referencing of this mapping for economy’s sake.
Our proof for the sample length bounds of Basic-HGT essentially con-

sists of showing that the following conditions for k = 3, . . . , n are implied
by Eg and Ec, and thus hold with high probability.

Xk: The tree Ψ∗k is a topological minor of Ψ over Lk, i.e., Ψ∗k t
Lk

Ψ.

Yk: For every inner node z ∈ V ∗k , the triplet formed by def(z) is not
small.

Zk: For every edge z′z ∈ E∗k with length ∆∗z′z,
∣∣∣∣∆∗z′z − ∆z′z

∣∣∣∣ < 2∆min,

i.e.,

∣∣∣∣T[z].length − ∆z′z

∣∣∣∣ < 2∆min where z′ = T[z].parent and ∆∗z′z =

T[z].length.

Condition Xk states that Ψ∗k correctly represents the evolutionary relation-
ships between its leaves. Condition Yk states that Ψ∗k is built without using
small triplets. Condition Zk pronounces that the edge lengths in Ψ∗k are
estimated within a small error.

The ensuing series of results stated by Lemmas 5.11, 5.12, and 5.13 prove
that Eg and Ec imply Xk, Yk, and Zk for all k = 3, . . . , n. The lemmas make
the following assumptions for some k < n.

• The (k − 3)-th iteration of the repeat loop at Line B5 has been com-
pleted.

• The tree Ψ∗k has been constructed, and the conditions Xk, Yk, and Zk
hold.
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• The Basic-HGT algorithm is currently in the (k − 2)-th iteration of
the repeat.

Lemma 5.11. Assume that the HGT-Split-Edge procedure is called with
the relevant triplet 〈uvw, z′z〉. If Ec holds and uvw is not small, then the test
of Line S8 fails if and only if the center of uvw is different from z and z′.

Proof. Let o be the center of uvw. From Line S7,

d =
(

∆∗xo −∆xo

)
−
(

∆∗xz −∆xz

)
+
(

∆xo −∆xz

)
. (∗)

If z = o then z is an inner node of Ψ∗k. Since Ec holds, and neither uvw nor
def(z) is small,∣∣∣∣∆∗xo −∆xo

∣∣∣∣ < ∆min

2
,

∣∣∣∣∆∗xz −∆xz

∣∣∣∣ < ∆min

2
. (∗∗)

Since z = o, ∆xo = ∆xz and by Equations (∗) and (∗∗), |d| < ∆min/2 +
∆min/2 + 0 < ∆min and thus the test of Line S8 passes. Using a similar
reasoning, if z′ = o, then |d′| < ∆min and the test passes.

If o 6= z, z′, then |∆xo − ∆xz| ≥ − ln(1 − S1) ≥ 2∆min since the center
of o and z are both on the path between u and v in Ψ. If z is a leaf in Ψ∗k,
then ∆∗xz = ∆xz = 0. By Ec and Equation (∗), |d| > 3

2
∆min. If z is an

inner node in Ψ∗k, then by Yk, Ec, and Equation (∗), |d| > ∆min. In either
case, |d| > ∆min. By symmetry, |d′| > ∆min also. Hence the test of Line S8
fails.

Lemma 5.12. In addition to the assumptions of Lemma 5.11, also assume
that o 6= z, z′, i.e, the test of Line S8 has failed. The test of Line S11 then
fails if and only if the center of uvw is on the path between z and z′ in Ψ.

Proof. First, let us assume that the center of uvw is on the path between z
and z′ in‘Ψ. From Lines S7 and S9, by Xk,

(d+ − d′+)− (∆zo −∆z′o) =±
(

(∆∗xo −∆xo)− (∆∗xz −∆xz)
)

±
(

(∆∗x′o −∆x′o)− (∆∗x′z′ −∆x′z′)
)
,

where ∆∗xo and ∆∗x′o are calculated in Line S3, and ∆∗xz and ∆∗x′z′ are obtained
in Lines S5 and S6, respectively. Thus regardless whether z and z′ are leaves
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or inner nodes in Ψ∗k, by Xk, Yk, and Ec,∣∣∣∣(d+ − d′+)− (∆zo −∆z′o)
∣∣∣∣ < 2∆min. (∗)

By Line S10 and Equation (∗), using the notation ∆∗z′z = T[z].length,

∆∗zo <
(d+ − d′+)− (∆zo −∆z′o) + (∆zo −∆z′o) + ∆∗z′z

2

<
2∆min + (∆zo −∆z′o) + ∆∗z′z

2

=
2(2∆min −∆z′o) + (−2∆min + ∆z′z) + ∆∗z′z

2
.

Since o 6= z′ and thus ∆z′o ≥ 2∆min, and

∣∣∣∣∆∗z′z − ∆z′z

∣∣∣∣ > 2∆min by Zk, we

then obtain ∆∗zo < ∆∗z′z. By symmetry, ∆∗z′o < ∆∗z′z also holds. Thus, the
test of Line S11 fails.

Now let us assume that the center of uvw is not on the path between z
and z′ in Ψ. By similar arguments as before, if ∆zo > ∆z′z (respectively
∆z′o > ∆z′z), then ∆∗zo > ∆∗z′z (respectively ∆∗z′o > ∆∗z′z). Thus, the test of
Line S11 passes.

Lemma 5.13. Assume that z′z is an edge in Ψ∗k and there exists a node
strictly between z and z′ in Ψ; i.e., z′z is not an edge in Ψ. There is subse-
quently a large triplet u′′v′′w′′ with center z′′ such that w′′ 6∈ Ψ∗k, u′′ ∈ def(z),
v′′ ∈ def(z′), and z′′ is strictly between z and z′. In other words, 〈u′′v′′w′′, z′z〉
is a strongly relevant pair with the center of u′′v′′w′′ falling between z and z′.

Proof. See at the end of the chapter.

5.2.5 Statistical efficiency of the Basic-HGT algorithm

Lemma 5.14. The events Eg and Ec imply that Xk, Yk and Zk hold for all
k = 3, . . . , n.

Proof. The proof is by induction in k.
Base case: k = 3. By Lemma 5.7 and the greedy selection of Line B1,

Line B2 constructs Ψ∗3 for which X3 holds trivially, and Y3 follows from Eg.
Z3 follows from Y3, Ec, and the use of Equation (5.1) at Line J4 of the
HGT-Init procedure.
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Induction hypothesis: Xk, Yk, and Zk hold for some k < n.
Induction step. The induction step is concerned with the (k − 2)-th iter-

ation of the repeat at Line B5. Right before this iteration, by the induction
hypothesis, (since k < n,) some pair 〈u′′v′′w′′, z′z〉 satisfies Lemma 5.13.
Therefore, during this iteration, by Ec and Lemmas 5.11, 5.12, and 5.4,
R at Line B6 has a splitting pair in Ψ∗k that contains a triplet uvw with
Ŝuvw > Ŝu′′v′′w′′. Furthermore, Line B7 finds such a pair. By Eg, uvw is not
small. Lines B9–B12 create Ψ∗3 using this triplet. Thus Yk+1 follows from Yk.
By Lemmas 5.11 and 5.12, Xk+1 follows from Xk. Zk+1 follows from Zk since
the triplets involved at Line S10 are not small.

Theorem 5.15. For every 0 < δ < 1 there exists a sample length

` = O

(
log 1

δ
+ log n

ϑ2S2
1S

4%in+8
0

)
(5.15)

such that with probability at least (1 − δ), the Basic-HGT algorithm out-
puts Ψ∗ represented by the tree structure T satisfying both statements below.

(i) The algorithm successfully recovers the topology, i.e., Ψ∗ ∼
L

Ψ.

(ii) The edge lengths are recovered within 2∆min error, i.e., for all edges

z′z in Ψ∗,

∣∣∣∣∆z′z − ∆∗z′z

∣∣∣∣ < 2∆min, where z′ = T[z].parent and ∆∗z′z =

T[z].length.

Proof. By Equation (5.14a), P
{
Ēg

}
< δ/2 if

` ≥ `g = 420
3 lnn+ ln a

3δ

bS2
lg

.

Similarly, from Equation (5.14b), P
{
Ēc

}
< δ/2 if

` ≥ `c = 162
3 lnn + ln 7a

δ

bϑ2S2
1S

2
lg

.

We choose ` =
⌈
max{`g, `c}

⌉
. Consequently, P

{
Eg and Ec

}
≥ 1 − δ. By

Lemma 5.14, with probability at least (1 − δ), the Basic-HGT algorithm



CHAPTER 5. HARMONIC GREEDY TRIPLETS 150

outputs Ψ∗n, for which Xn and Zn hold, corresponding to the two statements
of the theorem.
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Algorithm Fast-HGT

Input: estimated tree metric ∆̂, minimum distance parameter ∆min.

Output: tree structure T.

F1 Select and arbitrary leaf u0 and find u0v0w0 with the maximum Ŝu0v0w0 .

F2 HGT-Init(T, ∆̂, u0v0w0).

F3 Set o← n+ 1. . (index for first inner node)

F4 Set R← ∅.
for each z′z ∈ {u0o, ov0, ow0} do Update-Cand(T, ∆̂,R,∆min, z).

F5 repeat

F6 if R = ∅ then fail and stop.

F7 Find 〈uvw, z′z〉 ∈ R with maximum Ŝuvw.

F8 Set o← o+ 1. . (index for new inner node)

F9 Add-On-Edge(T, z, w, o).

F10 Set (∆∗zo,∆
∗
z′o)← HGT-Edge-Length(T, ∆̂, z, uvw).

F11 Set-Length(T, z, w, o,∆∗zo,∆
∗
z′o,TC(∆̂, w, uv)).

F12 Set def(o)← {u, v, w}.
F13 Remove from R all pairs containing z′z.

F14 for each x′x ∈ {z′o, oz, ow} do Update-Cand(T, ∆̂,R,∆min, x).

F15 . (This line does no operation in contrast to B15.)

F16 until all leaves are added.

F17 Output T.

Figure 5.14: The Fast-HGT algorithm. Line F12 calls the Set-

Deftrip procedure after determining whether
o

↑
u

or
o

↑
v
.
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Procedure Update-Cand

Input: tree structure T, estimated tree metric ∆̂, candidate pair vec-
tor R, minimum distance parameter ∆min, non-root node z.

Output: none (updates R)

U1 Set z′ ← T[z].parent.

U2 for each strongly relevant pair 〈uvw, z′z〉 do

U3 if HGT-Split-Edge(T, ∆̂,∆min, z, uvw)

U4 then set 〈u′v′w, x′x〉 ← R[w].

U5 if R[w] = null or Ŝuvw > Ŝu′v′w

U6 then set R[w]← 〈uvw, z′z〉.

Figure 5.15: The Update-Cand procedure. The candidate set R is im-
plemented in the Fast-HGT algorithm as a vector R[1 . . . n] with one entry
for each leaf not added. Line U2 performs the tests described in Figure 5.9.

5.3 The Fast-HGT algorithm

This section presents the Fast-HGT algorithm and its subroutine Update-

Cand in Figures 5.14 and 5.15, respectively. The algorithm is parallel to the
Basic-HGT algorithm. Every line in Figure 5.14 performs the same function
as the line with the same numbering in Figure 5.13. Also, for each leaf w,
R[w] plays the same role as the column of R indexed by w in the proof of
Theorem 5.5.

The analysis of the Fast-HGT algorithm is also parallel to that of the
Basic-HGT algorithm. Hence, we adapt for the Fast-HGT algorithm in
a straightforward manner the definitions of Ψ∗, Ψ∗k, and Conditions Xk, Yk,
and Zk. A strongly splitting pair is a splitting pair whose triplet is strongly
relevant. The Update-Cand procedure selects the strongly splitting pairs
for a given edge. In the Fast-HGT algorithm, each R[w] is either a single
strongly splitting pair or null. In the former case, the pair is essentially equal
to, but subtly different from the pair whose triplet has the largest estimated
closeness in the column of R indexed by w in the proof of Theorem 5.5.

To save running time and work space, the Fast-HGT algorithm differs
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from the Basic-HGT algorithm in the following four key aspects:

1. At line F1, the triplet u0v0w0 is selected for a fixed arbitrary u0. This
reduces the number of triplets considered at line F2 from O (n3) to
O (n2). This improvement is supported by the fact that each leaf in Ψ
is contained in a large triplet.

2. At lines F4 and F14, R keeps only strongly splitting pairs. This
decreases the number of triplets considered at lines B4 and B14 for
each involved edge from O (n2) to O (n). This modification is feasible
since by Lemma 5.13, Ψ can be recovered using only strongly relevant
triplets.

3. At line F15, R includes no new strongly splitting pairs for the edges x′x
that already exist in Ψ∗ before w is inserted. This entirely avoids the
O (n2) triplets considered at line B15. This change is possible because
the insertion of w results in no new strongly relevant triplets for any
x′x at all.

4. At line F7, the best pair is chosen among n pairs in contrast to n2 at
line B7. This new greedy policy is similar to choosing the best among
the best pairs of individual columns of R in the proof of Theorem 5.5.

We now proceed to analyze the Fast-HGT algorithm.

Lemma 5.16. Lemma 5.4(i) holds for the Fast-HGT algorithm, i.e., for
every edge z′z ∈ Ψ∗k, def(z′) ∩ def(z) 6= ∅.

Proof. The proof is parallel to that of Lemma 5.4(i) and follows from the
fact that a strongly relevant triplet is also relevant.

Theorem 5.17. The Fast-HGT algorithm runs in O (n2) time using O (n)
work space.

Proof. It is straightforward to show that the time and space complexities
are as claimed based on the above four key differences between the Fast-

HGT algorithm and the Basic-HGT algorithm. Note that here R stores
one pair for each leaf using O (1) space instead of O (n) space as in the
Basic-HGT algorithm.
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Lemma 5.18.

(i) Lemmas 5.11 and 5.12 hold for the Fast-HGT algorithm.

(ii) Lemma 5.13 holds for the Fast-HGT algorithm.

Proof. The proofs of Lemmas 5.11, 5.12, and 5.13 refer to lines in HGT-

Split-Edge but to none in the Basic-HGT algorithm. Thus they hold for
the Fast-HGT algorithm based on the fact that a strongly relevant triplet
is also relevant.

We need the following version of Lemma 5.4(ii) for the Fast-HGT algo-
rithm. For k = 3, . . . , n− 1 and each leaf w, let Rk[w] be the version of R[w]
at the start of the (k − 2)-th iteration of the repeat at Line F5.

Lemma 5.19. Assume that for a given k ≤ n− 1, Eg, Ec, Xk′, Yk′, Zk′ hold
for all k′ ≤ k.

(i) If Rk[w] is not null, then it is a strongly splitting pair for some edge
in Ψ∗k.

(ii) If an edge z′z and a triplet u′′v′′w′′ with w′′ 6∈ Ψ∗k satisfy Lemma 5.18(ii),
then Rk[w

′′] is a strongly splitting pair 〈uvw′′, z′z〉 with Ŝuvw′′ > Ŝu′′v′′w′′.

Proof. The two statements are proved as follows.
Statement 1. This statement follows directly from the initialization of R

at Line F4, the deletions from R at Line F13, and the insertions into R at
Lines F4 and F14.

Statement 2. The proof is by induction on k.
Base case: k = 3. By Eg, Ec, X3, Y3, Z3, and Lemma 5.18(i), u′′v′′w′′ is

a strongly splitting pair for some edge z′z ∈ Ψ∗3. Then, by the maximization
in Update-Cand at Line F4, R[w′′] is a strongly splitting pair 〈uvw′′, x′x〉
with Ŝuvw′′ > Ŝu′′v′′w′′. By Eg, uvw′′ is not small. Thus, by Lemma 5.18(i),
x′x = z′z.

Induction hypothesis: Statement 2 holds for some k < n− 1.
Induction step. We consider how Rk+1 is obtained from Rk during the

(k − 2)-th iteration of the repeat at Line F5. There are two cases.
Case 1: z′z also exists in Ψ∗k. By Xk, z

′z and u′′v′′w′′ also satisfy
Lemma 5.18(i) for Ψ∗k. By the induction hypothesis, Rk[w

′′] is a strongly
splitting pair for z′z in Ψ∗k that contains a triplet uvw′′ with Ŝuvw′′ > Ŝu′′v′′w′′ .
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Then Rk[w
′′] is not reset to null at Line F13. Thus, it can be changed only

through replacement at line F14 by a strongly splitting pair for some edge
x′x in Ψ∗k+1 that contains a triplet u′v′w′′. By Eg, u′v′w′′ is not small. Thus,
by Ec, Xk+1, Yk+1, Zk+1, and Lemma 5.18(i), x′x equals z′z.

Case 2: z′z ∈ Ψ∗k. This case is similar to the base case but uses the
maximization in Update-Cand at line F14.

Lemma 5.20. Lemma 5.14 holds for the Fast-HGT algorithm.

Proof. The proof is parallel to that of Lemma 5.14 with Lemma 5.19
replacing Lemma 5.4(ii).

Theorem 5.21. For every 0 < δ < 1 there exists a sample length

` = O

(
log 1

δ
+ log n

ϑ2S2
1S

4%in+8
0

)
(5.16)

such that with probability at least (1 − δ), the Fast-HGT algorithm out-
puts Ψ∗ represented as the tree structure T satisfying both statements below.

(i) The algorithm successfully recovers the topology, i.e., Ψ∗ ∼
L

Ψ.

(ii) The edge lengths are recovered within 2∆min error, i.e., for all edges

z′z in Ψ∗,
∣∣∣∣∆z′z − ∆∗z′z

∣∣∣∣ < 2∆min, where z′ = T[z].parent and ∆∗z′z =

T[z].length.

Proof. The proof is parallel to that of Theorem 5.15.

5.4 A closer look at the minimum distance

parameter

Both Basic-HGT and Fast-HGT use a minimum distance parameter ∆min

to recognize separate and identical triplet centers. Theorems 5.15 and 5.21
state that the algorithms are statistically efficient when ∆min is less than
half the minimum edge length, i.e., when ∆min ≤ − ln(1−S1)

2
. In what follows

we show that the algorithms are statistically efficient for any 0 < ∆min <
− ln(1 − S1). Furthermore, we describe how a deterministic setting of the
minimum distance parameter can preserve statistical efficiency.
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In order to prove that the range of the minimum distance parameter
for which Basic-HGT and Fast-HGT are statistically efficient can be ex-
tended, we employ the following technique. Let 0 < ∆input < − ln(1−S1) be
arbitrary and define

∆min = min
{

∆input, (− ln(1− S1))−∆input

}
. (5.17)

Consequently, ∆min ≤ − ln(1−S1)
2

, and 2∆min ≤ ∆input + ∆min ≤ − ln(1− S1).
We claim that using ∆input as the input parameter to Basic-HGT or Basic-

HGT, the analysis of statistical efficiency remains valid with ∆min. More
precisely, after substituting ∆input for ∆min in the procedures and algorithms
of §5.2 and §5.3, the lemmas and theorems remain true without any textual
change, using ∆min defined by Equation (5.17). Indeed, Lemma 5.13 does
not depend on ∆min, Lemmas 5.8, 5.9, and 5.12 hold for any ∆min > 0, and
Lemma 5.11 holds with minimal changes as shown here.

Proof of Lemma 5.11. Let o be the center of uvw. From Line S7,

d =
(

∆∗xo −∆xo

)
−
(

∆∗xz −∆xz

)
+
(

∆xo −∆xz

)
. (∗)

If z = o then z is an inner node of Ψ∗k. Since Ec holds, and neither uvw nor
def(z) is small,∣∣∣∣∆∗xo −∆xo

∣∣∣∣ < ∆min

2
,

∣∣∣∣∆∗xz −∆xz

∣∣∣∣ < ∆min

2
. (∗∗)

Since z = o, ∆xo = ∆xz and by Equations (∗) and (∗∗), |d| < ∆min/2 +
∆min/2 + 0 < ∆min ≤ ∆input and thus the test of Line S8 passes. Using a
similar reasoning, if z′ = o, then |d′| < ∆min and the test passes.

If o 6= z, z′, then |∆xo − ∆xz| ≥ − ln(1 − S1) ≥ ∆min + ∆input since the
center of o and z are both on the path between u and v in Ψ. If z is a leaf
in Ψ∗k, then ∆∗xz = ∆xz = 0. By Ec and Equation (∗), |d| > ∆input + ∆min

2
.

If z is an inner node in Ψ∗k, then by Yk, Ec, and Equation (∗), |d| > ∆input.
In either case, |d| > ∆input. By symmetry, |d′| > ∆input also. Hence the test
of Line S8 fails.

Consequently, the input parameter ∆input to Basic-HGT and Fast-

HGT may take any positive value as long as it is less than the minimum
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edge length in the tree. A larger value decreases the error in recognizing
identical triplet centers and increases the error of not recognizing separate
triplet centers. A smaller value has the opposite effect. As a general ob-
servation, rejecting triplets with separate centers is a less severe mistake
than adding triplets with identical centers, and thus larger values are usually
more preferable. In particular, our sample length bounds are the same for
∆input = − ln(1−S1)

2
− c and ∆input = − ln(1−S1)

2
+ c with arbitrary c, but the

latter choice is more desirable. We return to this question in §5.6.2.
A theoretically interesting solution to setting ∆input without the knowl-

edge of S1 is to set it as a function of the sample length `. For instance,
let α > 0 be an arbitrary value, and let ∆input = `−1/(2+2α). If ∆input <
− ln(1− S1), then by Equations (5.15) and (5.16) there exists

`α = O

( log(1/δ) + log n

S4%in+8
0

)1+ 1
α


such that the Basic-HGT and Fast-HGT algorithms successfully recover
the topology. Hence if

` ≥ max
{
`α, S

−2(1+α)
1

}
,

then the algorithms are successful. A choice of α = 1 keeps the statistical
efficiency, and so do other more interesting choices such as α = lnn or α =
ln lnn.

5.5 Harmonic Greedy Triplets and the Four-

Point Condition

New possibilities of employing the Harmonic Greedy Triplets principle arise
if we replace the HGT-Split-Edge procedure in Basic-HGT or Fast-

HGT with another reasonable way of deciding whether a triplet defines a
new center on an edge. Here we describe the use of the relaxed four-point
condition for that purpose. The relaxed four-point condition is applied to a
relevant pair 〈uvw, z′z〉 in the following manner, as illustrated in Figure 5.16.
Let z be an internal node in Ψ∗, let def(z) = {x, x′, x′′}, and assume that z′

lies on the path between z and x in Ψ∗ without loss of generality. We test
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o

z

w

z ’

x

x ’x ’ ’

u

v

Figure 5.16: Using the four-point condition to evaluate relevant pairs. The
relaxed four-point condition is checked for the quartet topology xw|x′x′′ to
determine whether the center of the triplet uvw may fall onto the edge z′z.

whether the relaxed four-point condition holds for xw|x′x′′, which signifies
that for the center o of uvw, either o lies on the path between z and z′, or z′

lies on the path between z and o. Recall from Equation (4.11), that the
relaxed four-point condition holds for xw|x′x′′ if

∆̂[x, w] + ∆̂[x′, x′′]

< min
{
∆̂[x, x′] + ∆̂[w, x′′], ∆̂[x, x′′] + ∆̂[w, x′]

}
. (5.18)

The relaxed four-point condition is checked similarly for z′ if it is an internal
node. If z (or z′) is a leaf, the condition for z (respectively, for z′) is not
tested. The FPC-Split-Edge procedure detailed in Figure 5.17 implements
this method.

Both the Basic-HGT and Fast-HGT algorithms can be used with the
FPC-Split-Edge procedure replacing HGT-Split-Edge. We discuss in
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Procedure FPC-Split-Edge

Input: tree structure T, estimated tree metric ∆̂, non-root node z,
triplet uvw.

Output: true or false
. (whether the center of uvw falls onto the edge z′z)

P1 Set z′ ← T[z].parent.

P2 if z is not a leaf
then . (cf. Figure 5.16)

P3 set x← T[z].def .up, x′ ← T[z].def .left, x′′ ← T[z].def .right.

P4 if the relaxed four-point condition does not hold for xw|x′x′′
then return false.

P5 if z′ is not the root
then

P6 if z is the left child

P7 then set x← T[z′].def .left, x′ ← T[z′].def.right;
else set x← T[z′].def.right, x′ ← T[z′].def .left.

P8 Set x′′ ← T[z′].def.up.

P9 if the relaxed four-point condition does not hold for xw|x′x′′
then return false.

P10 return true.

Figure 5.17: The FPC-Split-Edge procedure uses the relaxed four-point
condition of Equation (5.18) in Lines P4 and P9 to evaluate relevant pairs.

detail how to use FPC-Split-Edge with the Fast-HGT algorithm only.
The resulting algorithm called HGT-FP is described in Figure 5.18 along
with its FPC-Update-Cand subroutine in Figure 5.19.

Theorem 5.22. The HGT-FP algorithm runs in O (n2) time using O (n)
work space.

Proof. The proof is analogous to that of Theorem 5.17, using the fact
that FPC-Split-Edge runs in O (1) time and uses O (1) work space.
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Algorithm HGT-FP

(Harmonic Greedy Triplets with Four Point Condition)

Input: estimated tree metric ∆̂.

Output: tree structure T.

Q1 Select and arbitrary leaf u0 and find u0v0w0 with the maximum Ŝu0v0w0 .

Q2 HGT-Init(T, ∆̂, u0v0w0).

Q3 Set o← n+ 1. . (index for first inner node)

Q4 Set R← ∅.
for each z′z ∈ {u0o, ov0, ow0} do FPC-Update-Cand(T, ∆̂,R, z).

Q5 repeat

Q6 if R = ∅ then fail and stop.

Q7 Find 〈uvw, z′z〉 ∈ R with maximum Ŝuvw.

Q8 Set o← o+ 1. . (index for new inner node)

Q9 Add-On-Edge(T, z, w, o).

Q10 Set (∆∗zo,∆
∗
z′o)← HGT-Edge-Length(T, ∆̂, z, uvw).

Q11 Set-Length(T, z, w, o,∆∗zo,∆
∗
z′o,TC(∆̂, w, uv)).

Q12 Set def(o)← {u, v, w}.
Q13 Remove from R all pairs containing z′z.

Q14 for each x′x ∈ {z′o, oz, ow} do FPC-Update-Cand(T, ∆̂,R, x).

Q15 until all leaves are added.

Q16 Output T.

Figure 5.18: The HGT-FP algorithm. Line Q12 calls the Set-Deftrip

procedure after determining whether
o

↑
u

or
o

↑
v
.

The statistical analysis of the HGT-FP algorithm is parallel to that of the
Fast-HGT algorithm. We claim that the success of the HGT-FP algorithm
is implied by the events Eg and Ec used in the analysis of the Basic-HGT and
Fast-HGT algorithms, and the specific event Eq, described by Definition 5.3.
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Procedure FPC-Update-Cand

Input: tree structure T, estimated tree metric ∆̂, candidate pair vec-
tor R, non-root node z.

Output: none (updates R)

C1 Set z′ ← T[z].parent.

C2 for each strongly relevant pair 〈uvw, z′z〉 do

C3 if FPC-Split-Edge(T, ∆̂, z, uvw)

C4 then set 〈u′v′w, x′x〉 ← R[w].

C5 if R[w] = null or Ŝuvw > Ŝu′v′w

C6 then set R[w]← 〈uvw, z′z〉.

Figure 5.19: The FPC-Update-Cand procedure. Line C2 performs the
tests described in Figure 5.9.
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Definition 5.3. Let Eq denote the event that for every leaf pair u, v, if

∆[u, v] ≤ 2

(
− ln

Ssm

3

)
,

then ∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ < − ln(1− S1)

4
.

Lemma 5.23. The probability of the complementary event to Eq is bounded
from above as

P
{
Ēq

}
≤ 2a

(
n

2

)
exp

(
− b

5184
`S4

lgS
2
1

)
. (5.19)

Proof. Let u, v be two leaves with ∆[u, v] ≤ 2
(
− ln(Ssm/3)

)
. Trivially,

2P
{∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ ≥ − ln(1− S1)

4

}
= P

{
∆̂[u, v]−∆[u, v] ≥ − ln(1− S1)

4

}
+P

{
∆̂[u, v]−∆[u, v] ≤ −− ln(1− S1)

4

}
.

Since ∆̂ is an (a, b)-regular estimator of ∆, by Equation (5.5),

2P
{∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ ≥ − ln(1− S1)

4

}
≤ a exp

(
−b`S2

uv

(
1− (1−S1)

1/4
)2
)

+ a exp

(
−b`S2

uv

(
(1−S1)−1/4− 1

)2
)
.

By Taylor’s expansion,(
1− (1− S1)1/4

)2

≥ 1

16
S2

1 ;
(

(1− S1)−1/4 − 1
)2

≥ 1

16
S2

1 .

Thus

P
{∣∣∣∣∆̂[u, v]−∆[u, v]

∣∣∣∣ ≥ − ln(1− S1)

4

}
≤ 2a exp

(
− b

16
`S2

uvS
2
1

)
.

The lemma follows from the facts that there are
(
n
2

)
leaf pairs, and that for

every leaf pair involved in Eq, Suv ≥ S2
lg/18.
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The analysis leading to bounding the sample size is analogous to the one
for Fast-HGT. The events Eg, Ec, and Eq imply the invariants Xk, Yk, and Zk
for k = 3, . . . , n. We use the event Ec only to show that the edge lengths
are estimated correctly, i.e., that Zk holds, by setting ∆min arbitrarily for the
argument’s sake. Note that the edge length estimation can be omitted from
the algorithm entirely. Arguments in the analysis relying on correct decisions
made by HGT-Split-Edge as stated by Lemmas 5.11, 5.12, and 5.18(i)
need to refer to the following lemma.

Lemma 5.24. Assume that the FPC-Split-Edge procedure is called with
the relevant pair 〈uvw, z′z〉. If Xk, Yk, and Eq hold, and uvw is not small,
then the procedure returns true if and only if the center of uvw is on the
path between z and z′ in Ψ.

Proof. By Yk, def(z) and def(z′) are not small. Since uvw is not small
either, the distance between w and an arbitrary member of def(z) or def(z′),
as well as between members def(z) or def(z′) is bounded from above by

2
(
− ln(Ssm/3)

)
. Since Eq holds, the tests at Lines P4 and P9 correctly

establish the quartet topologies using the relaxed four-point condition.

Theorem 5.25. For all 0 < δ < 1 and 0 < ϑ < 1/2, there exists a sample
length

` = O

(
log 1

δ
+ log n

ϑ2S2
1S

8%in+16
0

)
(5.20)

such that with probability at least (1−δ), the HGT-FP algorithm outputs Ψ∗

represented by the tree structure T satisfying both ensuing statements.

(i) The algorithm successfully recovers the topology, i.e., Ψ∗ ∼
L

Ψ.

(ii) The edge lengths are recovered within 2ϑ
(
− ln(1− S1)

)
error, i.e., for

all edges z′z in Ψ∗,

∣∣∣∣∆z′z − ∆∗z′z

∣∣∣∣ < 2ϑ
(
− ln(1 − S1)

)
, where z′ =

T[z].parent and ∆∗z′z = T[z].length.

Proof. By Equation (5.14a), P
{
Ēg

}
< δ/3 if

` ≥ `′g = 420
3 lnn+ ln a

2δ

bS2
lg

.
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Similarly, from Equation (5.14b), P
{
Ēc

}
< δ/3 if

` ≥ `′c = 162
3 lnn+ ln 21a

2δ

bϑ2S2
1S

2
lg

.

By Equation (5.19), P
{
Ēq

}
< δ/3 if

` ≥ `q = 5184
2 lnn + ln a

3δ

bϑ2S2
1S

4
lg

.

Set ` =
⌈
max{`′g, `′c, `q}

⌉
. Subsequently, P

{
Eg and Ec and Eq

}
≥ 1− δ. The

proof that Xk, Yk, and Zk are implied by Eg, Ec, and Eq is analogous to the
one for Fast-HGT, and uses Lemma 5.24 instead of Lemmas 5.11, 5.12,
and 5.18(i).

5.6 Experimental results

5.6.1 Robinson-Foulds distance

Simulated experiments are often used to assess the statistical efficiency of
evolutionary tree reconstruction algorithms (Hillis et al. 1994; Hillis 1995).
Simulation consists of generating sample sequences with the distribution de-
fined by an evolutionary tree P. The output topology Ψ∗ of the algorithm is
compared to the topology Ψ of P using distance measures between unrooted
binary trees (Day 1983b). We use the Robinson-Foulds distance (Robinson
and Foulds 1981) for this purpose, defined as follows. Let T be an unrooted
binary tree with leaf set L. A split generated by an edge e is the unordered
pair (L1, L2), where L1 and L2 are the leaf sets of the two subtrees obtained
by removing e from T. The split set Splits(T) is the set of all splits generated
by edges of T. Let T1, T2 be two unrooted trees with the same leaf set L and
let n = |L|. The normalized Robinson-Foulds distance between T1 and T2 is
defined as

RF%(T1,T2) =

∣∣∣Splits(T1)
∣∣∣+ ∣∣∣Splits(T2)

∣∣∣− 2
∣∣∣Splits(T1) ∩ Splits(T2)

∣∣∣
2(n− 3)

,
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which is always between 0 and 100%. We say that a topology reconstruc-
tion algorithm has δ Robinson-Foulds error on a given sample sequence gen-
erated by a phylogeny with topology Ψ, if for the algorithm’s output Ψ∗,
RF%(Ψ∗,Ψ) = δ. The algorithm is successful, i.e., Ψ∗ ∼

L
Ψ, if and only if it

has zero Robinson-Foulds error.

5.6.2 Using the minimum evolution heuristic

In order to estimate the topology accurately, the Fast-HGT algorithm uses
the minimum distance parameter ∆min to recognize triplets with the same
center. Taking the arguments of §5.4 into account, Theorem 5.21 shows that
if ∆min is smaller than the minimum edge length in the tree, then Fast-

HGT is statistically efficient. In order to optimize the performance of the
Fast-HGT algorithm on actual data, we conducted a series of simulated ex-
periments on a 135-leaf tree in the Jukes-Cantor model of evolution. The
tree (see Figure 5.33 for the topology) is based on a phylogeny derived from
mitochondrial DNA sequences in the course of debating the African origin
of humans (Maddison et al. 1992). We scaled the edge lengths linearly from
the originally calculated number of character changes per edge, so that all
edge lengths fall into the interval [0.125, 1.0]. This same scaled tree was also
used by Huson et al. (1999) in similar experiments. Figure 5.20 shows the
results of three experiments with sample length ` = 1500. The optimal choice
of ∆min is slightly larger than half the minimum edge length in the tree in
all three cases.

The graphs in Figure 5.20 suggest that ∆min should be set to around 2/3
of the shortest edge length to achieve the minimum RF% error. In practice,
however, the shortest edge length is unknown. When a lower bound esti-
mation is available, one can use that to set ∆min. Here we report that the
minimum evolution heuristic can be used to set ∆min.

While building the output tree Ψ∗, the Fast-HGT algorithm keeps track
of edge length estimates ∆∗z′z = T[z].length. By keeping track of the tree
length ME(Ψ∗,∆∗) together with the Robinson-Foulds error, we found a
strong correlation between them. Figure 5.21 shows the Robinson-Foulds er-
ror as a function of ME(Ψ∗,∆∗), with error values at the same choice of ∆min

clustered close to each other. Figure 5.22 plots the trajectories described
by the curve 〈ME(Ψ∗,∆∗),RF%(Ψ∗,Ψ)〉 with ∆min as a parameter in ten
different experiments. Not only do ME(Ψ∗,∆∗) and RF%(Ψ∗,Ψ) both verge
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Figure 5.20: Error of the Fast-HGT algorithm as a function of the min-
imum distance parameter ∆min in three simulated experiments (a,b,c) with
sample length ` = 1500. The normalized Robinson-Foulds distance (as per-
centage) between the output and the real topology is shown on the ordinate.
The shortest edges in the tree have length 0.125. The smallest RF% error is
achieved at setting ∆min slightly larger than half the shortest edge length.

on being unimodal functions of ∆min but their minima are also very close to
each other. Based on these observations, we designed an iterative procedure
that uses Fast-HGT as a subroutine. The Fast-HGT algorithm is run in
each iteration with a different ∆min value. The tree length of the output Ψ∗

is calculated, which we aim to minimize using Golden Section search (Press
et al. 1992) which quickly finds the minimum of a unimodal function. Since
the number of ∆min values giving different results is determined by the gran-
ularity of ∆̂, only O (log `) iterations are needed and they all use the same
input matrix. The resulting HGT-ME algorithm is described in Figure 5.23.

Theorem 5.26. The running time of the HGT-ME algorithm building a
tree with n leaves is O (n2 log `). The algorithm uses O (n) work space.
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Figure 5.21: Error of the Fast-HGT algorithm as the function of the out-
put tree length in ten simulated experiments (a,. . . ,j) with different choices
of ∆min, at sample length ` = 1500. The normalized Robinson-Foulds dis-
tance between the output and the real topology is shown on the ordinate.
The RF% error values at the same choice of ∆min in different experiments
are clustered closely together. Moreover, the RF% error value is an “almost
monotone” function of the output tree length. Figure 5.22 shows the shape
of the trajectories traversed.

Proof. By setting the minimum bracketing value ε = `−1/2, Fast-HGT

is executed at most blog2 `c times in Step M1, and at most 2 + dlogβ(2`)e
times in Step M2 with β = (1 +

√
5)/2. By Theorem 5.17, the running time

of Fast-HGT is O (n2), hence the running time of HGT-ME is as stated
by the theorem. Fast-HGT needs O (n) space, and HGT-ME stores at
most four topologies at a time to carry out the minimization.
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Figure 5.22: This figure is the result of ten simulated experiments on the
135-leaf tree with topology Ψ, for sample length ` = 1500. In each experiment,
both the length of the output tree Ψ∗ and the RF% error were calculated at dif-
ferent choices of ∆min. The shape of trajectories 〈ME(Ψ∗,∆∗),RF%(Ψ∗,Ψ)〉
are depicted, showing that ME and RF% are approximately unimodal func-
tions of ∆min taking their minima close to each other.

5.6.3 Computational efficiency in experiments

Computational aspects of tree reconstruction methods, such as time and
space requirements, become accentuated when the number n of taxa is in
the order of hundreds or thousands. Exhaustive search among all possible
topologies is not feasible since the number of different topologies is super-
exponential in n by Equation (4.1). In fact, even computationally efficient
algorithms, which run in polynomial time, may be too slow if the order of
the polynomial in n is more than three. In order to illustrate this point, we
measured the execution time of a number of algorithms on a desktop com-
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Algorithm HGT-ME

(Harmonic Greedy Triplets with Minimum Evolution Heuristic)

Input: estimated tree metric ∆̂, and a small positive bracketing value
ε, such as ε = `−1/2.

Output: Hypothetical topology Ψ∗ with edge length estimates ∆∗.

M1 Find a = 2kε with the smallest k = 1, 2, . . . , b− log2 εc such that
Fast-HGT builds a full tree with ∆min = 2kε.

M2 Minimize ME(Ψ∗,∆∗) on the interval ∆min ∈ [0, a] with Golden Sec-
tion Search using ε as the minimum bracketing size, and output Ψ∗

built by Fast-HGT at that value.

Figure 5.23: The HGT-ME algorithm.

puter 1. We measured the execution time of the following algorithms: FastD-
NAML (Olsen et al. 1994), implemented by its authors; Heuristic parsimony
implemented in Phylip (Felsenstein 1993) as DNAPARS; Neighbor-Joining
(Studier and Keppler 1988), implemented in qclust (Brzustowski 1998); Un-
weighted Neighbor-Joining (Gascuel 1997b) (UNJ), implemented in T-REX
(Makarenkov and Casgrain 1999); ADDTREE (Sattath and Tversky 1977),
implemented in T-REX; Fitch-Margoliash method (Fitch and Margoliash
1967), implemented in Phylip as FITCH; BioNJ (Gascuel 1997a), imple-
mented by its author; Weighbor (Bruno et al. 2000), implemented by its
authors; UPGMA (Sokal and Michener 1957; Sokal and Sneath 1963), im-
plemented in qclust; and HGT-FP, our implementation.

Figure 5.24 shows the processor times of these programs as a function
of n. The disadvantage of maximum likelihood is immediately clear from
the graphs. The optimization of the likelihood function is extremely time-
consuming, even with heuristic approaches such as FastDNAML. As a con-
sequence, maximum likelihood cannot be used for the recovery of trees with
more than about forty terminal taxa.

1We used a PC with a Pentium III 550 MHz CPU and 128 MB memory, running Win-
dows NT 4.0, compiling executing, and timing the programs with cygwin v1.1 utilities. We
compiled the source codes using gcc or g++, with maximum optimization (-O9) enabled.
We edited some of the I/O functions in the sources to conform to the Phylip formats.
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Figure 5.24: Running time of various reconstruction methods as a function
of the number of terminal taxa. For each size n, the timing was repeated
5 times; the graphs go through the median values. The trees had random
topologies, drawn by the Yule-Harding distribution. Each edge length was
set to 0.1, and random DNA sequences of length 2000 were generated using
the Jukes-Cantor model. The dashed lines denote extrapolated values. NJ:
Neighbor-Joining, F-M: Fitch-Margoliash.

As for maximum parsimony, the optimization is also extremely time-
consuming, but recent advances in heuristic parsimony optimization make it
a viable method for trees with up to at least a few hundred taxa. However,
the running time bounds of heuristic optimization are not clear, and we found
that for large mutation probabilities permitting many equally parsimonious
trees, DNAPARS is very slow.

Distance-based methods have been favored for their computational speed.
The classic Fitch-Margoliash (Fitch and Margoliash 1967) algorithm runs
in O (n4) time for trees with n leaves. The ADDTREE (Sattath and Tversky
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1977) algorithm also runs in O (n4) time. Neighbor-Joining (Saitou and Nei
1987), and a number of related methods, such as UNJ (Gascuel 1997b), BioNJ
(Gascuel 1997a), and Weighbor (Bruno et al. 2000), run in O (n3) time. To
our knowledge, the only topology reconstruction algorithm with O (n2) run-
ning time is UPGMA, which is a hierarchical clustering method rarely used
nowadays for phylogeny reconstruction. UPGMA is statistically inconsistent
and performs very poorly in simulated experiments.

Our graphs in Figure 5.24 illustrate that while polynomial running time
is a necessary requirement for large-scale phylogeny reconstruction, it is not
sufficient in itself, as O (n4) algorithms become too slow when n is in the
order of thousands. Even Weighbor with O (n3) running time is not fast
enough due to expensive computations hidden by the asymptotic notation.
In contrast, UPGMA and HGT-FP run in O (n2) time, delivering their
output in less than two minutes, even for a tree with 3000 terminal taxa,
thus posing virtually no computing constraint on the tree reconstruction.

5.6.4 Statistical efficiency in experiments

In addition to the 135-leaf tree of §5.6.2, we used three model trees in the
simulation studies. The 500-leaf tree in Figure 5.34 has the topology of a
seed plant phylogeny based on rbcL gene sequences from the Green Plant
Phylogeny Project (Brown 1999) by Chase et al. (1993). The 1895-leaf in
Figure 5.35 tree is derived from the evolutionary tree of Eukaryotes based
on 12S sequences in the Ribosomal Database Project (Maidak et al. 2000).
We removed a subtree containing distantly related taxa from the original
tree of 2055 leaves. The 3135-leaf tree in Figure 5.36 is based on the sub-
tree of Proteobacteria within the phylogeny of Prokaryotes in the Ribosomal
Database Project. We scaled the edge lengths of the original trees using a
linear transformation to evaluate the performance of various reconstruction
methods. Specifically, for each simulation experiment we chose a maximum
and minimum edge length dmax and dmin, and calculated the values c0, 0 < c1

such that after replacing each edge length d in the original tree by c0d + c1,
the edge lengths in the resulting tree range from dmin to dmax. We used the
Jukes-Cantor model for the DNA alphabet in all experiments.

In a set of experiments, we compared the accuracy of topology recovery
algorithms as a function of sample length. The performance of HGT-ME

and HGT-FP on the 135-leaf tree is compared to that of Neighbor-Joining
in Figure 5.25. HGT-ME and HGT-FP perform slightly better starting at
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Figure 5.25: Experimental results on the 135-leaf tree with edge mutation
probabilities between 0.09 and 0.47. The plot shows the Robinson-Foulds
error of the algorithms observed on ten separate samples for each length.
The graphs go through the median values.

sequence lengths of 1500 and converge faster to recover the topology than
Neighbor-Joining.

As Figure 5.26 shows, our algorithms outperform Neighbor-Joining on
the 500-leaf tree from around sample length ` = 1200, and miss only 3% of
the edges at ` = 2000. It is worth pointing out that deriving the original tree
took several months in computer time employing parsimony methods, while
HGT-FP, HGT-ME, and Neighbor-Joining produce their output in a few
seconds on a desktop computer.

Figure 5.27 shows the experimental results on the 1895-leaf tree. We
scaled the edge lengths so that they fell into the interval [0.1, 1.0]. HGT-

FP and HGT-ME converge quickly so that they miss only one edge on
the majority of 2000 length samples, and steadily recover the topology from
samples of length 5000. Neighbor-Joining’s performance improves only three-
fold between sample lengths of 200 and 10000, and still misplaces 120–150
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Figure 5.26: Simulation results on the 500-leaf tree with edge mutation
probabilities ranging between 0.07 and 0.47.

edges at 5000 length sequences. We also conducted experiments on a dif-
ferently scaled version of the 1895-leaf tree, in which the edge lengths were
linearly mapped onto the [0.01, 1.0] interval. Most of the edges in this tree
are short, with around 60% of them having the shortest edge length corre-
sponding to 0.007 mutation probability. The results of the experiments are
shown in Figure 5.27. In accordance with previous findings in simulations
with different smaller trees (e.g., Saitou and Imanishi (1989)), Neighbor-
Joining performs well, achieving high success rates at relatively short sample
sequences. HGT-FP and HGT-ME are more sensitive to short edge lengths
due to the greedy selection of triplets lying at their core. At large sample
sizes, however, they do converge more quickly than Neighbor-Joining on the
highly divergent tree and misplace very few edges from ` = 5000 on. The
following simple example may shed some light on the philosophical differ-
ences underlying our algorithm and Neighbor-Joining. Let η11, η12, . . . , η1`

be a series of independent identically distributed random variables with un-
known mean m and variance σ2

1. Let η21, . . . , η2` be another series of inde-
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Figure 5.27: Experimental results on the 1895-leaf tree with edge mutation
probabilities ranging between 0.07 and 0.47.

pendent identically distributed random variables with the same mean m but
larger variance σ2

2 > σ2
1. When σ1 is close to σ2, then m is best estimated

by A = `−1∑`
i=1(η1i+η2i)/2. However, if σ2 � σ1, then B = `−1∑`

i=1 η1i is a
better estimator. The variance of A equals (σ2

1 +σ2
2)/(4`), while the variance

of B equals σ2
1/`. Hence if σ2 > σ1

√
3, then B has smaller variance than A.

Neighbor-Joining, similarly to the estimator A, averages many estimated dis-
tances. When the edge mutation probabilities are small, the distances are
small and do not differ by much, so the average provides more accurate infor-
mation about the topology than the one obtained from a greedy approach.
On the other hand, the error committed while calculating the average is gov-
erned by the error in the estimation of the largest distance in the expression,
which may be significant when the mutation probabilities are large. As a
result, the statistical performance of Neighbor-Joining is less stable, and a
greedy algorithm may provide better efficiency in the case of large mutation
probabilities.
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Figure 5.28: Experimental results on the 1895-leaf tree with edge mutation
probabilities ranging between 0.007 and 0.47.
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In order to further explore the effect that the range of mutation probabil-
ities has on the recovery accuracy, we conducted another set of experiments
for fixed sample lengths and variable scalings. In each experiment we scaled
the edge lengths linearly to fall into the range [dmin, dmax] where dmin is a
function of dmax. Specifically, we carried out two groups of experiments for
every tree, in one set we selected dmin = dmax/10, and in the other set we
chose dmin = dmax/100. The figures refer to the former as high mutation
probabilities, and to the latter as low mutation probabilities.

Figure 5.29 compares the results of the experiments on the 500-leaf tree
for UNJ, BioNJ, Neighbor-Joining, HGT-FP, and parsimony. Other algo-
rithms considered in Figure 5.24 take hours if not days to build one tree
on this size. In accordance with previous findings (Hillis 1996), parsimony
performs very well, although when the maximum edge lengths are close to 1,
its running time is increased to several hours. This phenomenon can be at-
tributed to the fact that the sample sequences differ by much, and thus the
optimization of the parsimony function becomes very difficult. It is worth
pointing out that this tree, as well as some other trees in simulation studies
(Hillis 1996; Rice and Warnow 1997) where parsimony performed well, were
built using heuristic parsimony methods, so the simulation may have a cer-
tain bias in favor of parsimony. For both high and low mutation probabilities,
BioNJ performs slightly better than Neighbor-Joining, and UNJ simply fails
if the mutation probabilities are not small. HGT-FP performs better than
Neighbor-Joining and BioNJ in the case of high mutation probabilities, while
the Neighbor-Joining methods are better for low mutation probabilities, even
though they do not recover the tree completely.

Figure 5.30 shows the experimental results on the 1895-leaf tree, for
Neighbor-Joining, HGT-FP, and in case of high mutation probabilities,
BioNJ. We omitted UNJ from the experiments here because it performs
much worse than either Neighbor-Joining or BioNJ. In its defense we must
mention that it was developed for input matrices in which the estimation
error is uniformly distributed, which is not the true for distances computed
from sequence data. We abandoned tracking the performance of BioNJ as its
behavior is barely distinct from that of Neighbor-Joining. Parsimony is very
slow for this tree size, taking hours or more to build a single tree. Again,
HGT-FP outperforms Neighbor-Joining for high mutation probabilities, re-
covering the tree reliably for a large part of the region, whereas low mutation
probabilities seem favorable for Neighbor-Joining. However, low mutation
probabilities make the recovery more difficult and Neighbor-Joining needs
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Figure 5.29: Simulations on the 500-leaf tree. The plot shows the
Robinson-Foulds error of the algorithms observed in ten separate 2000 bp
long samples at each scaling value. The graphs go through the median values.
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longer sequences for accurate reconstruction.
Finally, Figure 5.31 shows our simulation results on the 3135-leaf tree for

HGT-FP and Neighbor-Joining. The HGT-FP algorithm recovers the tree
with large success rates for high mutation probabilities and performs better
than Neighbor-Joining at part of the low mutation probability region. It is
worth noticing that HGT-FP actually performs better on larger trees, while
Neighbor-Joining does not take advantage of the richer information on the
tree structure.
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Figure 5.30: Simulations on the 1895-leaf tree.



CHAPTER 5. HARMONIC GREEDY TRIPLETS 180

0.5 20.1 1
maximum edge length

10

0.1

1

RF%

NJ

HGT/FP

3135-leaf tree, high mutation probabilities

0.5 20.1 1
maximum edge length

10

0.1

1

RF%

NJ

HGT/FP

3135-leaf tree, low mutation probabilities

Figure 5.31: Simulations on the 3135-leaf tree.
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5.A Proof of Lemma 5.2

Let

huv =
Ŝuv
Suv

, huw =
Ŝuw
Suw

, hvw =
Ŝvw
Svw

.

Then

P
{

TC(∆̂, u, vw)− TC(∆, u, vw) ≥ − ln(1− ε)
2

}
= P

{
huvhuw
hvw

≤ 1− ε
}
.

By conditioning on the events{
huw ≤ 1− r

}
and

{
hvw ≥ 1 + s

}
for some r, s > 0,

P
{
huvhuw
hvw

≤ 1− ε
}

=P
{
huvhuw
hvw

≤ 1− ε
∣∣∣∣∣ huw ≤ 1− r

}
P
{
huw ≤ 1− r

}

+ P
{
huvhuw
hvw

≤ 1− ε
∣∣∣∣∣ huw > 1− r

}
P
{
huw > 1− r

}

≤P
{
huw ≤ 1− r

}
+ P

{
huv
hvw
≤ 1− ε

1− r

}

=P
{
huw ≤ 1− r

}
+ P

{
huv
hvw
≤ 1− ε

1− r

∣∣∣∣∣ hvw ≥ 1 + s

}
P
{
hvw ≥ 1 + s

}

+ P
{
huv
hvw
≤ 1− ε

1− r

∣∣∣∣∣ hvw < 1 + s

}
P
{
hvw < 1 + s

}

≤P
{
huw ≤ 1− r

}
+ P

{
hvw ≥ 1 + s

}
+ P

{
huv ≤ (1− ε)1 + s

1− r

}
.
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Setting 1−r
1+s

> 1− ε, by Equation 5.5,

P
{

TC(∆̂, u, vw)− TC(∆, u, vw) ≥ − ln(1− ε)
2

}

≤a exp
(
−b`S2

uwr
2
)

+ a exp
(
−b`S2

vws
2
)

+ a exp

−b`Suv
(

1− (1− ε)1 + s

1− r

)2
.

(∗)

Equating these exponential terms yields a second-order system of equations
for r and s. The solution for r is

r =
t−
√
t2 − y

2SuwSvw

where

t = SuvSvw + SuwSvw + (1− ε)SuvSuw;

y = 4SuvS
2
vwSuwε.

By Taylor’s expansion, (
t−

√
t2 − y

)2

>
y2

4t2
.

Thus,

r2 >
ε2(

1
Suw

+ 1−ε
Svw

+ 1
Suv

)2

S2
uw

>
ε2S2

uvw

9S2
uw

. (∗∗)

Consequently, by Equations (∗) and (∗∗),

P
{

TC(∆̂, u, vw)− TC(∆, u, vw) ≥ − ln(1− ε)
2

}

≤ 3a exp
(
−b`S2

uwr
2
)
< 3a exp

(
− b

9
`S2

uvwε
2

)
,
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proving Equation (5.7).

5.B Proof of Lemma 5.8

We use the following basic inequalities.

min

{
Ŝuv
Suv

,
Ŝuw
Suw

,
Ŝvw
Svw

}
≤ Ŝuvw
Suvw

≤ max

{
Ŝuv
Suv

,
Ŝuw
Suw

,
Ŝvw
Svw

}
; (∗)

Suvw
3
≤ min

{
Suv, Suw, Svw

}
. (∗∗)

We first prove Equation (5.11a). Pick λ ≥ 1 such that Suvw = λSlg. Without
loss of generality, we may suppose

min

{
Ŝuv
Suv

,
Ŝuw
Suw

,
Ŝvw
Svw

}
=
Ŝuv
Suv

.

Then by Equations (∗), (∗∗), and (5.5a),

P
{
Ŝuvw ≤ Smd

}
= P

{
Ŝuvw
Suvw

≤ Smd

λSlg

}

≤ P
{
Ŝuv
Suv
≤ Smd

λSlg

}
≤ a exp

−b`S2
uv

(
1− Smd

λSlg

)2


≤ a exp

−b
(

1− Smd

Slg

)2

9
`S2

lg

.
By the choice of Smd, (

1− Smd

Slg

)2

9
=

(
√

2− 1)2

72
,

and thus Equation (5.11a) holds.
We next prove Equation (5.11b) similarly. Pick λ ≤ 1 such that Suvw =
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λSsm. Without loss of generality, we may assume

max

{
Ŝuv
Suv

,
Ŝuw
Suw

,
Ŝvw
Svw

}
=
Ŝuv
Suv

.

Then by Equations (∗), (∗∗), and (5.5b),

P
{
Ŝuvw ≥ Smd

}
= P

{
Ŝuvw
Suvw

≥ Smd

√
2

λSlg

}

≤ P
{
Ŝuv
Suv
≤ Smd

√
2

λSlg

}
≤ a exp

−b`S2
uv

(
Smd

√
2

λSlg

)2


≤ a exp

−b
(
Smd

√
2

Slg

)2

9
`S2

lg

.
By the choice of Smd, (

Smd

√
2

Slg

)2

9
=

(
√

2− 1)2

72
,

and thus Equation (5.11b) holds.

5.C Proof of Lemma 5.9

Since Lemma 5.2 can help establish only one half of the desired inequality,
we split the probability on the left-hand side of Equation (5.13). Define

∆̂uo = TC(∆̂, u, vw) ∆uo = TC(∆, u, vw)

∆̂vo = TC(∆̂, v, uw) ∆vo = TC(∆, v, uw)
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Then

P
{∣∣∣∣TC(∆̂, u, vw)− TC(∆, u, vw)

∣∣∣∣ ≥ ∆min

2

}
= P

{∣∣∣∣∆̂uo −∆uo

∣∣∣∣ ≥ ∆min

2

}

=P
{

∆̂uo −∆uo ≥
∆min

2

}
+ P

{
∆̂uo −∆uo ≤ −

∆min

2

}

≤ P
{

∆̂uo −∆uo ≥
∆min

6

}

+ P
{

∆̂uo −∆uo ≤ −
∆min

2

∣∣∣∣∣ ∆̂vo −∆vo ≥
∆min

6

}
P
{

∆̂vo −∆vo ≥
∆min

6

}

+ P
{

∆̂uo −∆uo ≤ −
∆min

2

∣∣∣∣∣ ∆̂vo −∆vo <
∆min

6

}
P
{

∆̂vo −∆vo <
∆min

6

}

≤ P
{

∆̂uo −∆uo ≥
∆min

6

}

+ P
{

∆̂vo −∆vo ≥
∆min

6

}

+ P
{

∆̂uo −∆uo ≤ −
∆min

2

∣∣∣∣∣ ∆̂vo −∆vo <
∆min

6

}
.

Then, since

∆̂[u, v]−∆[u, v] =
(

∆̂uo −∆uo

)
−
(

∆̂vo −∆vo

)
,

we have

P
{

∆̂uo −∆uo ≤ −
∆min

2

∣∣∣∣∣ ∆̂vo −∆vo <
∆min

6

}

≤ P
{

∆̂[u, v]−∆[u, v] ≤ −∆min

3

}
.
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Consequently,

P
{∣∣∣∣∆̂uo −∆uo

∣∣∣∣ ≥ ∆min

2

}
≤ P

{
∆̂uo −∆uo ≥

∆min

6

}

+ P
{

∆̂vo −∆vo ≥
∆min

6

}

+ P
{
∆̂[u, v]−∆[u, v] ≤ −∆min

3

}
.

(5.21)

By Equation (5.7),

P
{

∆̂uo −∆uo ≥
∆min

6

}
≤ 3a exp

(
−bϑ

2

9
`S2

uvw

(
1− e−

∆min
3

)2
)
.

By Taylor’s expansion,(
1− e−

∆min
3

)2

≥
(

1− (1− S1)
ϑ
3

)2

>
ϑ2

9
S2

1 ,

and thus

P
{

∆̂uo −∆uo ≥
∆min

6

}
≤ 3a exp

(
−bϑ

2

81
`S2

uvwS
2
1

)
. (5.22)

By symmetry,

P
{

∆̂vo −∆vo ≥
∆min

6

}
≤ 3a exp

(
−bϑ

2

81
`S2

uvwS
2
1

)
. (5.23)

From Equation (5.5b),

P
{
∆̂[u, v]−∆[u, v] ≤ −∆min

3

}
≤ exp

(
−b`Suv

(
e−

∆min
3 − 1

)2
)
.

Since
Suvw

3
≤ min

{
Suv, Suw, Svw

}
,

and Suv > Ssm,

Suv >
Slg

3
√

2
.
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By Taylor’s expansion,(
e

∆min
3 − 1

)2

≥
(

(1− S1)−
ϑ
3 − 1

)2

>
ϑ2

9
S2

1 .

Therefore,

P
{
∆̂[u, v]−∆[u, v] ≤ −∆min

3

}
≤ exp

(
−b ϑ

2

162
`S2

lgS
2
1

)
. (∗∗∗)

Putting Equations (5.21), (∗), (∗∗), and (∗∗∗) together,

P
{∣∣∣∣∆̂uo −∆uo

∣∣∣∣ ≥ ∆min

2

}
≤ 7a exp

(
−b ϑ

2

162
`S2

lgS
2
1

)
,

which is tantamount to Equation (5.13).

5.D Proof of Lemma 5.13

By Lemma 5.7, for every node z′′ strictly between z and z′, there exists a
leaf w′′ 6∈ Ψ∗k with Sw′′z′′ ≥ S%in+1

0 . To choose z′′, there are two cases: (1)
both z and z′ are inner nodes, and (2) z or z′ is a leaf.

Case 1. By Lemma 5.4, let def(z) = {u, v, w} and def(z′) = {u, v′, w′}.
By Yk, neither uvw nor uv′w′ is small. To fix the notation for def(z)
and def(z′) with respect to their topological layout, we assume without loss
of generality that Figure 5.32 or equivalently the following statements hold.

• In Ψ∗k and thus in Ψ, z′ is on the paths between z and v′, between z
and w′, and between z and v, respectively.

• Similarly, z is on the paths between z′ and w and between z′ and u.

• ∆z′v′ ≤ ∆z′w′.

Both uv′w′′ and wv′w′′ define z′′ and the target triplet is one of these two for
some suitable z′′. To choose z′′, we further divide Case 1 into three subcases.

Case 1a: Suz′ < Sv′z′S0 and Sv′z < SuzS0 . The target triplet is uv′w′′.
Since Suv′ ≤

√
Suv′ , by Lemma 5.6 let z′′ be a node on the path between u

and v′ in Ψ with
√
Suv′S0 ≤ Suz′′ ≤

√
Suv′S

−1
0 and thus

√
Suv′S0 ≤ Sv′z′′ ≤
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u

w

z z ’’ z ’

v

w ’

v ’

w ’’

Figure 5.32: This subgraph of Ψ fixes some notation used in the proof
of Lemma 5.13. The location of v relative to v′ and w′ is not essential,
for instance, v can be even the same as v′. In Ψ∗k, def(z) = {u, v, w} and
def(z′) = {u, v′, w′}. Neither uvw nor uv′w′ is small, and ∆z′v′ ≤ ∆z′w′. We
aim to prove that there is a leaf w′′ 6∈ Ψ∗k such that uv′w′′ or wv′w′′ is large
and defines a node z′′ strictly between z and z′.

√
Suv′S

−1
0 . By the condition of Case 1a, z′′ is strictly between z and z′ in Ψ.

Also, by Lemma 5.3, Suv′ ≥ 2
3
Suv′w′. Thus, since uv′w′ is not small,

Suv′w′′ =
3

1
Suz′′Sz′′w′′

+ 1
Sv′z′′Sz′′w′′

+ 1
Suv′

≥ 1√
2
3
S
−1/2
uv′w′S0

−%in−3/2 + 1
2
S−1
uv′w′

> Slg.

(5.24)

So uv′w′′ is as desired for Case 1a.
Case 1b: Suz′ ≥ Sv′z′S0. The target triplet is uv′w′′. Let z′′ be the first
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node after z′ on the path from z′ toward z in Ψ. Then, Sv′z′′ ≥ Sv′z′S0. By
Lemma 5.3, S2

v′z′′ ≥ Suv′w′S
2
0/3. Next, since Suv′ ≥ Suw′ and Sz′v′ ≥ Sz′w′,

Suv′w′ ≤
3

2S−1
uv′ + S−1

v′z′S
−1
z′w′

≤ 3

2S−1
uz′S

−1
v′z′ + S−2

v′z′

≤ 3S2
uz′

2S0 + S2
0

.

Thus, S2
uz′′ > S2

uz′ > Suv′w′S
2
0 . Since Suv′ ≥ 2

3
Suv′w′ and uv′w′ is not small,

Suv′w′′ =
3

1
Suz′′Sz′′w′′

+ 1
Sv′z′′Sz′′w′′

+ 1
Suv′

>
1(

1+
√

3
3

)
S
−1/2
uv′w′S

−%in−2
0 + 1

2
S−1
uv′w′

> Slg.

(5.25)

So uv′w′′ is as desired for Case 1b.
Case 1c: Sv′z ≥ SuzS0. If Swz > Suz, the target triplet is wv′w′′; other-

wise, it is uv′w′′. The two cases are symmetric, and we assume Suz ≥ Swz.
Let z′′ be the first node after z on the path from z toward z′ in Ψ. Then,
Suz′′ ≥ SuzS0. By Lemma 5.3, S2

uz′′ ≥ S2
uzS

2
0 ≥ SuvwS

2
0/3. Since Suv′ ≥ Suw′

and Sv′w′ > 0,

Suv′w′ <
3

2S−1
uv′
≤ 3

2S−1
v′zS

−1
uz

≤ 3S2
v′z

2S0

.

Hence S2
v′z′′ > S2

v′z > 2Suv′w′S0/3. Then, since neither uv′w′ nor uvw is small
and Suv′ ≥ 2

3
Suv′w′,

Suv′w′′ =
3

1
Suz′′Sz′′w′′

+ 1
Sv′z′′Sz′′w′′

+ 1
Suv′

>
1

1√
3
S
−1/2
uvw S−%in−2

0 + 1√
6
S
−1/2
uv′w′S

−%in−3/2
0 + 1

2
S−1
uv′w′

> Slg.

(5.26)
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So uv′w′′ is as desired for Case 1c with Suz ≥ Swz.
Case 2. By symmetry, assume that z′ = u is a leaf in Ψ∗k. Then, since

k ≥ 3, z is an inner node in Ψ∗k. Let def(z) = {u, v, w}. By symmetry,
further assume Svz ≥ Swz. There are two subcases. If Suz < SvzS0, then the
proof is similar to that of Case 1a and the desired z′′ is in the middle of the
path between u and v in Ψ. Otherwise, the proof is similar that of Case 1b
and z′′ is the first node after z on the path from z toward u in Ψ. In both
cases, the desired triplet is uvw′′.
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5.E Trees used in the experiments

 

Figure 5.33: The 135-leaf tree of Maddison et al. (1992) — a phylogeny
of human populations
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Figure 5.34: The 500-leaf tree of Chase et al. (1993) — a phylogeny of
green plants
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Figure 5.35: The 1895-leaf tree based on the phylogeny of Eukaryotes
(Maidak et al. 2000)
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Figure 5.36: The 3135-leaf tree based on the phylogeny of Proteobacteria
(Maidak et al. 2000)



Chapter 6

Summary

Our comparative analysis of evolutionary tree reconstruction concludes by re-
capitulating what factors have made our results possible. We began our work
by explaining the pertinence of using evolutionary trees in conjunction with
biomolecular sequences such as genes and proteins. The first cursory overview
of our context set the framework for viewing the construction of evolution-
ary trees from homologous sequences as a probabilistic learning problem.
In particular, we stated the focal problem of our study as that of learning
evolutionary tree topologies from the sample sequences they generate.

The viability of the Markov model for sequence evolution was then ex-
plored. Two features of evolution made our recourse to Markov models par-
ticularly appropriate: first, that evolution is “memoryless” — inheritance
depends solely on the parents and not on the entire history of ancestors —,
and secondly, that mutations along different evolutionary branches occur in-
dependently from each other at the molecular level. Considering how random
taxon sequences form a Markov chain along any path in the tree, we offered
an axiomatic definition of phylogeny, noting importantly that the distribu-
tion is fully determined by the root sequence distribution and the sequence
transition probabilities. A particularly relevant implication of this definition
is that the evolutionary tree topology is a function of the joint taxon sequence
distribution, making topology recovery from sample sequences at least hypo-
thetically possible. We then set out to investigate the i. i. d. Markov model
in which the taxon sequence distribution is a product distribution of iden-
tical and independently distributed taxon labels corresponding to sequence
characters. An important feature of the i. i. d. Markov model is that the
number of parameters defining the phylogeny is finite, and sample sequences

195
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of increasing length convey an increasing amount of information about them.
We presented a number of subclasses of the i. i. d. Markov model as natural
extensions of commonly used nucleotide substitution rate models, accompa-
nied by novel results on the closedness of corresponding transition matrix
classes. We specifically discussed the Jukes-Cantor model, Kimura’s two
and three parameter models, the Hasegawa-Kishino-Yano model, and the
Gojobori-Ishii-Nei model.

We further delved into the problem of topology recovery by discussing the
nature of evolutionary distances and similarities, where we defined distance
as the logarithm of similarity. By treating distances as functionals of dis-
tributions over sequence pairs, we defined several axiomatic properties that
evolutionary distances possess, such as additivity along paths and symmetry.
We presented the Jukes-Cantor distance, Kimura’s three parameter distance,
and the paralinear distance, and proved that they exhibit the properties of
evolutionary distances. Further, we stated our novel result concerning the
uniqueness of evolutionary distances, specifically, that evolutionary distance
functions differ by only a constant factor in time-reversible mutation mod-
els with constant substitution rates. The additive property of evolutionary
distances was particularly important for our purposes, since it implied that
topologies could be recovered from distances between sample sequences. This
recognition led us to scrutinize methods for estimating evolutionary distances
from finite sample sequences. We derived novel upper bounds on the prob-
abilities of large deviations in the cases of Jukes-Cantor distance, Kimura’s
three parameter distance, and paralinear distance. In each case we showed
that the tail probabilities decrease exponentially with the sequence length
and the square of the similarities between the sequences involved.

We examined existing algorithmic approaches to evolutionary tree topol-
ogy reconstruction. We defined computational efficiency as polynomial run-
ning time in tree size, and statistical efficiency as successful topology recovery
from polynomially long sequences. Both efficiency requirements are essen-
tial for recovery of large trees with hundreds or thousands of nodes. We
offered a comprehensive overview of maximum-likelihood, character-based,
and distance-based algorithms. We noted that exact optimization algorithms
that select their output by minimizing a penalty function inevitably address
to NP-hard problems, and are not computationally efficient. This difficulty is
encountered with maximum-likelihood and character-based methods, as well
as with numerical taxonomy- and minimum evolution-related distance-based
algorithms. We pointed out the lack of statistical efficiency in the case of
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character-based methods due to their statistical inconsistency. We described
existing theoretical guarantees for successful topology recovery, specifically,
the three-point and four-point conditions. We presented the LogDet metric,
which is not an evolutionary distance according to our definition, but satisfies
the four-point condition, and can thus serve as a basis for topology recov-
ery with a distance-based algorithm. We analyzed the convergence speed of
the LogDet metric estimated from sample sequences. In particular, we de-
rived upper bounds on tail probabilities of the estimation error in a similar
form to our upper bounds for empirical evolutionary distances. We used our
error bounds to extend existing results on the sample length requirements
for distance-based algorithms to recover the topology. We remarked that
the sample length bounds for popular distance-base algorithms, including
Neighbor-Joining, are generally exponential in tree size.

Given the computational and statistical inadequacies of most existing al-
gorithms, we designed a family of novel distance-based methods satisfying
the criteria for statistical and computational efficiency. Our algorithms build
evolutionary trees by using triplets of leaves. The algorithms are based on
the “Harmonic Greedy Triplets” principle, which originates from our result
that in the case of the studied evolutionary distances and the LogDet met-
ric, the error committed in estimating the triplet centers depends on the
harmonic average of pairwise similarities between the triplet members. We
presented the Basic-HGT and Fast-HGT algorithms, where the former
runs in cubic time, and the latter in quadratic time in the number of tree
nodes. The algorithms use an input parameter that determines the shortest
distance between tree nodes. We presented another quadratic-time algo-
rithm, called HGT-FP, which uses the four-point condition, and eliminates
the need for the minimum distance input parameter. We proved that all
three algorithms are statistically efficient, and the sample length bounds for
the first two match the best asymptotic bounds of other statistically efficient
algorithms. In fact, our algorithms are the only known topology recovery al-
gorithms that are provably statistically efficient and run in cubic or quadratic
time. Based on simulation experiments, we offered a heuristic way of setting
the minimum distance parameter of Fast-HGT by employing the mini-
mum evolution principle. The resulting algorithm, called HGT-ME, runs
in O (n2 log `) time for a tree with n leaves and sample sequences of length `.
We compared the computational and statistical efficiency of our algorithms
to the efficiency of many existing methods in simulated experiments. Our
goal in the experiments was to evaluate the algorithms’ appropriateness for
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large-scale phylogeny reconstruction. Running time measurements of exist-
ing implementations showed the superior speed of HGT-FP requiring a few
seconds to reconstruct trees with thousands of leaves on a desktop computer,
in contrast to several minutes, hours, or even days in the case of other algo-
rithms. We compared the success of topology recovery between the HGT-

FP, HGT-ME, heuristic parsimony, and several distance-based algorithms,
such as Neighbor-Joining. In the experiments we simulated sequence evolu-
tion in the Jukes-Cantor model along biologically motivated trees with 135,
500, 1895, and 3135 leaves, with varying mutation probabilities and sample
sequence lengths. In summary, we found that heuristic parsimony performs
very well, but its slow speed hinders its use with large trees; that Neighbor-
Joining is viable in the case of small mutation probabilities but still fails to
recover about 1% of the edges from realistic sample lengths, and performs
poorly when mutation probabilities are large; and that HGT-FP achieves
high success rates when mutation probabilities are large, and fails to recover
5–7 times as many edges as Neighbor-Joining when mutation probabilities
are small. Moreover, HGT-FP tends to achieve even higher success rates
as the tree size increases. The theoretical results and the simulation exper-
iments show that large-scale phylogeny recovery is feasible with distance-
based methods in Markov models of evolution, and our HGT-FP algorithm
is particularly useful where other distance-based methods fail. The success
of our algorithms is attributable to the greedy selection lying at their core.
They do not aim to optimize any explicit penalty function but strive to re-
cover the topology as correctly as possible. As a result, they avoid theoretical
and experimental weaknesses of optimization methods.

The path we followed in our dissertation led from molecular sequences
and mathematical sequence evolution models, to the design of algorithms
with superior efficiency within these models. We hope that in the future we
will be able to close this conceptual circle, and that the algorithms will prove
useful for molecular evolutionary studies based on biomolecular sequences.



Notations and abbreviations

Notations

I{·} indicator variable

G graph (page 7)

T tree (page 8)

V set of all vertices or taxa

L subset of all vertices, usually the set of leaves

E set of all edges

u, v, w, z vertices or taxa

' graph isomorphism (page 10)

'
L

graph isomorphism with equality on node set L (page 10)

A,A+ alphabet, set of positive length sequences

m = |A| alphabet size

s, t sequences

S language: possible values of taxon sequences

X(u) random taxon sequence associated with node u ( page 10)

X
(u)
i i-th character of the random taxon sequence

P evolutionary tree (page 10)
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Ψ(P) topology — graph obtained from P by removing the direction
of the edges (page 11)

C hypothesis class of evolutionary trees (page 13)

Me edge mutation matrix (page 20)

M(k)
uv mutation matrix for k-th sequence position (page 21)

Muv mutation matrix in i. i. d. Markov model (page 25)

M class of mutation matrices

ξ(u) random taxon label taking values in A (page 25)

π(0) root symbol distribution in i. i. d. Markov model (page 22)

π(u) = 〈π(u)
1 , . . . , π(u)

m 〉 taxon label distribution (page 25)

Q constant substitution rate matrix (page 26)

τ evolutionary time

` sequence length in i. i. d. Markov model

S similarity (page 47)

D distance (page 47)

Juv matrix of joint distribution for nodes u, v (page 59)

Ŝ empirical similarity

D̂ empirical distance

M̂ empirical mutation matrix (page 77)

%in, %out inner and outer radius of a tree (see page 115)

∆ distance matrix, tree metric (page 95)

∆̂ estimated distance matrix (page 95)

u↘v node v is in the right subtree of node u (page 126)
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v↙u node v is in the left subtree of node u (page 126)

v

↑
u

node v is neither in the left not in the right subtree of node u

(page 126)

RF% Robinson-Foulds error (page 164)

Abbreviations

i. i. d. independent identically distributed (page 22)

PAM point accepted mutation (page 26)

JC Jukes-Cantor model

K2P Kimura’s two parameter model

K3P Kimura’s three parameter model

TK Takahata-Kimura model

HKY Hasegawa-Kishino-Yano model

GIN Gojobori-Ishii-Nei model

UNJ Unweighted Neighbor Joining algorithm
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sites needed to accurately reconstruct large evolutionary trees. Techni-
cal Report 96-19, DIMACS.

Steel, M. A. (1992). The complexity of reconstructing trees from qualita-
tive characters and subtrees. Journal of Classification 9, 91–116.

Steel, M. A. (1994a). The maximum likelihood point for a phylogenetic
tree is not unique. Systematic Biology 43, 560–564.

Steel, M. A. (1994b). Recovering a tree from the leaf colourations it gen-
erates under a Markov model. Applied Mathematics Letters 7, 19–24.

Strimmer, K. and A. von Haeseler (1996). Quartet puzzling: a quartet
maximum likelihood method for reconstructing tree topologies. Molec-
ular Biology and Evolution 13, 964–969.

Studier, J. A. and K. J. Keppler (1988). A note on the neighbor-joining
method of Saitou and Nei. Molecular Biology and Evolution 5, 729–731.

Suzuki, T. and K. Imai (1998). Evolution of myoglobin. Cellular and
Molecular Life Sciences 54, 979–1004.

Swofford, D. L. (1990). PAUP: Phylogeny Analysis Using Parsimony, ver-
sion 3. Champaign, Ill.: Illinois Natural History Survey.

Swofford, D. L., G. J. Olsen, P. J. Waddell, and D. M. Hillis (1996).
Phylogenetic inference. In D. M. Hillis, C. Moritz, and B. K. Mable
(Eds.), Molecular Systematics (2nd ed.)., Chapter 11, pp. 407–514.
Sunderland, Mass.: Sinauer Associates.

Takahata, N. and M. Kimura (1981). A model of evolutionary base sub-
stitutions and its application with special reference to rapid change of
pseudogenes. Genetics 98, 644–657.

Tavaré, S. (1986). Some probabilistic and statistical problems in the anal-
ysis of DNA sequences. In Lectures on mathematics in the life sciences,



BIBLIOGRAPHY 218

Volume 17, Providence, Rhode Island, pp. 57–86. American Mathemat-
ical Society.
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