
Ancestral reconstruction by asymmetric Wagner
parsimony over continuous characters and

squared parsimony over distributions

Miklós Csűrös
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C.P. 6128, succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
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Abstract. Contemporary inferences about evolution occasionally in-
volve analyzing infinitely large feature spaces, requiring specific algo-
rithmic techniques. We consider parsimony analysis over numerical char-
acters, where knowing the feature values at terminal taxa allows one
to infer ancestral features, namely, by minimizing the total number of
changes on the edges using continuous-valued distance measures. In par-
ticular, we show that ancestral reconstruction is possible in linear time
for both an asymmetric linear distance measure (Wagner parsimony) over
continuous-valued characters, and a quadratic distance measure over fi-
nite distributions. The former can be used to analyze gene content evo-
lution with asymmetric gain and loss penalties, and the latter to recon-
struct ancestral diversity of regulatory sequence motifs and multi-allele
loci. As an example of employing asymmetric Wagner parsimony, we
examine gene content evolution within Archaea.

1 Introduction

Phylogenetic studies commonly operate with molecular sequence data, where
homologous characters take values over a finite space. When working with char-
acters such as numbers of paralogs within homologous gene families, allele fre-
quencies, sequence length polymorphisms, or DNA sequence motif distributions,
the analysis of theoretically infinite feature spaces becomes necessary [1]. In such
situations, one can resort to parsimony criteria to infer ancestral states, or score
candidate phylogenies by minimizing the total change of the feature in question.
Change is quantified by using different types of distance measures which are
appropriate for the study. A popular parsimony criterion for features that can
be ordered linearly is the so-called Wagner parsimony [2, 3] in which change is
penalized simply by the absolute value of the numerical difference on an edge.
Another criterion used sometimes is the minimization of squared distance be-
tween the numerical values [4].

Wagner parsimony has been used to infer the evolution of gene family size.
Change in the family size, however, is not always equally likely in both directions,



as losses may be more frequent than gains, or vice versa. We propose a mod-
ification of the original Wagner parsimony criterion for such situations, where
increases and decreases are penalized linearly, but with different penalty factors.
We discuss the resulting optimization problem, and show how to compute the
parsimony score, as well as the ancestral states in linear time, regardless of the
actual values at the terminal taxa. We also show that squared parsimony over fi-
nite distributions can be computed efficiently, by performing the minimization in
each coordinate separately, without considering the restriction to the probability
simplex.

We demonstrate the utility of asymmetric Wagner parsimony by an analysis
of gene content evolution in Archaea.

2 Algorithmic results

2.1 Problem statement

Consider the following general parsimony framework, introduced by Sankoff and
Rousseau [5]. Let T = (V,E) be a rooted tree that represents a phylogeny, with
node set V and edge set E. The set of tree leaves is denoted by L. It is assumed
that every non-leaf node has at least two children. Each node u ∈ V is associated
with a label ξ[u] ∈ X where X is the space of possible labels. The focus of
this study is the case when X is a numerical infinite space such as X = Rd or
X = {0, 1, 2, . . . }. The label space is equipped with a change weight function
∆ : X2 7→ [0,∞). (Classically, ∆ is a proper distance metric, but we will consider
asymmetric functions, as well.) We are interested in the following problem.

General parsimony labeling problem Given the tree T , label space (X, ∆),
and fixed assignments ξ[u] at the leaves u ∈ L, find ξ[v] for all inner nodes
v ∈ V \ L that minimize the total change∑

uv∈E

∆(ξ[u]→ ξ[v]).

The problem in this form was introduced in [5] as a Steiner tree problem [6]
with a distance metric ∆. Some specific cases of the general problem have been
extensively studied. The case of nonnegative integers X = N and ∆(y → x) =
|y − x|, is known as Wagner parsimony that can be solved in linear time [2, 3].
The case X = R and ∆(y → x) = (y−x)2 is known as squared parsimony, which
also has a linear-time solution [4]

The parsimony labeling problem is encountered in phylogenetic studies when
one wants to estimate the ancestral state of some feature that is represented by
the labels [7, 8]. An unknown phylogeny can also be inferred by searching for the
topology T over the leaf set L that minimizes the parsimony score [1].

Features in question may be (continuous-valued) allele frequencies, in which
case squared-parsimony is in fact equivalent to likelihood maximization under
a Brownian motion model [4, 1]. Wagner parsimony has been used to infer the



evolution of sequence length polymorphisms [9], genome size [10], and gene family
size.

2.2 General solution by dynamic programming

The general parsimony problem has a solution by dynamic programming, as
elucidated in the pioneering paper of Sankoff and Rousseau [5]. The key idea is
to define the subtree weight functions fu : X 7→ [0,∞] for each node u ∈ V, so
that fu(x) gives the minimum weight within the subtree Tu rooted at u when
ξ[u] = x. For leaves, fu(x) = 0 if x = ξ[u]; otherwise, fu(x) = ∞. For an inner
node u, the following recursion holds.

fu(y) =
∑

v∈children(u)

min
x∈X

(
∆(y → x) + fv(x)

)
. (1)

For every edge uv ∈ E, define the stem weight functions

hv(y) = min
x∈X

(
∆(y → x) + fv(x)

)
, (2)

so that
fu(y) =

∑
v∈children(u)

hv(y). (3)

The minimum total weight is then miny froot(y), and the optimal labeling can
be determined by backtracking. For a finite label space, the general solution
takes O(|X|2) time on each edge. For an infinite space, it is not immediately
clear how the minimization can be done in practice. Luckily, it is possible to
compute f and h efficiently in many important cases [2, 4, 5].

2.3 Asymmetric Wagner parsimony

Often, the labels represent features that are more easily lost than gained [11,
7]. Gene content evolution, in particular, is characterized by frequent gene loss,
which may be properly captured in parsimony methods by penalizing gains more
than losses [12]. We define the asymmetric Wagner parsimony problem as that
of general parsimony labeling when

X ⊆ R and ∆(y → x) =

{
γ(x− y) if y < x;
λ(y − x) if x < y,

where γ, λ > 0 are gain and loss penalty factors, respectively. The pivotal obser-
vation for an algorithmic solution is given by the following lemma; the claim is
illustrated in Figure 1.

Lemma 1. For every non-leaf node u ∈ V \ L, the subtree weight function is a
continuous, convex, piecewise linear function. In other words, there exist k ≥ 1,



α0 < α1 < · · · < αk, x1 < x2 · · · < xk, and φ0, . . . , φk ∈ R that define fu in the
following manner.

fu(x) =



φ0 + α0x if x ≤ x1;
φ1 + α1(x− x1) if x1 < x ≤ x2;
. . .

φk−1 + αk−1(x− xk−1) if xk−1 < x ≤ xk;
φk + αk(x− xk) if xk < x,

(4)

where φ1 = φ0 +α0x1 and φi+1 = φi+αi(xi+1−xi) for all 0 < i < k. Moreover,
if u has d children, then a0 = −dγ and ak = dλ.
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Fig. 1. Illustration of Lemma 1. Left: for asymmetric Wagner parsimony, the subtree
weight function f is always piecewise linear with slopes a0, . . . , ak (k = 5 here). Right:
the stem weight function h is determined by the two auxiliary functions h+ and h−,
which are obtained by “shaving off” the steep extremities of f , and replacing them
with slopes of −γ, and λ, respectively.

Proof. The proof proceeds by induction over the tree in a postorder traversal,
following the recursion of (1). By the definition of ∆, if v is a leaf, then

hv(x) =

{
γ(ξ[v]− x) if x ≤ ξ[v];
λ(x− ξ[v]) if ξ[v] < x.

(5)

Base case. If all d children of u are leaves, then (3) and (5) imply that (4)
holds with some k ≤ d, α0 = −dγ and αk = dλ. For a more precise charac-
terization, let C be the set of children of u, and consider the set of leaf labels
S =

{
ξ[v] : v ∈ C

}
. Then k = |S|, and {x1, . . . , xk} = S. Furthermore, for all

i = 1, . . . , k, αi = tiλ− (d− ti)γ with ti =
∑
v∈C{ξ[v] ≤ xi}, where {·} denotes

the indicator for the event within the braces; i.e., ti is the number of children
that carry a label that is not larger than xi. Finally, φ0 = γ

∑
v∈C ξ[v].



Induction step. Assume that u is an inner node at which (4) holds for
every non-leaf descendant. Let v be a non-leaf child of u. By the induction
hypothesis, fv(x) is a piecewise linear function as in (4) with some parameters
(αi : i = 0, . . . , k), and (xi : i = 1, . . . , k).

In order to compute hv(y) = minx∈X

(
∆(y → x) + fv(x)

)
, consider the two

minimization problems over X split into half by y:

h+
v (y) = min

x∈X;x>y

(
γ(x− y) + fv(x)

)
h−v (y) = min

x∈X;x≤y

(
λ(y − x) + fv(x)

)
.

Clearly, hv(y) = min
{
h+
v (y), h−v (y)

}
. Figure 1 illustrates the shapes of h+

and h−.
Recall that α0 < α1 < · · · < αk by the induction hypothesis. Since the

constant term (−γy) can be ignored in the minimization for h+, the solution is
determined by the point x+ = xj with j = min{i : αi + γ ≥ 0}. In particular,

h+
v (y) =

{
γ ·
(
x+ − y

)
+ fv

(
x+
)

if y < x+;
fv(y) if y ≥ x+.

In a similar manner, let x− = xj with j = min{i : αi − λ ≥ 0}. Then

h−v (y) =

{
fv(y) if y < x−;
λ ·
(
y − x−

)
+ fv

(
x−
)

if y ≥ x−.

Notice that the induction hypothesis implies that x+ ≤ x−, since α0 +γ < 0 and
αk−λ > 0 hold. By the definition of x+ and x−, it is also true that h+

v (y) ≤ fv(y)
if y < x+, and that h−v (y) ≤ fv(y) if y ≥ x−. Hence, hv is a piecewise linear
function in the form

hv(y) =


γ ·
(
x+ − y

)
+ fv

(
x+
)

if y < x+;
fv(y) if x+ ≤ y < x−;
λ ·
(
y − x−

)
+ fv

(
x−
)

if y ≥ x−.
(6)

The formula also shows that when ξ[u] = y, the best labeling for v is either
x = x+ for y < x+ (i.e., net gain on edge uv), or x = x− for y ≥ x− (i.e., net
loss), or else x = y (no change).

Equations (5) and (6) show that hv(y) is always a continuous, convex, piece-
wise linear function with slopes (−γ) on the extreme left and λ on the extreme
right. Consequently, fu(y) =

∑
v∈children(u) hv(y) is also a continuous, convex,

piecewise linear function, with slopes (−dγ) on the left and dλ on the right.
Hence, the induction hypothesis holds for u. ut

The proof provides the recipe for implementing the dynamic programming
of (1). The algorithm has to work with piecewise linear functions as in (4),



parametrized by the set of slopes (αi : i = 0, . . . , k), breakpoints (xi : i = 1, . . . , k)
and shift φ0. The parameters are naturally sorted as α0 < α1 < · · · < αk and
x1 < x2 < · · · < xk, and can be thus stored as ordered arrays. The algorithm is
sketched as follows.

W1 Dynamic programming for asymmetric Wagner
W2 initialize hu(·) and fu(·) as null at each node u ∈ V

W3 for all nodes u in postorder traversal
W4 if u is a leaf
W5 then set hu(x) as in (5)
W6 else . hv(x) is computed for all children v already
W7 compute fu(x) =

∑
v∈children(u)

hu(x)

W8 if u is not the root then compute hu(y) by (6)
W9 find the minimum of froot(x)
W10 backtrack for the optimal labeling if necessary

Theorem 1. For a tree T of height h and n = |V| nodes, asymmetric Wagner
parsimony can be solved in O

(
nmin{h,D} log dmax

)
time where D is the number

of different leaf labels and dmax is the maximum arity.

Proof. First, notice that the breakpoints at each fu and hu are exactly the
set of different leaf labels in the subtree rooted at u, with at most D elements.
Line W5 takes O(1) time at each leaf. In Line W8, a binary search for x+ and x−

takes O(log k) time if there are k breakpoints. In Line W7, piecewise linear
functions need to be summed, which can be done by straightforward modification
of well-known linear-time merging algorithms for ordered lists [13]. In order
to sum the piecewise linear functions, the breakpoints must be processed in
their combined order, and the intermediate slopes need to be computed. The
procedure takes O(k log d) time, if the node has d children, and there are a total
of k breakpoints at the children’s stem weight functions. Now, k ≤ D, and, thus,
every node can be processed in O(D log dmax) time. The O(nh log dmax) bound
comes from the fact that k is bounded by the number of leaves in the subtree.
The total computing time for nodes that are at the same distance from the
root is then O(n log dmax). By summing across all levels, we get O(nh log dmax)
computing time. ut

Remark. Lemma 1 and its proof show that there is an optimal solution
where every non-leaf node carries a label that appears at one of the leaves.
Accordingly, it is enough to keep track of fu(x) only where x takes one of the leaf
label values. Adapting Sankoff’s general parsimony algorithm over the discrete
finite label space defined by the D label values of interest yields an O(nD2)
algorithm.

2.4 Squared parsimony

In certain applications, node labels are distributions such as allele frequen-
cies [14], or probabilistic sequence motifs [15]. Suppose, for example, that we



identified homologous regulatory sequence motifs in some genomes related by a
known phylogeny. A particular instance of the motif is a DNA oligomer s1s2 · · · s`
with a fixed length `. From the set, we compile sequence motifs describing each
terminal node by the labels ξis[u], which give the relative frequency of each nu-
cleotide s at motif position i = 1, . . . , `. From the node labels, we would like to
infer the compositional distribution of the motif at ancestral nodes. In a recent
example, Schwartz and coworkers [15] examined the evolution of splicing signals
in eukaryotes. The authors deduced that the 5’ splice site and the branch site
were degenerate in the earliest eukaryotes, in agreement with previous studies
by Irimia and coworkers [16]. These findings are intriguing as they hint at the
prevalence of alternative splicing in the earliest eukaryotes. Schwartz et al. [15]
reconstructed the diversity of ancestral splicing signals by using a squared change
penalty ∆(y→ x) =

∑`
i=1

∑
s=A,C,G,T

(
xis − yis

)2. An equivalent sum-of-squares
penalty was suggested by Rogers [14] in a different context, where i = 1, . . . , `
would stand for genetic loci and s would index possible alleles at each locus.
Since the positions can be handled separately, we consider the problem of gen-
eral parsimony at a given position. Specifically, we assume that the labels are
distributions over a finite set A = {1, 2, . . . , r}. The change penalty is defined by

∆(y→ x) =
∑
s∈A

(
xs − ys

)2
.

The case of a binary alphabet r = 2 was shown to be solvable in linear time
by Maddison [4]. The algorithm is stated for the general parsimony problem
with X = R and ∆(y → x) = (y − x)2. While Maddison’s algorithm is triv-
ially extended to any dimension with X = Rr and ∆(y → x) =

∑
i(yi − xi)2,

the extension to distributions with r > 2 is not immediately obvious. In [15],
the distributions were discretized to an accuracy of 0.02, and then solved on
the corresponding grid by using Sankoff’s dynamic programming. Notice that
there are 23426 such discretized distributions, and dynamic programming over
a finite alphabet takes quadratic time in the alphabet size. Here we show that
Maddison’s algorithm can be carried out at each coordinate independently, as
the computed solution is automatically a distribution.

Squared parsimony for a continuous character

For a discussion, we restate the result of [4].

Lemma 2. In the general parsimony problem with X = R and ∆(y → x) =
(y−x)2, subtree weight functions are quadratic. In other words, at each non-leaf
node u, there exist α, µ, φ ∈ R such that

fu(x) = α(x− µ)2 + φ. (7)

Proof. We will use the simple arithmetic formula that

d∑
i=1

αi(x− µi)2 = α(x− µ̄)2 + α
(
µ(2) − (µ̄)2

)
(8)



with

α =
d∑
i=1

αi, µ̄ =
∑d
i=1 αiµi∑d
i=1 αi

, µ(2) =
∑d
i=1 αiµ

2
i∑d

i=1 αi
.

The proof proceeds by induction over the tree in a postorder traversal, fol-
lowing the recursion structure of Eq. (1).

Base case. Let u be an inner node with d children {v1, . . . , vd} that are all
leaves. By (1),

fu(y) =
d∑
i=1

(y − ξ[vi])2.

Hence (8) applies with αi = 1 and µi = ξ[vi]. Specifically, (7) holds with µ =∑d
i=1 ξ[vi]/d.
Induction step. Suppose that u is an inner node with d children {v1, . . . , vd},

which are all either leaves, or inner nodes for which (7) holds. Let v = vi be an
arbitrary child node. If v is a leaf, then hv(y) = (y− ξ[v])2. If v is an inner node
with fv(x) = α(x− µ)2 + φ, then

hv(y) = min
x

(
(y − x)2 + α(x− µ)2 + φ

)
= min

x

{
(α+ 1)

(
x− y + αµ

α+ 1

)2
}

+
α

α+ 1
(y − µ)2 + φ

=
α

α+ 1
(y − µ)2 + φ.

Notice that the best labeling at v is achieved with x = y+αµ
α+1 .

Consequently, the stem weight function can be written as hvi
(x) = αi(x −

µi)2 + φi for every child vi with some αi, µi, φi ∈ R. By (3),

fu(x) =
d∑
i=1

(
αi(x− µi)2 + φi

)
= α(y − µ̄)2 + φ,

where φ = α
(
µ(2) − (µ̄)2

)
+
∑d
i=1 φi, and α, µ̄, µ(2) are as in (8). Therefore, (7)

holds at u. ut
The proof of Lemma 2 shows how the parameters α and µ need to be com-

puted in a postorder traversal. Namely, for every node u, the following recursions
hold for the parameters α = αu and µ = µu of (7).

αu =

{
undefined if u is a leaf;∑
v∈children(u) βv otherwise;

(9a)

µu =

ξ[u] if u is a leaf;∑
v∈children(u)

βvµv∑
v∈children(u)

βv
otherwise;

(9b)

where

βv =

{
1 if v is a leaf;
αv

αv+1 otherwise.
(9c)



Squared parsimony for distributions

Suppose that the nodes are labeled with finite distributions over a set A =
{1, 2, . . . , r}. Accordingly, we write ξi[u] with i = 1, . . . , r for the i-th probability
value at each node u. Node labelings are scored by the square parsimony penalty:
∆(y→ x) =

∑r
i=1(yi−xi)2, where y and x are distributions over A, i.e., points

of the (r − 1)-dimensional simplex in Rr defined by 0 ≤ ξi[u] for all i, and∑r
i=1 ξi[u] = 1. Suppose that one carries out the minimization coordinate-wise,

for each i separately, without making particular adjustments to ensure that the
ancestral labels also define a distribution. By Lemma 2, such an independent
ancestral reconstruction finds the subtree weight functions of the form fu,i(x) =
αu
(
x−µu,i

)2 +φu,i in each coordinate i. (Equations (9a) and (9c) show that αu
and βu are determined by the tree topology alone, and are thus the same in each
coordinate.)

Theorem 2. The coordinate-wise independent ancestral reconstruction produces
the optimal solution for distributions.

Proof. Let fu,i(x) denote the subtree weight function for coordinate i at node u.
Clearly,

∑r
i=1 fu,i(xi) is a lower bound on the true subtree weight function

fu(x1, . . . , xr) for the distributions. Consequently, it is enough to show that
the solution by coordinate-wise reconstruction leads to valid distributions. From
Equation (9b), if u is an inner node, then

∑r
i=1 µu,i =

∑
v∈children(u)

βv

αu

∑r
i=1 µv,i.

As
∑r
i=1 µu,i = 1 holds at every leaf u, the equality holds at all nodes by in-

duction. It is also clear that µu,i ≥ 0 is always true, since βv is never nega-
tive. In particular, the optimal labelings at the root define a distribution with
ξi[root] = µroot,i.

In the proof of Lemma 2, we showed that if the parent of an inner node v
is labeled by y = (y1, . . . , yr), then the optimal labeling at v is ξi[v] = xi =
yi+αvµv,i

αv+1 . Now,
∑r
i=1 xi =

∑
i
yi+αv

∑
i
µv,i

αv+1 = 1 if
∑
i yi = 1 holds. Since the

independent ancestral reconstructions produce a distribution at the root, the
backtracking procedure produces a distribution at every inner node v. ut

3 Gene content evolution in Archaea

We applied asymmetric Wagner parsimony to the analysis of gene content evo-
lution in Archaea. We note that parsimony-based analysis has its well-known
shortcomings, such as the underestimation of gene loss, and the imposition of
uniformity across lineages and genes, which may be avoided with sophisticated
probabilistic methods [17, 18]. Nevertheless, parsimony may give important in-
sights by providing a conservative estimate of ancestral gene content, and by
underlining some general idiosyncrasies without much procedural difficulty.

Makarova and coauthors [19] delineated homologous gene families across 41
completely sequenced and annotated archaeal genomes. They analyzed some
characteristic features of archaeal genome evolution, and extrapolated the gene



composition of the last archaeal common ancestor, or LACA. The analysis re-
lied on so-called phyletic profiles, which are binary patterns of family presence-
absence, in conjunction with parsimony-based ancestral reconstruction algo-
rithms [20]. In our analysis, we used the available information on the number of
paralogs within different genomes.

3.1 Data and methods

Data was downloaded from ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG.
The data set defines 7538 families (so-called archaeal clusters of orthologous
genes, or arCOGs) in 41 genomes. Figures 2 and 3 show the organisms and their
phylogenetic relationships. The abbreviations are those used in [19] and the
arCOG database: the Appendix lists the organism names and the abbreviations.
The archaeal phylogeny is based on the one used by Makarova et al. (Figure 7
in [19]) for inferring gene content evolution, using additional considerations to
partially resolve certain polytomies. Namely, we assume the monophyly of the
Pyrococcus genus within Thermococcales [21], and the monophyly of Metha-
nomicrobia excluding Halobacteriales [22], as depicted in Figure 3.

In order to perform the analysis, an adequate gain and loss penalization
needed to be chosen. The ratio between the two penalty factors influences how
much of the reconstructed history is dominated by gene loss [12]. Since the
inference depends only on the ratio of the gain and loss penalties, we set λ = 1,
and performed the reconstruction at different gain penalties γ. We selected a gain
penalty of γ = 1.6, matching the estimate of [19] the closest. The reconstruction
results in a LACA genome of 984 families and 1106 genes, which is similar in
the corresponding statistics to such extant archaea as Methanopyrus kandleri
(Metka; 1121 arCOGs with 1336 genes) and Cenarchaeum symbiosum (Censy;
918 arCOGs with 1296 genes).

3.2 Results

Gene content at LACA. The reconstructed set of ancient families contains 96
families inferred as present, and 107 as absent in contradiction with [19]. The
two reconstructions qualitatively give a very similar picture, pointing to a LACA
genome complexity comparable to the simplest free-living prokaryotes such as
Mycoplasma. Table 1 shows a summary of the functional categorization for the
inferred primordial gene families. Among the gene families present in LACA, 91
(9%) included more than one gene. The majority of these families (77 of 91)
have closer homologs among Bacteria than among Eukaryota, which would be
expected if Archaea emerged from a bacterial lineage. These multi-gene families
are indicative of ancestral adaptations: notable cases include reverse gyrase (2
paralogs), hinting at a hyperthermophilic LACA, and various genes implicated
in pyruvate oxidation that has a pivotal importance in archaeal metabolism [21].

Losses and gains of families. Figures 2 and 3 show further details of the an-
cestral reconstruction. Using asymmetric Wagner parsimony, it was possible to



Cat(a) Description(b) Multi(c) Fam(d)

Information storage and processing
J Translation 4 153
K Transcription 6 59
L Replication 7 57

Cellular processes and signaling
D Cell cycle control 3 5
V Defense mechanisms 3 19
T Signal transduction mechanisms 2 8
M Cell wall, membrane and envelope biogenesis 7 23
N Cell motility 1 5
U Intracellular trafficking and secretion 1 11
O Posttranslational modification, protein turnover, chaperones 5 41

Metabolism
C Energy production and conversion 10 77
G Carbohydrate transport and metabolism 6 37
E Amino acid transport and metabolism 14 101
F Nucleotide transport and metabolism 3 46
H Coenzyme transport and metabolism 3 70
I Lipid transport and metabolism 2 23
P Inorganic ion transport and metabolism 1 45
Q Secondary metabolites biosynthesis, transport and catabolism 1 23

R,S Poorly characterized or unknown 12 197

Total 91 984

Table 1. Ancestral gene content at LACA. Columns: (a) arCOG functional category
code, (b) functional category description, (c) LACA families with more than one mem-
ber, (d) total number of families at LACA.

postulate expansions and reductions within gene families, in addition to the fam-
ilies’ appearance and elimination. Numerous losses, just as in the reconstruction
of [19], are associated with symbiotic lifestyles (Censy and Naneq). Our studies
also agree on examples of significant losses coupled with major gains in Thermo-
coccales (node 7) and Thermoplasmales (node 9), hinting at unusually dynamic
genomes. Our reconstructions of lineage-specific changes, however, often differ
numerically, as illustrated in Table 2. Namely, Wagner parsimony tends to pos-
tulate fewer genes at inner nodes, and family gains on deep branches also tend to
be lower. Our reconstruction seems more conservative, and at times even more
plausible. For instance, we posit major gains in Desulfurococcales and Sulfolob-
ales (nodes 4 and 5) lineages, whereas [19] postulates an extremely large genome
for their common ancestor (node 3) instead.

Patterns of diversification. Interestingly, large losses are not always associated
with compact genomes: Methanosarcina species (cf. Fig. 3) are among the ar-
chaea with the largest genomes, but terminal lineages have disposed of many
families to end up with their current gene repertoire. The finding points to
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Fig. 2. Changes of gene repertoire in main lineages. On each branch, we computed
the number of arCOG families gained and lost, as well as those that were retained
but underwent changes in the number of paralogs (i.e., expansions or reductions). The
numbers are shown in the small tables, in which darkened cells highlight major losses
and gains. Correspondence between numbered nodes and taxonomic groups is given in
Table 2. The subtree below node 11 is shown in Figure 3.

different paths of specialization from a versatile ancestor, accompanied by the
elimination of redundant functions.

On branches leading to major lineages, newly appearing families typically
outnumber expanding families by a factor of two to eight. It is not surprising
that gains on those branches would be so frequent: the substantial differences
in lifestyles are presumably possible only by acquiring genes with adequate new
functionalities through lateral transfer or other means of evolutionary innova-
tions. At the same time, terminal branches often display abundant family ex-
pansions: in 29 of the 41 terminal lineages, there are less than twice as many
newly acquired genes than expanding families. This point is illustrated in Fig-
ure 3, showing a detailed reconstruction within a subtree. The most dramatic
expansions are seen in Sulfolobales (below node 5 in Fig. 2), Methanosarcina and
Halobacteriales (cf. Fig. 3). The branches leading to the progenitors of the same
groups are precisely those with the most gains inferred in this study. The abun-
dance of expansions is not a simple consequence of relatively large genome sizes,
since expansions are frequent even in relative terms. Within Halobacteriales,
7.5–18% of families expanded on terminal branches; on the terminal branches
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Node number Group Presence Gain Presence Gain

1 Crenarchaeota 1148 185 1245 291
2 Thermoproteales 1339 266 1404 237
3 Thermoprotei 1139 77 2128 928
4 Desulfurococcales 1263 209 not shown
5 Sulfulobales 1801 741 not shown
6 Euryarchaeota 1194 224 1335 349
7 Thermococcales 1413 465 1715 720
8 Pyrococcus 1562 166 not shown
9 Thermoplasmales 1134 342 1474 643
10 “Class I” methanogens 1205 164 1563 415

Table 2. Inferred gene content history in major linages. “Presence” columns give the
number of arCOG families inferred at the listed taxonomic groups. “Gain” columns
list the number of families that appear on the branch leading to the listed nodes.

of M. hungatei (Methu) and M. acetivorans (Metac), more than 12% of families
did, in contrast with an overall average of 5.7% on terminal branches.

The observed patterns exemplify adaptations to new environments. Such an
adaptation may be prompted by the acquisition of new functions, with ensuing
series of gene duplications that lead to sub-functionalization, and, thus, special-
ization. A further scrutiny of such scenarios, is unfortunately difficult, because
a substantial number of lineage-specific expansions are within poorly character-
ized families. In the most extreme case of H. marismortui (Halma), for example,
126 (31%) of 396 expanding families are poorly characterized. The top arCOG
functional categories represented by the remaining expansions are C (energy: 35
families), E (amino acid metabolism: 33), K (transcription: 26), and T (signal
transduction: 25). The functional variety of lineage-specific expansions illustrates
the wide-ranging consequences of adapting to extreme environments.

4 Conclusion

When small data sets need to be analyzed, or reasonable assumptions for proba-
bilistic analysis are not available, parsimony is a well-justified method of choice.
Even in phylogenetic reconstructions, parsimony may enjoy an advantage over
sophisticated likelihood methods, as it enables the faster exploration of the search
space by quick scoring of candidate phylogenies [1]. The present work augments
the set of parsimony tools available for the analysis of numerical evolutionary
characters in a range of applications, including the analysis of gene content,
regulatory motifs, and allele frequencies.
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A Species names and abbreviations

The following organisms are included in the study.

Aerpe Aeropyrum pernix, Arcfu Archaeoglobus fulgidus, Calma Caldivirga maquilin-

gensis IC-167, Censy Cenarchaeum symbiosum, Halma Haloarcula marismortui ATCC

43049, Halsp Halobacterium species strain NRC-1, Halwa Haloquadratum walsbyi,

Hypbu Hyperthermus butylicus, Metac Methanosarcina acetivorans, Metba Methanosarcina

barkeri fusaro, Metbu Methanococcoides burtonii DSM 6242, Metcu Methanoculleus

marisnigri JR1, Methu Methanospirillum hungatei JF-1, Metja Methanocaldococ-

cus jannaschii, Metka Methanopyrus kandleri, Metla Methanocorpusculum labre-

anum Z, Metma Methanosarcina mazei, MetmC Methanococcus maripaludis C5,

Metmp Methanococcus maripaludis S2, Metsa Methanosaeta thermophila PT, Metst

Methanosphaera stadtmanae, Metth Methanothermobacter thermoautotrophicus, Naneq

Nanoarchaeum equitans, Natph Natronomonas pharaonis, Picto Picrophilus torridus

DSM 9790, Pyrab Pyrococcus abyssi, Pyrae Pyrobaculum aerophilum, Pyrca Pyrobac-

ulum calidifontis JCM 11548, Pyrfu Pyrococcus furiosus, Pyrho Pyrococcus horikoshii,

Pyris Pyrobaculum islandicum DSM 4184, Stama Staphylothermus marinus F1, Su-

lac Sulfolobus acidocaldarius DSM 639, Sulso Sulfolobus solfataricus, Sulto Sulfolobus

tokodaii, Theac Thermoplasma acidophilum, Theko Thermococcus kodakaraensis KOD1,

Thepe Thermofilum pendens Hrk 5, Thete Thermoproteus tenax, Thevo Thermo-

plasma volcanium, Uncme Uncultured methanogenic archaeon.


