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Figure 1: Our system is able to generate PRT coefficients for a dynamically animated character in real-time with a low memory footprint
(see Table 2.) Compared to un-shadowed shading using irradiance environment maps (first column), our results clearly improve the visual
quality of an animated object. Low memory requirements, fast model fitting and a simple runtime algorithm make our approach suitable for
interactive applications, such as games.

Abstract

We present a data-driven technique for generating the precomputed
radiance transfer vectors of an animated character as a function of
its joint angles. We learn a linear model for generating real-time
lighting effects on articulated characters while capturing soft self-
shadows caused by dynamic distant lighting. Indirect illumination
can also be reproduced using our framework. Previous data-driven
techniques have either restricted the type of lighting response (gen-
erating only ambient occlusion), the type of animated sequences
(response functions to external forces) or have complicated runtime
algorithms and incur non-trivial memory costs. We provide insights
into the dimensionality reduction of the pose and coefficient spaces.
Our model can be fit quickly as a preprocess, is very compact (∼1
MB) and runtime transfer vectors are generated using a simple al-
gorithm in real-time (> 100 Hz using a CPU-only implementation.)
We can reproduce lighting effects on hundreds of trained poses us-
ing less memory than required to store a single mesh’s PRT co-
efficients. Moreover, our model extrapolates to produce smooth,
believable lighting results on novel poses and our method can be
easily integrated into existing interactive content pipelines.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
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1 Introduction

Traditional precomputed radiance transfer (PRT) addresses the
problem of shading a static scene under dynamic environmental
lighting. Real-time performance is achieved by tabulating the vis-
ibility in a preprocess and decoupling it from the evaluation of ex-
ternal lighting [Sloan et al. 2002]. Low-frequency PRT can incor-
porate complex light transport effects, such as indirect illumination
and subsurface scattering [Wang et al. 2005; Sun et al. 2005], at no
extra runtime cost. By projecting the visibility, BRDF and light-
ing into a low-frequency basis, soft shading effects can be recon-
structed without explicitly sampling all hemispherical directions
[Sloan et al. 2002; Kautz et al. 2002]. At the expense of extra stor-
age and reconstruction time, other bases can be used to generate
”all-frequency” effects under varying distant illumination [Ng et al.
2003; Ng et al. 2004; Green et al. 2006; Tsai and Shih 2006; Ma
et al. 2006] or for the incorporation of glossy and specular materials
[Sloan et al. 2002; Kautz et al. 2002; Lehtinen and Kautz 2003; Ng
et al. 2004; Tsai and Shih 2006].

Motivation A major limitation of classic PRT techniques is that
they only operate on static scenes. The prohibitive cost of sampling
the per-vertex visibility every frame precludes the use of regular
PRT on animated scenes in real-time. Some works aim at simpli-
fying this calculation in order to facilitate moving geometry [Kautz
et al. 2004; Ren et al. 2006]. Alternatively, interactive applications,
such as games, may incorporate PRT techniques into the content
generation pipeline, but only for scene data that remains fixed. We
propose a data-driven technique for real-time generation of PRT
coefficients on articulated characters. Instead of simplifying the
visibility generation and accumulation, we learn a predictive model
trained on standard PRT simulation data. Our technique can be
easily incorporated into current game content pipelines, is easy to
implement, and has low precomputation times and storage require-
ments.



Our goal is to capture PRT effects, such as self-shadowing and
inter-reflections, on an articulated character. In this work we focus
on two areas: low-memory solutions for high-accuracy reproduc-
tion of PRT data on trained animation poses and believable genera-
tion of shading on novel animation poses.

Overview We present a data-driven technique for learning a lin-
ear mapping from a character’s pose described by joint angles to
the lighting transfer over the character’s surface; skinned animation
models are widely adopted in current art pipelines for interactive
applications such as games. Our technique allows for real-time PRT
rendering of an articulating character under dynamic low-frequency
lighting. We show that a linear function of pose angles can yield
radiance transfer coefficients with low reconstruction error on ob-
served poses. Moreover, by applying regularization (see section 4)
we show that the model is able to generalize well to novel poses.

In order to handle large meshes while still maintaining low memory
costs, we apply dimensionality reduction to both the space of input
pose vectors as well as the space of vertex coefficients while avoid-
ing the more complicated clustering and localized model fitting of
other approaches (see section 2.)

The benefits of using a reduced model are three-fold: learning re-
quires fewer samples due to the reduction in degrees of freedom,
the resulting model can be stored using about the same amount of
memory as is required to store a single mesh’s PRT coefficients ex-
plicitly, and runtime evaluation of the reduced model becomes more
efficient. We explore how the reduced dimensional model trades
accuracy for these benefits but can still produce smooth, believable
and consistent results on novel test sequences. Figure 1 illustrates
the results generated by our system in real-time on two animated
sequences.

Contributions

• Our model fitting is fast and uses a simple analytic formula.

• The resulting model is compact yet scalable: the user can
trade memory requirements for reconstruction accuracy.

• Runtime evaluation is simple: 1 to 3 matrix multiplications
are required per animation frame.

• We investigate the numerical and visual effects of dimension-
ality reduction on the covariant joint angle and vertex coeffi-
cient spaces.

In our experiments, we are able to produce consistent, believable
shadowing for different animation sequences using as little as 1 MB
of storage. This is orders of magnitude less storage than competi-
tive techniques and, in the most compressed cases, the storage re-
quired for our model is less than the storage of the transfer vectors
for a single pose of the animation sequence. Runtime evaluation
is also much faster than current techniques, yielding frame-rates
above 100 Hz on our CPU-only implementation. This is due to
the fact that runtime evaluation does not require any complicated
nearest-neighbor searching and extrapolation; we have a single sim-
ple runtime algorithm for handling both trained and novel poses.

2 Related Work

The ability to reproduce complicated lighting and transport effects
on dynamic scene geometry has been investigated, in different di-
rections, in the recent works we outline below.

2.1 Data-Driven Models for Lighting

We determine an animated character’s response to variable lighting
using a data-driven approach. Recent works motivate the problem
in a similar fashion and experiment with learning lighting response
using different models. James and Fatahalian [2003] precompute
a dynamics and illumination model for deformable objects. Their
reduced model allows standard PRT lighting vectors to be generated
in real-time on a known deformable mesh. We model lighting as a
function of pose (as opposed to impulse forces) and, like James and
Fatahalian, are able to accurately reproduce shading similar to that
in observed poses. Additionally, our system has the capability to
generate plausible and consistent lighting response for completely
novel pose scenarios in real-time with low memory cost.

Two recent papers address the generation of ambient occlusion val-
ues on animated character meshes. Kontkanen and Aila [2006]
learn a linear model mapping a character’s pose to the ambient oc-
clusion values over its vertices. Kirk and Arikan [2007] learn a
multilinear model over a segmented and reduced pose space and
can handle larger datasets. We show how a linear mapping can
be found to the entire vector valued transfer function, not only the
scalar DC component. Moreover, we apply principled yet simple
dimensionality reduction techniques that extend to large datasets
while avoiding complicated clustering techniques. Our model as-
sumptions are validated both visually and by the statistics of our
results.

Most recently, Wen Feng et al. [2007] take advantage of the covari-
ant joint angle and vertex coefficient spaces to produce glossy trans-
port effects under varying illumination for articulated characters.
They introduce a mesh-clustering technique that exploits redundan-
cies in transport data in a similarly motivated fashion as in our work.
Their technique can reproduce convincing shading results for artic-
ulated characters with parametric BRDF models at the added cost
of memory (between 76 and 430 MBs for their animated scenes)
and much more complicated training and runtime algorithms. Our
technique requires orders of magnitudes less memory storage and
precomputation time than Wen Feng et al. and has better runtime
performance using an unoptimized CPU-only algorithm, although
we only handle diffuse shading effects. Furthermore, Wen Feng et
al. locally interpolate transfer matrices per segment using a cluster-
ing technique, whereas our generative model synthesizes transfer
leading to a technique that requires significantly less training data.
For example, on the Armadillo mesh, we train on 250 frames of
animation and Wen Feng et al. use 1024 frames. In section 9 we
discuss why our framework is well-suited for potential future work
in general BRDF lighting of articulated characters.

2.2 Real-Time Methods for Dynamic Scenes

Kautz et al. [2004] use graphics hardware to rasterize the per-vertex
hemispherical visibility function of a dynamic object. They report
interactive frame-rates for direct-illumination shading on moder-
ately sized diffuse and glossy meshes. Ren et al. [2006] represent
dynamic geometry as a hierarchy of spheres and tabulate logarith-
mic SH visibility vectors as a function of subtended angle. At run-
time, log visibility vectors are accumulated and exponentiated to
yield the final visibility vector used for diffuse shading. This tech-
nique also only supports direct-illumination and special care must
be taken to ensure proper self-shadowing.

The low-resolution visibility maps and two-level hierarchy of Kautz
et al., as well as Ren et al.’s spherical mesh approximation are gen-
erally of adequate visual quality. These geometrical simplifications
are not noticeable after shading with low-frequency lighting.

Zhou et al. [2005] precompute and store visibility coefficients for a



rigid object at discrete samples on concentric shells surrounding the
object (i.e., shadow fields.) The final visibility function at receiver
points is interpolated from these samples for each moving object
and multiplied in the projected space. Shadow fields often consume
a prohibitive amount of memory. Tamura et al. [2006] worked on
optimizing the sampling schemes used on the shells of a shadow
field, reducing memory consumption. Mei et al. [2004] introduce a
spherical volumetric storage table based on shadow maps. They are
able to generate direct and indirect illumination of rigid dynamic
objects under a fixed lighting environment in real-time.

Kontkanen and Laine [2005] combine a bounding box tabulation
and spherical cap approximation of local visibility to generate ap-
proximate ambient occlusion caused by moving rigid objects. Their
technique is tailored for evaluation on the GPU and yields real-time
performance.

Sloan et al. [2005] focus on local effects, such as wrinkles and
bumps, and precompute various diffusion and scattering models in
the zonal harmonics basis. This serves to reduce storage costs and
enables fast rotations. Real-time results are achieved but global
effects, such as self-shadowing and indirect illumination, are not
supported.

Wang et al. [2006] determine an analytical matrix formulation for
approximating a spherical harmonics operator of angular scaling
over the sphere. They demonstrate the utility of their operator for
approximating near-field illumination effects and cast shadows due
to deforming objects. As with Sloan et al. [2005], this model is not
easily applicable to attached shadows for articulating or deforming
scene geometry.

Each work above approximates the lighting of dynamic scenes in a
different way. However, it is evident that low storage cost and sim-
ple runtime evaluation are necessary in order to produce a solution
to real-time lighting of dynamic scenes that scales with increasing
numbers of dynamic objects.

We focus our attention on articulated characters, which are by far
the most common deforming object in interactive animations, such
as those used in games. We are able to reproduce lighting very
accurately on trained poses as well as generating consistent, believ-
able results on novel poses. Our system has the added advantages
of very low storage requirements and a simple runtime algorithm.

2.3 Data Compression

Our datasets combine PRT and animation data and are discussed in
more detail in section 4. PRT datasets can grow to unwieldy sizes.
To compress these datasets in a manner that facilitates efficient run-
time reconstruction, Sloan et al. [2003] propose a clustered princi-
pal component analysis of glossy PRT data. Their technique uses
a combination of clustering and dimensionality reduction in vertex
space. The resulting data is significantly compressed and can be
used directly on the GPU to evaluate the final shading computation.
Tsai and Shih [2006] use spherical radial basis functions and clus-
tered tensor approximation to represent and compress glossy trans-
fer under all-frequency lighting conditions; a substantial boost in
runtime performance when compared to CPCA techniques tailored
for all-frequency bases is achieved. Both of these techniques focus
on the compression and reconstruction of transfer on static scenes
with glossy materials.

Similarly, the analysis and use of reduced dimensional pose sub-
spaces has proven to be an effective technique for compression in
data-driven character animation [Safonova et al. 2004; Forbes and
Fiume 2005; Chai and Hodgins 2005; Arikan 2006]. We apply
similar techniques to analyze pose subspaces in order to reduce the

dimensionality of our dataset. We separately reduce the dimension-
ality of both the input pose space and the output vertex coefficient
space (see section 5.) We will contrast the results of a linear model
generated using the full dimensionality of the system with the re-
sults of applying dimensionality reduction.

3 Precomputed Radiance Transfer for Articu-
lated Characters

Our work makes the same assumptions as PRT for static scenes. All
of our materials are diffuse, the external lighting is infinitely distant
and we only capture low-frequency effects. The direct-illumination
diffuse PRT vector at pose i and vertex j with normal n is

tj,i =

∫
Ωn

V ji (ω) (n · ω)︸ ︷︷ ︸
T

j
i (ω)

y(ω) dω ,

where Ωn is the hemispherical domain about the vertex’s normal,
V ji (ω) is the binary visibility function, T ji (ω) is the transfer func-
tion and y(ω) is the vector of SH basis functions [Sloan et al. 2002].
The final shading value of a vertex at any pose is simply a dot prod-
uct of this transfer vector and the SH projected lighting vector, Lin:
Lj,iout = Lin · tj,i.

Although we perform our analysis on direct-illumination data, our
learned models can also be applied to PRT simulations with more
complex transport effects (such as indirect illumination [Sloan et al.
2002]); we illustrate examples of these effects in the results section.

We will show that the transfer coefficients at the vertices of an artic-
ulated character mesh can be well approximated as a linear function
of the pose of the character. Projecting to lower-dimensional input
and output spaces reduces the amount of storage required for our
system while maintaining accuracy.

3.1 Methods

We learn linear models which, given an input pose vector, output
a set of per-vertex diffuse PRT vectors for shading an articulated
character. In order to train the system, we perform PRT simulations
on the frames of an animating sequence. We can reproduce the
lighting response on these training poses with little to no visual
difference and at a small fraction of the storage required for the PRT
vectors at each frame. On novel poses, we can generate consistently
smooth, believable shading.

4 Linear model

The input data to our system is a sequence of meshes that are the
poses of one or more animations. The number and relative order
of the vertices remains fixed, as is typically the case for animated
meshes. For each such pose, we have the set of joint angle values
that describe it. Assuming p poses and a angles, we represent this
data in a p × a matrix A where Ai,j is the value of the j th joint
angle at the ith pose.

For each pose, we precompute a 6th order SH transfer function re-
sulting in 36 transfer coefficients and store them in a set of matrices
Bc, 1 ≤ c ≤ 36. These matrices are of size p × v where v is the
number of vertices in the mesh and Bc

i,j represents the cth transfer
coefficient for the j th mesh vertex at the ith pose.

Given this data, we may now learn a set of linear mappings
Xc for each coefficient c that solves the over-constrained system
AXc = Bc.



For clarity of notation we may avoid the c superscript, but it should
be kept in mind that there is one such linear mapping for each co-
efficient whose approximation is desired.

4.1 Motivation and Validation of a Linear Model

Using a linear model to predict the lighting transfer on an artic-
ulated character has many benefits. A linear model can be fit to
our data using a simple and efficient closed-form equation and our
runtime reconstruction algorithm is straightforward. Of particular
importance to our application, the transfer vectors generated using a
linear model are guaranteed to vary smoothly with respect to pertur-
bations in the input (joint angle vectors) by construction. Therefore,
given a smoothly varying animation sequence, the lighting response
will also vary smoothly. As we will illustrate below, a linear model
also happens to be well-suited to the structure of the data.

The previous works of Kontkanen and Aila [2006] and Kirk and
Arikan [2007] both use (locally) linear models to fit the ambient
lighting response over character poses, however neither provides
any direct justification of the linear model for modeling lighting
response. We have investigated the validity of a linear model for not
only modeling the ambient (DC spherical harmonics term) lighting
response, but also the directional lighting response up to a 6th order
spherical harmonics expansion.

The large size of the transfer vector datasets precludes the feasibil-
ity of validating the linear model via direct visualization of linear
patterns in the data. Instead, we use a statistical technique of an-
alyzing the density and cumulative probability distribution of the
residuals of our regularized (see section 4.2) linear fit.

Figure 2 plots the distribution and empirical cumulative distribution
of the signed residuals of the regularized linear fitting for a repre-
sentative experimental case. Note the single mode, zero mean and
median and low variance that further validate the linear model. We
have observed similar distributions in all of our datasets, spanning
across different skinned meshes and training animation sequences.

Figure 2: Left: Distribution of signed residuals of regularized
linear fit: µ = 5.1× 10−5, σ2 = 3.25× 10−4. Right: Empirical
cumulative distribution of residuals. All of our datasets exhibit the
behavior above validating the use of a linear model.

As far as we know, we are the first work to provide insight into the
validity of choosing a linear system for fitting lighting response to
articulated poses.

4.2 Regularization

The equation AX = B can be solved in closed form by using the
classical formulation X = (ATA)−1ATB.
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Figure 3: Top: The training and test errors of the regularized
and unregularized linear systems for a representative set of anima-
tion sequences. Bottom: Approximation from linear mapping on a
novel test pose without (left) and with (right) regularization. For
these results we use α = 231. Arrows denote the incoming lighting
direction.

While this solution is guaranteed to be the least-squares solution
to our training data, it may not be well behaved. In essence we
have a prior that for small change in pose, the resulting change
in PRT coefficients should tend to be equally small. This can be
achieved by penalizing large values in the solution matrix X. To
this end we use Tikhonov regularization which minimizes the sum
of squared residuals and the squared Euclidean norm of X. This ob-
jective function can be expressed as ‖AX−B‖2 + α2‖X‖2. The
parameter α ≥ 0 controls bias and a suitable value can be chosen
using cross validation (for example, we minimize leave-one-out er-
ror in order to obtain our α values.) The closed form solution to
this expanded system is given by X = (ATA + α2I)−1ATB.

The importance of regularization is illustrated in Figure 3: using
regularization only slightly increases error on the training poses,
but substantially reduces error on the unseen test poses. Unless the
system will be used strictly for compression (no novel poses during
runtime), using regularization is mandatory in order to allow the
model to generalize. An example of the visual artifacts present after
applying our linear system on a novel test pose with and without
regularization is shown in Figure 3 (bottom.) Keep in mind that
no such artifacts appear if the system is applied to trained poses,
with or without regularization; in fact, the numerical accuracy of the
model’s behavior against trained poses is traded for stability against
novel poses (Figure 3, top.) Note that regularization becomes less
necessary as the degrees of freedom in the model decrease through
the application of dimensionality reduction to inputs and outputs as
described in section 5.



5 Dimensionality Analysis and Reduction

The cost of storing the matrices Xc is determined by the number of
joint angles a active in the character, the number of vertices v in the
mesh and the number of PRT coefficients approximated (in our case
36.) For typical meshes and character rigs the cost of storing our
linear mapping is quite manageable (see Table 2.) However, smaller
matrices may be desired to both reduce storage and evaluation costs
at runtime. To this end we show that dimensionality reduction is
possible on both the inputs and outputs of the linear mapping.

Space of poses: Consider the set of joint angle vectors {ai} that
make up the rows of the A matrix. Performing principal compo-
nent analysis (PCA), we note that the variance along each principal
direction decreases drastically with increasing dimensions. Figure
4 illustrates this for our training animation. For the example we
present, there are 54 angles in each pose vector, however, the first 8
values account for 90% of the variance.

Since the type of natural motion present in character animations ex-
hibits such high correlation in angle values [Safonova et al. 2004;
Chai and Hodgins 2005; Arikan 2006; wen Feng et al. 2007] it is
possible to project these pose vectors to proportionately few dimen-
sions while incurring little reconstruction error (see Figure 4.)

Space of PRT coefficients: Analogously, consider the set of
vectors {bi} that make up the rows of the Bc matrices (there is one
such vector for each training pose and each PRT coefficient we wish
to approximate.) Performing PCA on this set shows a high degree
of correlation across vertices regarding associated PRT coefficients,
as illustrated in Figure 4. In the case of our training animation with
a mesh of approximately 11k vertices, the first 22 values account
for 90% of the variance. The high correlation is further validated
by the visually pleasing reconstruction results obtained after having
projected the data to relatively low dimensions.

At the highest compression rate (22 vertex coefficient eigenvalues),
much of the directional shadowing is captured but the shadowing of
the right leg onto the left is lacking. At 99% variance (500 vertex
coefficient eigenvalues) the leg shadow is captured and at 99.9%
variance (1000 vertex coefficient eigenvalues) the results visually
converge to the ground truth (although numerically there is still a
small error.) The dataset used in Figure 4 is a representative case
and we have observed similar behavior in all of our datasets.

Combined Reduced Linear Model: Having selected the num-
ber of dimensions desired to represent pose vectors and coefficient
vectors across vertices, the pose projection Πa and per-vertex coef-
ficient projection Πv can be obtained. Then, we consider the matri-
ces Aπ = Πa(A) and Bc

π = Πv(Bc) and solve for Xc such that
AπX

c = Bc
π in the same manner as described above.

Now, given a pose vector a, the vector b containing the cth PRT
coefficient for all vertices is given by

b = Π−1
v (Πa(a)Xc) .

This result can be obtained using simple vector-matrix multiplica-
tion during runtime.

6 Additional Error Measurements

Our linear model minimizes the sum squared differences between
generated and simulated PRT coefficients. However, visual error
is also an important measure of our system’s accuracy. To visual-
ize the error on a frame-by-frame basis, we integrate the per-vertex
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Figure 4: Eigenvalues resulting from PCA of the set of per-vertex
coefficient (top left) and angle vectors (top right.) The renderings
illustrate the effects of decreasing vertex coefficient bases on the
reconstruction of shadows. The number of coefficient bases and
percentage of captured variance are listed. Using 1000 vertex coef-
ficient bases yields results that are visually indistinguishable from
the ground truth.

squared difference between our generated transfer functions and the
simulated results over the visible hemisphere. This transfer error is
independent of lighting. At a vertex j with normal n it is defined as

Ejtransfer =

∫
Ωn

(
T gj (ω)− T sj (ω)

)2
dω ,

where Ωn is the hemispherical cap about the normal, T gj and T sj
are the generated and simulated transfer functions. We also use the
lighting dependent shading values for visual feedback. Figure 5
compares our three models with a ground truth rendering and also
illustrates scaled transfer differences over the meshes.

7 Results

We tested our data on 7 animation sequences using two rigged
character meshes. The Master Pai mesh has 11,534 vertices, 54
joint angles and three animation sequences (1 training sequence at
250 frames and 2 testing sequences at 250 and 450 frames) gen-
erated using motion capture data from the CMU motion capture
database. The Armadillo mesh has 24,893 vertices, 25 joint angles
and four animation sequences (1 training and 3 testing sequences at
250 frames each.)

The two skinned meshes we used exhibit significantly different
shadowing patterns: the Armadillo mesh has intricate small-scale
shadowing geometry, such as the scales, ears, nose, limbs and dig-
its. The Master Pai mesh has a large hat that can cast wide shadows.
We do not alter our model fitting in any way to account for different
meshes.

7.1 Model Storage Comparison

The linear model storage requirements depend solely on the size of
the mesh and the number of joint angles used in skinning. The num-
ber of animation frames used to fit the model only affects training
time, not size. Table 2 summarizes the storage costs of our model
(in absolute memory, as a percentage of the training dataset size and
as a percentage of the size of a single mesh’s PRT storage.) The
PCA models are identified with the number of retained joint angle
dimensions and vertex coefficient angles in a bracketed two-tuple.



Figure 5: Ground truth PRT rendering for a single frame from
an animation under distant environmental lighting (top left.) Re-
sults of our full dimensional linear system (top right), our reduced
model capturing 99% (bottom left) and 90% (bottom right) of the
variance. The shading results of our system are generated on-the-
fly for any pose of the character. Inset images show 4X scaled visu-
alization of transfer function differences with the ground truth. Note
how shadowing caused by the thumb is progressively smoothed.

Note, for example, that the PCA (8,22) system only uses 61.93%
and 62.9% of the storage required for the PRT values of a single
mesh, yet it is able to reproduce the training data with reasonable
accuracy and generate believable lighting effects on novel poses.

In comparison, for meshes of approximately equivalent size, the
technique of Kontkanen and Aila requires 3.2MB of storage1 [2006]
where our two compressed systems require 1.04 and 2.22 MBs.
Furthermore, Kirk and Arikan [2007] report storage sizes in the
same range as our own, however both of these approaches only
reproduce ambient occlusion effects. Thus, using approximately
half as much data as Kontkanen and Aila [2006] use for generat-
ing ambient occlusion, we can generate believable, full directional
self-shadowing under varying distant illumination with our system.
Wen Feng et al. capture directional shadowing and directional re-
flectance effects at the cost of significantly more storage: they re-
port using 76 and 430 MB of storage for their system, and their
runtime reconstruction algorithm is more complex.

7.2 Timing Analysis

Our model fitting, when compared to the amount of time required
to generate PRT coefficients for lighting the training poses, incurs a
negligible overhead. The linear model fitting takes less than 2 min-
utes for both our examples, and the PCA model reduction took a
handful of minutes for each example. Model fitting and PCA model
reduction is performed in MATLAB and 500 spherical sampling di-
rections are used during PRT data generation. Table 1 summarizes
the pre-computation times, runtime computational cost and perfor-
mance of our system. Our system can be used to synthesize indirect
illumination data (see Figure 7); PRT data-generation took approx-

1Numbers are adjusted to match our 32-bit floating point accuracy.

imately 3 times as long as direct-illumination data generation and
runtime performance was nearly identical to direct-illumination re-
lighting performance in these cases.

Scene Master Pai Armadillo
Model P8,22 P15,500 L P8,22 P15,500 L

Runtime
0.76 17.3 1.88 1.64 37.3 1.89Cost2

[megaops/frame]
Frame-rate

105 34 65 63 24 51
[Hz]

PRT Data
< 25 < 45Generation

[sec/frame]
Model

73 68Fitting
[sec]
PCA

324 N/A 349 N/A
[sec]

Table 1: PRT dataset generation, model fitting, PCA reduction,
runtime costs and times for the PCA(8,22) model (P8,22), the
PCA(15,500) model (P15,500), and the full linear model (L).

Kirk and Arikan [2007] report precomputation times between 15
and 20 minutes for a mesh of approximately 3 times the size of Ar-
madillo. Kontkanen and Aila [2006] report a precomputation time
of a few seconds. James and Fatahalian [2003] report precompu-
tation times of almost 12 hours to 74 hours for more complicated
mesh geometry. Wen Feng et al. [2007] report combined precom-
putation times between 2.2 and 153 hours.

Kirk and Arikan, and Kontkanen and Aila report values that are on
par or higher than our reported precomputation times for their three
combined meshes. As with our storage requirements, we essen-
tially outperform the previous works using ambient occlusion and
the more involved work of Wen Feng et al. takes orders of mag-
nitude more resources than our work. Our runtime performance is
slightly higher than the previous ambient occlusion works and, as
expected, significantly higher than the work of Wen Feng et al.

We illustrate a variety of results, including indirect illumination ef-
fects in Figures 6 and 7. In order to visualize the indirect light-
ing contribution against the black background, we visualize indirect
bounces on top of a white albedo in Figure 7.

We perform all shading calculations and coefficient generation on
the CPU every frame with real-time performance on a Pentium 4
3GHz PC. The evaluation of our linear (and reduced linear) system
for generating the transfer coefficients each frame can also be ac-
celerated using the GPU; we leave GPU acceleration as an area of
future work. Our system is implemented using the DirectX frame-
work.

8 Limitations

We are able to compress and accurately reconstruct the lighting re-
sponse over an observed animation sequence, as well as generat-
ing visually pleasing and consistent lighting on novel poses. The
main limitation of this approach is that it requires animation data
representative of characteristic motion. Moreover, the learning ap-
plies only to the given character and does not generalize to others.
However, this is a natural limitation given that the PRT coefficients
depend on the character’s geometry.

2Floating point additions are weighted as 1 op and floating point multi-
plications as 2.



Master Pai (11.5k vertices & 54 joint angles) Armadillo (24.9k vertices & 25 joint angles)
Trained on a 430 frame animation. Trained on a 250 frame animation.

Memory: Memory: Memory: Memory: Memory: Memory:
Absolute % of total data % of 1 mesh’s data Absolute % of total data % of 1 mesh’s data

Linear Model 87.5MB 12.56% 5400% 85.4MB 10.0% 2500%(No PCA reduction)
PCA (15,500) 23.6MB 3.39% 1457% 48.6MB 5.68% 1421.13%

PCA (8,22) 1.0MB 0.146% 62.9% 2.1MB 0.248% 61.93%

Table 2: Storage requirements for the linear model with and without PCA reduction (see section 7.) Note that the PCA(8,22) system requires
significantly less storage than a single mesh’s PRT coefficients, yet is able to reproduce believable and consistent directional shadowing for
animated mesh sequences.

Our system can only reproduce inter-object effects; shadows from
the animated characters onto external receivers can only be modeled
in an ad-hoc manner if we bind a receiver object to our articulated
character. Since our data is based on diffuse PRT, we currently do
not model complex BRDF material properties nor do we handle
local lighting effects.

9 Conclusion and Future Work

Our method allows for the accurate, consistent and smooth repro-
duction of observed and novel low-frequency lighting responses on
an articulated character. We observe that lighting response over a
mesh is well approximated as a linear function of joint angles and
we fit a simple, appropriate model to this data. Dimensionality re-
duction allows us to compress the data while still maintaining accu-
racy on observed data and consistent, believable results with novel
test poses. Our system can generate PRT coefficients over a mesh
using a small fraction of the original data storage requirements and
is well suited for interactive applications, such as games.

In future work we will consider modeling more complex mate-
rial properties and the effects of environmental shadowing. In the
direct-lighting scenario, our technique fits a model to the cosine-
weighted visibility over mesh vertices. Since visibility is the only
component of the direct-lighting rendering equation (see section
3) that varies as a function of articulation/animation, we believe
that the method we introduce can be extended to handle arbitrary
BRDF shadowed lighting of articulated characters without incur-
ring the high memory requirements or complicated precomputation
and runtime algorithms of current techniques.
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