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Abstract
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2006

The simulation and control of natural phenomena is an important area of computer

graphics that has applications in animation and interactive entertainment. We present a

novel method of replicating the physical behaviour of wispy smoke using a computational

simulation of the evolution of a vorticity field. We represent this field compactly as multi-

resolution closed curves we call filaments. We extend the applicability of our technique

with new artistic control mechanisms that operate on filaments. Using these controls,

an animator can manipulate the underlying flow fields. Unlike previous techniques, our

control framework allows an artist to visualize the effects of different control layouts

interactively. We also present a real-time rendering algorithm and shading model for the

particles used to represent the smoke in an animation.
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Chapter 1

Introduction

The diversity of research areas in computer graphics is a testament to the applicability of

computer graphics and computer science theory to interesting problems. The computer

graphics field has evolved into a cross-disciplinary area with contributions to and from

engineering, mathematics, computer science, machine learning, physics and chemistry

to name a few. These cross-contributions have at times blurred the line between the

different fields. One such marriage of research areas that has grown into a full-fletched

sub-area of computer graphics is between computer animation and computational fluid

dynamics. This thesis addresses a problem space within this frame.

Computer animation is a term broadly used to describe any dynamic interaction of two

or three dimensional phenomena with each other and/or their environment. Computer

animation tools and research are employed on a wide array of real-world applications

such as video games, live-action and animated films, medical and physical simulations

and education. Both general and specialized animation tools exist for designing and

breathing life into a myriad of creative outlets.

The field of computational fluid dynamics investigates the underlying mathematical

models driving the physical interaction of gases and liquids with each other and solids.

This field focuses on providing the mathematical framework of fluid flow; visualization is

1



Chapter 1. Introduction 2

of minor interest, leaving a gap that computer graphics is especially well suited for.

Initially, applications of computer graphics in fluid dynamics focused on using simpli-

fied mathematical models of fluid behaviour and coupling the results of these simulations

with graphical output. Research in this area of computer graphics progressed from sim-

ple two-dimensional models to three-dimensional models, with emphasis slowly moving

towards both more faithful mathematical representations and enhanced acceleration tech-

niques. Issues such as numerical stability, alternative storage methods for acceleration

and visualization techniques became the main research focuses. At this point, the graph-

ics CFD community has a firm grasp on the basics of multiple-interface simulation as

well as rendering techniques for different media. Initializing a fluid-dynamical system

and yielding a realistic final rendered animation is now commonplace.

The next logical progression of the area was to devise methods for controlling these

simulations to increase their flexibility and their potential for creative expression. This

thesis focuses on work in this area. The mathematical foundation of fluid dynamics

in computer graphics facilitated the application of several different methods for adding

artistic control to fluid simulations. As we shall see, several different approaches to

constraining the behaviour of fluids have been investigated. Ideally, the success of any

particular method should be measured by its efficacy, the quality of its results, and the

degree to which it is taken up by artists or other users.

1.1 Statement of Thesis

This thesis describes a novel method for controlling the behaviour of smoke simulations

with particular focus on producing compelling animations of wispy smoke effects. The

smoke animation system presented in this thesis achieves interactive modeling perfor-

mance, unlike most mainstream smoke simulation/animation packages currently used.

Furthermore, we introduce a unique multi-level flow field manipulation architecture that
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allows an artist to translate animation content generated from a low-frequency flow field

into a higher-frequency flow field animation with little or no additional work, unlike most

existing simulators which confine a user to their initial system resolution.

The majority of production quality fluid simulation and animation tools are based on

an Eulerian formalism (see chapter 3) that discretizes space in order to determine the

flow of a fluid in a system. Our system is based on an alternative method, the Lagrangian

formalism, that traces the physical behaviour of the system at markers in space carried

by the flow. Although our system is capable of generating compelling animations of thick,

billowing smoke, we instead focus on the design of animations involving wispy smoke. An

example of wispy smoke would be the smoke from a cigarette or an incense stick. Figure

1.1 below contains real photographs of wispy smoke.

Figure 1.1: Images of real smoke, courtesy of William Brennan [10].

We will introduce a multi-resolution basis used to represent filaments that carry the

underlying flow field of our physical system. Moreover, our basis is compact and is

user-controllable. We outline different control mechanisms that are coupled to our basis,

allowing for intuitive manipulation of the flow field while maintaining the physical plau-

sibility of the resulting animation sequence. We introduce control tools, such as current

control curves and current attractors, to suit specific requirements of artist while also

enabling them with interfaces that are easy to use and similar to existing computer mod-

elling and animation tools. A novel shading algorithm leverages the benefits of a smoke
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particle representation. A high level of realism can be achieved with accelerated graphics

hardware that allows the interleaving of designing and observing an animation, which

results in what we hope will be a more productive and enjoyable animation workflow for

the users of our system.

Although a great deal of this thesis will focus on the mathematics and engineering

aspects behind our animation system, usability is still one of the driving forces behind

our motivation.

1.2 Contributions

The content presented in this thesis is an extension of the work of Angelidis et al., “A

Fast, Stable and Controllable Basis for Smoke Animation” [5]. Since the completion of

that research, several insights and improvements over the publication were undertaken.

These changes are reported in this thesis. Some equations and figures are used (and

cited) verbosely from the work of Angelidis et al..

We describe a smoke simulation and animation system with the ability to dynamically

scale visual and physical complexity. We provide an interactive design workflow that will

enable artists to generate complex smoke animation sequences in a fraction of the time

currently required by production fluid animation packages. We briefly introduce the three

fundamental contributions of our work below.

1.2.1 Multi-resolution Basis

We chose a Lagrangian formalism (see chapter 3) to describe the flow of our physical

system. Specifically, following research in the area of Computational Fluid Dynamics,

we work from the abstraction that the flow of physical smoke systems can be represented

with a small set of curve-like filaments.

We present a novel and compact multi-resolution basis for representing each filament.
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Our basis not only concisely represents the underlying flow field of the system, but also

couples to some effective control mechanisms that we shall introduce.

1.2.2 Control Mechanisms and Tools

The Lagrangian method of representing the flow behaviour, coupled with the efficient

advection algorithm we use with our compact multi-resolution basis provides a fast sim-

ulation engine for the evolution of various smoke densities. However, our goal supersedes

mere simulation and incorporates animation.

We introduce two control mechanisms, turning and paddling (see chapter 4), that

operate on individual filaments (represented in our basis) producing the required flow

modification. It is important to note that these mechanisms aim to balance the contra-

dicting requirements of artistic influence and physical constraints on the smoke flow. For

example, we want to be able to move smoke in certain directions, however not at the

expense of disturbing the perceived realism of the effect.

The low-level mechanisms do not provide an intuitive form of control over the smoke

and an artist can find them very difficult to use. Unlike many smoke animation tech-

niques, we abstract the low-level control mechanisms with higher-level control tools that

are both intuitive to use and familiar to artists.

Furthermore, thanks in part to the ability of scaling the complexity of our simulation

in real-time, an artist can apply controls to the smoke filaments and manipulate these

controls interactively as the simulation runs. This leads to a design workflow that pro-

vides feedback to the artist interactively, instead of the currently accepted edit-wait-view

workflow.

1.2.3 Acceleration

Acceleration methods for fluid simulations in computer graphics is a open research area,

although many substantial results have been presented. We employ a set of acceleration
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techniques, some implemented in software and some implemented as parallel execution

units on commonity graphics hardware architectures.

Using graphics hardware to accelerate physical simulations for computer graphics

applications is slowly becoming an accepted area of work and we leverage the increasing

availability of both graphics hardware resources and their associated development tools.

1.3 Thesis Organization

We have segmented our literature review into two groups. Chapter 2 gives an overview of

some key works in the area of fluid dynamics for computer graphics. The work described

in that chapter is by no means a complete taxonomy. Instead, we make occasional

reference to these works in future chapters. Previous work in specific areas of particular

relevance is presented as needed at the beginning of chapters three, four and five in order

to guide the flow of the topics to the reader.

Chapter 3 focuses on the basics of computational fluid dynamics in computer graphics,

as well as the two main formalisms used. We also discuss the specific concerns of our

choice of representation: Lagrangian filaments.

Our multi-resolution basis for describing filaments, as well as the control mechanisms

and tools we apply to control filaments are described in detail in Chapter 4.

Chapter 5 is reserved for the details of our novel adaptive smoke particle represen-

tation as well as the efficient shading algorithm designed specifically for our particle

representation.

Chapters 6 and 7 briefly overview the software engineering aspects of our implemen-

tation, including acceleration techniques, and some results generated by our system.

Lastly, we conclude our work in Chapter 8 and discuss diverse possibilities for future

work.



Chapter 2

Survey of Significant Contributions

We divide the summary of significant contributions in fields related to computational

fluid dynamics in computer graphics. This chapter will focus on some founding work in

the areas of simulation and animation of fluids in computer graphics. Some key research

is deferred to later discussions in Chapters 3, 4 and 5. Summaries of these works are

stressed in future chapters since they tie into or provide special background for the topics

discussed in those chapters.

This chapter is divided into two sections. The first focuses on some founding work in

the area of fluid simulation in computer graphics. The second section covers the seminal

works in fluid animation in computer graphics.

2.1 Seminal Works of Computational Fluid Dynam-

ics in Computer Graphics

One trend that is observed in most areas of computer graphics is the increasing complex-

ity of research models. For example, in rendering, very flexible yet ad-hoc physically-

motivated reflection models were slowly replaced by physically-based and data-driven

reflection models. A similar trend can be observed in our field, in that early ad hoc

7
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models have been supplanted by more rigorous models. This evolution will be visible in

the presentation of the works in this chapter and this section.

In 1986, Fournier and Reeves detailed an ocean wave model based on the Gerstner [28]

or Rankine [64] model of elliptical stationary orbits [25]. “A simple model of ocean waves”

is a parameterized time-dependent model that generates parametric surfaces resembling

ocean waves. These surfaces react to different ocean floor arrangements. Previous at-

tempts of modeling ocean waves used Gaussian distributions and height fields. However,

breaking waves are an example of a wave that cannot be represented with a simple height

field. Fournier and Reeves use a Lagrangian particle tracking method to represent the

ocean wave surfaces and trace their evolution. A tracked particle is assumed to repre-

sent a sphere about itself and a parameterized sinusoidal evolution function is used to

propagate each particle.

Kass and Miller present a water simulation technique based on the shallow water

equations [41, 79]. These equations are significantly simpler than the Navier-Stokes

equations, but the same spectrum of effects that earlier methods (such as Fournier and

Reeves’ method) are still reproducible with these equations. Unlike earlier work, the

system presented by Kass and Miller is robust enough to handle more complicated ef-

fects, such as boundary conditions against objects of variable topology [41]. The system

outputs a height-field. This presents a trade off: effects such as breaking waves cannot

be simulated but on the other hand the height-field representation affords many compu-

tational benefits. The most significant of these benefits is that, after discretization and

the application of a first-order approximation of the shallow water differential equations,

the evolution of the fluid during each time-step is conducted by simply solving a linear

system of equations. The yielded solution is implicitly stable.

Miller and Pearce simulate viscous fluids, such as lava or clay, using a connected

particle system in their work “Globular Dynamics: A Connected Particle System for

Animating Viscous Fluids” [54]. Each connected particle has a mass, radius, temperature,
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current position and velocity associated to it. A particle’s position and velocity are

affected by inter-particle attraction and repulsion forces defined in the paper. This work

is similar to the work of Smoothed Particle Hydrodynamics (see chapter 3) with distance

fall-off kernels modified to produce different types of simulated viscous materials. Miller

and Pearce also handle simple object interaction by enforcing collision constraints on

each particle with each object in the system.

In 1992, Shinya and Fournier detail a three component system for delivering a wind

field with useful properties [73]. “Stochastic Motion - Motion Under the Influence of

Wind” derives from models of wind behaviour used in engineering for ensuring the struc-

tural integrity of large buildings and bridges. One of the key contributions of this paper,

as it relates to our work, is a thorough frequency analysis of wind fields yielding a com-

pact and meaningful representation of spatio-temporal variations in the wind field (see

section 4.4). The work applies their frequency representation of wind with applications

to structural models (such as grammar-based representations of plants or trees), particle

systems, two dimensional artistic texture models and three dimensional textures.

In chapter 4 we summarize an important contribution by Stam and Fiume outlining

a dual-resolution analysis of gaseous turbulent behaviour. Just before the work of Stam

and Fiume, Sakas presented a physically-motivated model based loosely on a flavour of

work similar to the noise texture synthesis work of Perlin in 1985 [70, 59]. “Modeling

and Animating Turbulent Gaseous Phenomena Using Spectral Synthesis” synthesizes

fluid-like fields in frequency space and also provides an interesting intuition linking the

components of a discrete frequency spectrum with spatial eddies in the flow field. This

intuitive concept is applied to a simple field constructed using overlapping sinusoids in

frequency space, all while satisfying some basic mathematical constraints [70].

Two of the most referenced works in fluid simulation in computer graphics are both

authored by Foster and Metaxas in 1996 and 1997. The first work, “Realistic Animation

of Fluids” [23], introduced a two and three dimensional liquid simulation system based on
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the Eulerian formalism. Thus, uniform two and three dimensional grids are used to store

and update the density and velocity values of the system. The Navier-Stokes governing

equations of fluid dynamics are used as a mathematical basis of this work.

Foster and Metaxas also introduce the embedding of rigid obstacles in the flow by

assuming that obstacle boundaries are aligned with grid cell boundaries. As summarized

in chapter 3, Foster and Metaxas use a finite differencing scheme to solve for the free

variables of the Navier-Stokes equation and update the values on the grid. Furthermore,

massless surface tracking particles (in two dimensions) and heightfields (in three dimen-

sions) are used to track the fluid’s surface. A time-dependent pressure field can be used

to introduce external forces in the simulation. Foster and Metaxas use a convergence

criterion and an iterative algorithm to ensure that the stability of the system is main-

tained (on a local scale). Although the system presented in this paper paved the way

for realistic fluid simulations coupled with equally faithful computer graphics renderings,

the convergence algorithm and dependence on grid cell size became obvious limitations.

Chapter 3 will summarize the “Stable Fluids” work of Jos Stam [74] that introduced a

simulation technique that ensured unconditional stability, regardless of the choice of time

step size, without requiring a numerical convergence algorithm.

Following the success of their first work, Foster and Metaxas presented “Modeling

the Motion of a Hot, Turbulent Gas” [24] in 1997. This work focused on the interaction

of hot gases with their surrounding (rigid) environment, and thus introduced an extra

layer of complexity into the simulation procedure since explicit treatment of the effects

of variable temperature had to be taken into account. Foster and Metaxas emphasize the

physical foundation used to generate effects due to thermal buoyancy, convection and

turbulence with a greater level of realism than results that were previously left up to

manual artistic design.

The mathematical model introduced by Foster and Metaxas combines (a reduced

form of) the Navier-Stokes governing equation of fluid dynamics and an equation for the
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differential-temperature turbulence effects. The Eulerian grid-based approach Foster and

Metaxas use is similar to other standard Eulerian gas simulators, with the addition of

a local (per cell boundary) external force that estimates the effects due to differential

temperatures within the gas. This force is modeled as a parameterized weighted difference

between adjacent cell temperatures. The temperature of the gas is tracked in the grid

using a second set of differential equations. A finite-differencing approach is used to

approximately solve these equations and evolve the temperature of the gas in the grid

[24].

Foster and Metaxas presented a study in the error introduced due to grid resolution

and also enforce stability by choosing sufficiently small time steps. The elaboration

on the method of determining the size of the time step required to maintain stability

would prove to be a motivating discussion for future work that would aim to eliminate

any constraints on time step size in hopes of providing an arbitrarily stable simulation.

Notably the work of Jos Stam (see chapter 3) addressed this issue and paved the road

for the next generation of fluid simulations in computer graphics.

Recently, researchers from the University of California at Berkeley presented multiple

works on the simulation and animation of fluids using tetrahedral mesh simulators. The

first such work by Feldman et al., “Animating Gases with Hybrid Meshes”, introduced

enhancements to standard Eulerian grid simulators allowing for tetrahedral and hexahe-

dral cell arrangements to be simulated efficiently [20]. This allows the fluid to not only

be simulated within arbitrary volumes, but obstacles of arbitrary construction can also

interact with the fluid without requiring adaptive or fine-scale discretization near fluid-

object boundaries. The main contribution of this work is the mathematical extension

presented for solving the Navier-Stokes equations across both tetrahedral and hexahedral

cells. Furthermore, coupling of these cells with standard cube cells is also presented. A

high-order moving least squares interpolation technique is also introduced for both new

types of discretization. A second work is concerned with the animation and control of
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simulations on such hybrid meshes, which we further discuss in section 2.2.

Unlike Feldman et al., the work of Elcott et al. in 2005 simulates fluid flow within

tetrahedral meshes using discrete geometric operators and does not require an explicit

velocity reprojection step to maintain the divergence free property of the velocity field

[69]. In fact, all Eulerian fluid simulators in computer graphics use a fractional step

method of solving the Navier-Stokes equations; this technique requires the explicit repro-

jection of advected velocity fields onto divergence-free fields [69]. Ignoring the additional

computational cost of this reprojection, drawbacks also include the introduction of nu-

merical dissipation into the flow. Vorticity injection, vorticity confinement and adaptive

discretization techniques have been introduced in computer graphics to try to minimize

this energy loss (see chapter 3 for a summary of these works), but these additional com-

putations only add to the cost of simulation. On a high level, the technique of Elcott et

al. is similar to our technique in the sense that both avoid the explicit reprojection step.

Despite the similarities between our technique and that of Elcott et al., our technique is

generally different as we will elaborate in later chapters.

Elcott et al. introduce a novel geometric solution to the simulation of fluid flow that

handles complex object boundaries and fluid simulation domains at fairly low computa-

tional cost. The vorticity formulation of the Navier-Stokes equations (see chapter 3 for

mathematical details of this formulation) are solved in an Eulerian fashion along meshes

of arbitrary topology and representation (grid, tetrahedral or hexahedral for example).

The method of Elcott et al. preserves the circulation of a fluid (see chapter 3) and the

discrete operators have a small region of support, resulting in the generation of sparse

linear systems that can be solved quickly. Circulation preservation also guarantees that

no numerical dissipation occurs; the system presented is also stable for arbitrarily long

time steps.
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2.1.1 Rendering

Rendering fluids and gases presented an interesting problem to computer graphics re-

searchers 25 years ago who, at the time, were only typically exposed to visualizing solids.

Furthermore, the clear cut geometrical representations of objects left no room for inter-

pretation when it came to what a shape should look like.

The work of Fournier and Reeves mentioned above, despite being 20 years old, uses

many of the advanced rendering techniques that are currently in use today. A Fresnel

reflection model is used with environment map lighting to obtain an accurate direct

lighting result. To reduce the sequential nature of the final renderings, Fournier and

Reeves also perturb the normals of the generated surface with a bump map; the bump

map is advected in a similar fashion as the waves themselves, to maintain a certain

consistency between the coherence of the waves [25].

Kass and Miller use a caustic shading method to approximate the appearance of

water in their work. Their method assumes that the underlying terrain covered by the

fluid is locally flat and the so-called flat-bottom approximation is used to approximate

the intersection of incoming light rays at the interface between water and air [41]. With

these two simplifications, an illumination map is generated on the terrain and combined

with a convolution kernel operation to generate the final rendering. This results is a

highly approximated result at the benefit of extremely fast rendering times.

Miller and Pearce choose to determine a surface for visualizing their connected par-

ticles by simply defining a sphere with a radius defined by a potential function at each

particle, as opposed to determining the actual isosurface of the linear combination of

all the field functions. Today’s modern graphics hardware acceleration is capable of

rendering iso-surfaces of blobbies in real-time [13].

Building on the foundation laid by his work on the rendering equation [39], Kajiya

presented a mathematical model based on radiative scattering theory with Von Herzen

in 1984 for accurately ray tracing general volume densities [40]. Their mathematical
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exposition laid the foundation for future work in accurately rendering participating media

and also presented results of unparalleled quality for its time.

In 1990, Ebert and Parent demonstrated a system for combining volumetric and

scan-line rendered objects using the accumulation buffer and accelerated shadow table

generation for environmental and self shadowing of gases on scanline converted objects

[17]. Of note, Foster and Metaxas used massless marker particles to visualize the flow of

the turbulent, temperature-dependent motion fields generated by their simulator in [24]

and, after determining a volumetric density map from the particle distribution, use the

method of Ebert and Parent to render the gas in their system.

2.2 Work in Controlling Fluid Simulations

A significant contribution of this thesis is to propose a set of underlying mathematical

mechanisms and intuitive artist-controllable tools built using these mechanisms to control

the behaviour of a smoke simulation. Chapter 3 summarizes some key work in the area

of fluid control in computer graphics and animation. Below we outline some works not

covered in chapter 3. These works lay the foundation on which the future works in fluid

animation and control were built.

Ebert et al. extend the work of Ebert and Parent [17] and present fluid animation

tools based primarily on tabulated flow manipulation volumes. Of specific interest in

this work is the introduction of the notion of an attractor tool for fluid control. Ebert et

al. use attractors defined with centers and radii of influence to gradually draw a fluid or

gas towards a desired location. One of the smoke control tools we present in this thesis

is conceptually similar to Ebert et al.’s attractors. The simulation engine underlying the

control mechanisms outlined in this work is, like the work of Sakas discussed earlier, based

on three-dimensional spectral noise synthesis techniques and is physically-motivated [17].

In 1991, Wejchert and Haumann presented a simple model of air turbulence based
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on simplifications of the Navier-Stokes equations for irrotational, inviscid and incom-

pressible fluids [82]. “Animation Aerodynamics” takes advantage of the linear nature of

the resulting Laplace equation required to advect the fluid’s velocity field to accelerate

boundary condition calculations. Simple object models, such as spherical particles, re-

duce from the total computational cost and allow this simple model to generate results

quickly. Wejchert and Haumann define four flow primitives which may be arbitrarily

combined to yield final flow behaviour. This is a simple, yet effective, form of control.

Wejchert and Haumann explicitly detail their speed versus accuracy trade-off; the irrota-

tional assumption they make on the flow behaviour of outdoor air currents precludes the

representation of turbulent behaviour, which in time has become a standard requirement

of fluid simulations.

Depicting the effect of fire also became an interesting problem for computer graphics

researchers in the early 1990’s. Chiba et al. were the first group to bring this problem

into the spotlight [11], however the work of Lamorlette and Foster is perhaps the most

influential papers in this area of fluid simulation in computer graphics. “Structural Mod-

eling of Flames for a Production Environment” [46] describes a robust production-level

multi-stage flame simulator. The system is a combination of a physics-based simulator

and data-driven simulator with multiple noise sub-simulations added at separate stages

of the simulation. Flames are represented by parametric curves which are re-sampled to

maintain continuity. These curves are the elementary objects evolved in time by the sim-

ulator. Moreover, the curves can sub-divide and spawn child curves based on a heuristic

approach. An iso-surface of the flame is obtained from particles obtained using a density

fall-off kernel applied to the curves. Lamorlette and Foster apply procedural noise at

the particle-level. A second level of turbulent detail is added to the particles after a

transformation stage. Artistic control of the flame is delivered via user-definable wind

fields and pre-defined procedural control tools.

Pighin et al. presented a novel spatio-temporal reparameterization technique for
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fluid simulations that allowed for post-simulation editing of fluid animation sequences

in “Modeling and Editing Flows using Advected Radial Basis Functions” [60]. The

results of an Eulerian simulation are post-processed and a set of radial basis functions

are fit to the variation of density and temperature of particles advected through the

flow. Once fit, an artist can directly manipulate the location and bandwidth of the radial

basis functions and a secondary Smoothed Particle Hydrodynamics simulation is run to

ensure the appropriate physical constraints are maintained. Moreover, the traced particle

trajectory paths may also be manipulated by an artist.

Recently, Rasmussen et al. introduced two extensions to a standard particle level-set

fluid simulator targeted at delivering the artistic control required to reproduce sloppy

liquids [65]. In “Directable Photorealistic Liquids”, Rasmussen et al. define a sloppy

liquid as one with both hard and soft enforced interface constraints. Handling these two

types of constraints is the main contributions of this work. The work also details changes

to a standard particle level-set fluid simulator required to support the additional resulting

fluid behaviour, such as merging fluid blobs and proper interaction with thin submerged

objects. Control is presented to an artist in the form of spherical and cylindrical control

shapes and the ability to control the degree of adherence to these flow directing shapes

via velocity and viscosity constraint manipulations. Technically, the paper details how

this level of control is integrated into current high-end fluid simulators while preserving

the mathematical requirements of the generated velocity fields. The artist can define the

surface of a fluid with hard velocity constraints while allowing other portions of the fluid

volume to flow more freely with soft directed velocity constraints. Lastly, a novel grid

windowing scheme and level-set boundary interpolation methods are introduced.

Shi and Yu introduce a method of directing the shape of a moving fluid according to

animated target shapes while preserving the realism of the generated flow [72]. “Taming

Liquids for Rapidly Changing Targets” introduces two additional types of forces to the

fluid simulation system in order to guide the fluid towards the various input shapes.
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Firstly, a feedback force is defined across regions within the fluid and on fluid boundaries.

This force is modeled as the combination of a simple proportional-derivative controller

used to maintain velocity constraints and a shape matching force obtained using an

optimization procedure. Both of the velocity control and shape maintenance force fields

are calculated such that the resulting field is divergence free. A secondary potential

force field is defined geometrically about the target shape and its skeleton. Of note,

since artistic influence is defined using animated target shapes, it is difficult to design a

fluid flow that is completely natural. Instead, this type of system is mostly suitable for

generating flows that look believable but are physically improbable.

Building from their advancements of fluid simulations with tetrahedral and hexahe-

dral mesh domains, Feldman et al. presented a system for animating fluids using their

augmented geometric fluid simulators in “Fluids in Deforming Meshes” [21]. The sim-

ulator presented in this work applies a straightforward addition to the work presented

in [20], that we described earlier in this chapter. Instead of simulating the fluid flow on

static hybrid meshes composed of cubic, tetrehedral and hexahedral cells, the meshes are

deformable during the animation sequence. Handling these deformations simply involves

remeshing the hybrid meshes and correctly handling the semi-Lagrangian backwards

particle tracing1 along the altered mesh segments. All other simulation issues, including

boundary conditions, are handled exactly as in [20] and the authors explain how the com-

putations required to perform the remeshing and correct particle tracing account for less

than five percent of the total simulation time (on top of the time of the original method

of [20]). This technique allows an artist or geometric modeler to animate a mesh and

expect realistic response of a fluid against that mesh. An excellent example of a practi-

cal application of this method is provided in the paper; a smoke-filled Buddha statue’s

stomach is contracted and expanded, causing the illusion of smoke being exhaled out of

the Buddha’s mouth.

1See chapter 3 for an indepth summary of semi-Lagrangian particle tracing, as introduced in [74].
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2.3 Summary

We summarized some of the key works in simulating and controlling liquids and solids

in computer graphics. Chapters 3 and 4 supplement the previous work presented in this

chapter with other key works of note in the field. A few trends, which will be emphasized

further on in the course of thesis, emerge in the works presented in this chapter. The

majority of the simulation techniques are Eulerian methods that, despite optimization,

typically still run in time complexity O(V ), where V is the size of the discrete volumetric

domain of simulation (or area for two-dimensional simulations). This complexity often

precludes the real-time simulation of complex flow behaviour. Furthermore, none of

the techniques presented above allow an artist to manipulate the flow behaviour with

real-time feedback. Some of the animation and control works presented make efforts to

provide artists with tools that are easy-to-use, but this is often an under-investigated

and tertiary contribution.

Our thesis presents a Lagrangian technique for simulating and controlling smoke with

scalable interactive artistic control using intuitive tools.



Chapter 3

Methods of Fluid Simulation

In order to simulate the complicated behaviour of fluids, we must first familiarize our-

selves with the mathematical equations which govern these flows as well as the numerical

techniques used to solve these equations. Fortunately, the field of computational fluid

dynamics (CFD) is the source of a large body of research in the mathematical repre-

sentation of different types of fluid flow. As with many areas in computer graphics, an

appropriate trade-off between the accuracy and speed of the mathematical procedure

used to simulate the fluids must be balanced.

This chapter will introduce the mathematical framework for modeling fluid behav-

iour as well as elaborating on the two numerical formalisms commonly used to solve

these equations. Our method of simulation (see section 4.2.2) is based on one of these

formalisms. For the remainder of this thesis, we will assume that the fluids we are aiming

to simulate and control are both incompressible and inviscid.

A fluid is said to be incompressible if volume is consistently preserved on a local and

global scale. Incompressibility can be more easily related to the mathematics of fluid

flow as a numerical constraint that the density of a fluid remains constant. Interestingly,

all fluids act incompressibly, within a tolerance of approximately 5%, when their velocity

remains below Mach 0.3 [68]. We will only consider the behaviour of an ideal fluid that

19
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is inviscid, and thus have no viscosity, which simplifies the mathematics significantly.

Moreover, although the focus of this thesis is on the simulation and control of smoke,

both the mathematics and numerical solving methods presented in this chapter can be

extended to simulate water and other liquids, although special attention must explicitly

be applied to tracking the boundaries between liquids and gases. Boundary tracking is

not required in the simulation of smoke.

3.1 Eulerian and Lagrangian Formalisms

The Navier-Stokes equations, sometimes referred to as field equations, govern the behav-

iour of fluid materials with the independent variables being the density, temperature and

velocity fields in the fluid’s continuum. For incompressible fluid flow, these equations

are:

∇ · ~u = 0 (3.1)

∂~u

∂t
+ ~u · ∇~u = ~f − 1

ρ
∇p + ν∇2~u, (3.2)

where ~u is the velocity vector, ~f is the sum of external forces (such as gravity), ρ is the

density, p is the pressure and ν is the kinematic coefficient of viscosity. The ∇ symbol

can be used to represent a vector of partial derivatives (spatial derivative in our case):

∇ = ( ∂
∂~x

, ∂
∂~y

, ∂
∂~z

). Moreover, a similar notation, ∇·, is used to denote the divergence of

a vector field and ∇× denotes the curl of a vector field. Note that ∇2 = ∇ · ∇. The

inviscid form of the Navier-Stokes equation is very similar, except the added constraint

of ν = 0 is applied, yielding a modified form of equation 3.2:

∂~u

∂t
+ ~u · ∇~u = ~f − 1

ρ
∇p. (3.3)
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Equation 3.1 is obtained by applying the law of conservation of mass to the fluid

and equation 3.2 is obtained by applying the law of conservation of momentum to the

fluid. Deriving these equations is beyond the scope of this thesis, although any standard

text on fluid mechanics, such as [68], elaborates on these derivations in detail. Thus, as

represented in the Navier-Stokes equations, we see that a fluid’s flow can be tracked by

monitoring the evolution and coupling of the time-varying velocity and pressure fields in

space.

The two main formalisms that exist to numerically solve the Navier-Stokes equations

are the Eulerian and Lagrangian formalisms. Each formalism is named after the form

of convection equation they use. The Eulerian formalism tracks the evolution of the

independent variables, velocity and pressure, at fixed points in space. The Lagrangian

formalism instead focuses on the change of velocity and pressure in space as these values

are carried by markers that move with the flow. We will review these two formalisms, as

well as the most common techniques affiliated with each method of determining a fluid’s

behaviour. Note that the Navier-Stokes equations can be converted such that vorticity

(see section 3.2), instead of velocity/pressure, is the main field of concern. In short,

Eulerian and Lagrangian methods can be used to track and update either or both forms

of the Navier-Stokes equations.

An interesting side note is that the full solution to the unrestricted Navier-Stokes

equations is one of the open Millennium Prize [36] problems in science today.

3.1.1 The Eulerian Formalism

The Eulerian method of solving the Navier-Stokes equations typically involve the dis-

cretization of space into a grid of cells. At each cell, variables of interest are stored and

updated as a simulation runs. The most common discretization schemes used for the

simulation of fluids in computer graphics are based on the Marker-and-Cell (MAC) grid

specification for incompressible flow computations proposed by Harlow and Welsch [35].
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At each cell in a MAC grid, the velocities are defined on cell faces, while pressure (and

other scalars) are store at cell centers. Figure 3.1 illustrates the MAC grid specification

for a cell at location (i, j, k) from a uniform grid discretization with the pressure, pi,j,k,

defined at the cell center, and the component velocities,
{

ai± 1
2
,j,k, bi,j± 1

2
,k, ci,j,k± 1

2

}
defined

at the cell faces [56]. The grid cell size is ∆x×∆y ×∆z.

Figure 3.1: Uniform grid discretization (left) and MAC grid cell variables (right).

The component-wise velocities at the center of a cell can be approximated by taking

the mean of the cell face velocities [35, 56]:

ai,j,k =
ai− 1

2
,j,k + ai+ 1

2
,j,k

2
(3.4)

bi,j,k =
bi,j− 1

2
,k + bi,j+ 1

2
,k

2
(3.5)

ci,j,k =
ci,j,k− 1

2
+ ci,j,k+ 1

2

2
(3.6)

Stam’s Stable Fluids paper [74] presents the basic process for solving the Navier-

Stokes equations on a grid while maintaining the numerical stability of the simulation

for an arbitrary time step size. Starting with the initial velocities at (the center of) each

cell in the space discretizing grid, Stam devised a four step procedure for updating the

velocity that maintains stability:
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1. add external forces,

2. perform advection process,

3. perform diffusion process and

4. re-project temporary solution onto a divergence free field to maintain stability.

For each cell, the contribution of external forces are first added (assuming a fixed (i, j, k)):

anew = aold + ∆t ~fexternal (3.7)

bnew = bold + ∆t ~fexternal (3.8)

cnew = cold + ∆t ~fexternal (3.9)

Next, the effects of advection on the fluid are taken into consideration. The non-linear

~u · ∇~u term in 3.3 requires careful handling to maintain stability, and Stam’s use of

the method of characteristics [83] to ensure that stability is maintained regardless of

the size of the time step used. This is a major contribution of the Stable Fluids work.

Mathematically, the method of characteristics is a solution to advection equations of

a particular form, however as Stam describes in [74], an intuitive description of this

technique is easy to grasp and involves the tracing of particles backwards in time to

determine their current locations in time. We will briefly describe this process below.

Previously, Foster and Metaxas [23, 24] used finite difference methods for handling the

non-linearities in the Navier-Stokes equations; however, this resulted in stable simulations

only for time steps bounded by the size of their grid cells and the inverse of the magnitude

of the velocity. Stam instead traces the point currently at (i, j, k) backwards in time by

−∆t units through the current velocity field ~u = {anew, bnew, cnew} and sets the new

velocity at (i, j, k) as the linearly interpolated velocity at the backward-traced starting

position. Figure 3.2 illustrates this novel backward-tracing advection update stage.
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Figure 3.2: Tracing a position backwards in time to maintain stability [74].

Stam’s fluid solver can also handle the effects of viscosity by solving ∂~unew

∂t
= ν∇2~uold

using an implicit formulation that, after solving a sparse linear system, yields a solution

that is stable for an arbitrarily large time step. The method of explicitly solving the

diffusion equation (after discretizing the ∇2 diffusion operator) as used by Foster and

Metaxas becomes unstable when the viscosity is large [74].

The final and most significant step of Stam’s simulator is the projection phase that

converts the velocity field into a divergence free field. Stam uses a Helmholtz-Hodge

decomposition method for determining the divergence free field. The Helmholtz-Hodge

decomposition can segment any vector field, ~α into the following form: ~α = ~β + ∇h,

where β is a divergence free vector field and h is a scalar field. Using this decomposition,

the projected field can be obtained by solving the following system:

∇2h = ∇ · ~uold (3.10)

~unew = ~uold −∇h (3.11)

Equations 3.10 and 3.11 require special attention to solve since equation 3.10 is a Pois-

son equation and solving it under the contraint of equation 3.11 adds an extra level of

difficulty for current numerical algorithms used to solve these types of systems.

As with Foster and Metaxas’ method, Stam’s method could handle collisions of the
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fluid with external objects while satisfying either the no-slip or slip boundary conditions.

With slip boundary conditions1, the normal component of the velocity is cancelled upon

collision at the object’s surface. With no-slip boundary conditions, the tangent compo-

nent of the velocity is cancelled. Eulerian methods are especially well-suited for handling

object interactions, since embedding an object into the space discretization scheme and

performing cell-dependent collision detection and velocity modification is straightforward

and physically plausible.

Stam’s work provided a significant increase in effectiveness over previous techniques

for simulating fluids in computer graphics, namely the work of Foster and Metaxas. The

arbitrary stability and simple implementation of Stam’s method made it the foundation

for wide-spread use of similar techniques. The particle-tracking advection update step in

Stam’s work makes his method semi-Lagrangian, although it is widely accepted that the

technique as a whole is Eulerian in formulation. This semi-Lagrangian method inherently

introduces numerical dissipation into the solution, and Fedkiw et al. extend Stam’s work

by incorporating a technique from the computational fluid dynamics literature, known as

vorticity confinement, to reduce this dissipation [19, 76]. Vorticity confinement is used to

insert energy procedurally into a system to compensate for the apparent energy loss due to

the use of the semi-Lagrangian tracking method. Mathematically, vorticity confinement

abides by the laws dictated by the Navier-Stokes equations. The numerical dissipation

manifests itself as a damping effect on the fine-scale detail of a fluid simulation. Fedkiw

et al. re-inserted these details back into the simulation, thus maintaining a “lively” fluid.

A side contribution of the work by Fedkiw et al. is the introduction of a computation-

ally inexpensive monotonic cubic interpolation scheme that replaces the linear interpo-

lation used by Stam and summarized in equations 3.4, 3.5 and 3.6. Figure 3.3 illustrates

some results from [19].

Another area of research for Eulerian solutions to the Navier-Stokes equations is the

1The slip boundary condition is sometimes referred to as the no-through boundary condition.
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Figure 3.3: Fedkiw et al. inject energy back into the simulation to compensate for the

numerical dissipation due to semi-Lagrangian particle tracing. This results in a fluid that

maintains a more “lively” feel [19].

type of discretization used. The works so far have used uniform grid sampling. These

methods do not employ biased importance sampling of flow effects in the generated fields.

Losasso et al. propose an extension to the MAC grid that incorporates an octree data

structure used to sample the flow behaviour according to importance and density [49].

A significant contribution of this work is the modification of Stam’s update procedure

to rectify the irregular volume sampling and gradient estimations; furthermore, Losasso

et al. also expand their method to handle collisions across the octree nodes. Figure 3.4

illustrates the fine-level detail Losasso captured with an effective grid sampling of 10243.

In summary, Eulerian methods provide a simple, yet robust numerical solution to

the Navier-Stokes equations for incompressible flow. Eulerian methods can handle ar-

bitrary object collisions. Some drawbacks of Eulerian methods are that the sampling
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Figure 3.4: Fine level detail captured with an adaptive space discretization [49].

resolution used during discretization plays a large role in the ability to capture detailed

flow behaviour, there is no straightforward solution to scale between coarse and fine dis-

cretization without re-simulating the flow2 and Eulerian techniques scale according to the

sampling density and not directly with the flow complexity. Interactive frame rates are

only feasible for very coarse space discretizations, and simulations that capture complex

flow behaviour with finer discretizations typically require time in the order of minutes to

calculate one simulation step [74, 49, 19].

3.1.2 The Lagrangian Formalism

Unlike the Eulerian method of storing and updating the field values of interest (such

as velocity, pressure and vorticity) at fixed positions in space using space discretization

grids, the Lagrangian method updates the field values at abstracted markers in space.

2Since fluid flow is a chaotic phenomenon.



Chapter 3. Methods of Fluid Simulation 28

The underlying quantities carried by the markers is arbitrary. Some techniques use

markers to represent the actual fluid particles and thus each marker would also carry

a mass or density field function together with the flow field values of the Navier-Stokes

equations. Other techniques use the markers as massless trackers that simply carry the

flow; this generated flow can be used to induce movement on the actual fluid externally

represented as a density field.

Lagrangian methods can theoretically focus the computation in explicit areas of in-

terest, with marker sampling depending on the choice of marker representation. We will

motivate the use of Lagrangian methods with a case study of the use of velocity/pressure

Lagrangian techniques in computer graphics.

Smoothed Particle Hydrodynamics

Müller et al. presented a particle-based fluid simulator for computer graphics applications

based on the heavily studied area of Smoothed Particle Hydrodynamics (SPH) from the

CFD literature [50, 55]. Müller et al. base their simulator on the velocity/pressure form

of the incompressible Navier-Stokes equations 3.1 and 3.2 with a Lagrangian method that

tracks the evolution of these fields values at markers in space that carry flow behaviour

as well as mass to represent particle-continuums in space.

This particle-based representation simplifies the complexity of enforcing the Navier-

Stokes equations. Firstly, since the number of particles in the system remains constant

throughout the simulation, and each particle has a fixed mass, then conservation of mass

is automatically enforced. Secondly, the left hand side of equation 3.2 (or 3.3) can be

simplified since the particles flow with the fluid. Thus, equation 3.2 can be rewritten as:

d~u

dt
= ~f − 1

ρ
∇p + ν∇2~u. (3.12)

SPH estimation techniques are applied to particle systems to allow the evaluation of

continuous field functions anywhere in space from the definition of these fields at discrete
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locations in space (in the case of Müller et al., the particle locations). The interpolation

of a value, its gradient or its Laplacian from a set of discrete values are defined in SPH

by (see [50, 55]):

Ic(~x) =
∑

i

mi
Ii

ρi

W (~x− ~xi; h) (3.13)

∇Ic(~x) =
∑

i

mi
Ii

ρi

∇W (~x− ~xi; h) (3.14)

∇2Ic(~x) =
∑

i

mi
Ii

ρi

∇2W (~x− ~xi; h) (3.15)

where Ic, ∇Ic and ∇2Ic are the interpolated field quantities at location ~x, mi, ρi and xi

are, respectively, the mass, density and location of particle i, W is a smoothing kernel and

h is the radius of influence of W . Müller et al. designed custom smoothing kernels that

meet a simple set of constraints conducive to stability, such as zero values and vanishing

derivatives at boundary locations [55].

Müller et al. proceed to address the contribution of pressure, viscosity and external

forces, as well as an additional term modeling surface tension forces not present in equa-

tion 3.12. Rather than directly calculating these effects using the SPH equations (3.13,

3.14 and 3.15), Müller et al. modify these formulations to ensure symmetry and end up

with the following force equations [55]:

~fpressure = −
∑

i

mi
p + pi

2ρi

∇W (~x− ~xi; h) (3.16)

~f viscosity = ν
∑

i

mi
~u + ~ui

2ρi

∇2W (~x− ~xi; h) (3.17)

Müller et al. update these forces as well as a physically motivated surface tension

force every time step. After the force at each particle is calculated, leapfrog integration

on the calculated acceleration updates the particle positions and velocities. Each particle

is tested for object collision and reflected at a surface appropriately to handling boundary
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conditions. Müller et al.’s technique yields interactive frame-rates for a non-trivial liquid

simulation with 2200 particles. Figure 3.5 illustrates their results.

Figure 3.5: A Lagrangian fluid simulation with mass-carrying particles [55].

We have contrasted Eulerian and Lagrangian methods for simulating fluid flow using

the velocity/pressure forms of the Navier-Stokes equations. We shall now elaborate on

the alternative vorticity formulation of the Navier-Stokes governing equations as well as

different types of vorticity representations, including the representation we use in our

implementation.

3.2 Vorticity and Vortex Methods

Given a velocity field ~u, the vorticity is defined as

~w = ∇× ~u. (3.18)

Vorticity can be intuitively thought of as an infinetely small whirlpool of circulation that

spins about an axis perpendicular to the velocity at a point. The continuous culmination

of all these whirlpools throughout the velocity field is the vorticity field. The curl of

the Navier-Stokes momentum conservation equation 3.2 yields the vorticity transport

equation:
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∂ ~w

∂t
+ ~u · ∇~w = ~w · ∇~u +

1

ρ2
∇ρ×∇p + ν∇2 ~w +∇× F. (3.19)

The vorticity formulation eliminates any dependence on a pressure term and automat-

ically satisfies the continuity constraint [77]. A vortex method is simply a method based

on the Navier-Stokes equations in vorticity form coupled with a Lagrangian tracking of

the vorticity. Only vorticity and velocity information are required for these techniques.

Cottet [16] noted that vortex methods are not susceptible to the same stability con-

straints as Eulerian methods since the non-linear convective term of the Navier-Stokes

equation is not explicitly discretized for solving.

[57, 77] note that vortex methods can be faster than discrete Eulerian methods by

up to an order of magnitude even under high vorticity flows. However, for flows with

low viscosity, the fraction of the volume of flow regions with large vorticity and the flow

regions without much vorticity is typically very small [77]. Thus, vortex methods can

represent flow behaviour in a more compact fashion and we take advantage of this with

our implementation.

The use of the vorticity field to simulate fluid flow has only recently come into main-

stream attention in computer graphics with the works of [69, 4, 58]. Physical simulations

in computer graphics sometimes make simplifying assumptions to the underlying model

in hopes of gaining speed while minimizing any loss of visual accuracy. Since one of the

primary objectives of our work to provide a faster physically motivated smoke simulator

to artists, an analysis of the vorticity form of the Navier-Stokes equation could yield some

insight into how it can be simplified for our purposes. Looking back at equation 3.19,

∂ ~w

∂t
+ ~u · ∇~w︸ ︷︷ ︸

Advection Term

= ~w · ∇~u︸ ︷︷ ︸
Stretching Term

+
1

ρ2
∇ρ×∇p︸ ︷︷ ︸

Baroclinic Term

+ ν∇2 ~w︸ ︷︷ ︸
Viscous Diffusion Term

+ ∇× F︸ ︷︷ ︸
External Forces

[77],

we shall, in what follows, investigate the impact each term will have on a simulation.
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3.2.1 Advection Term

As with Eulerian methods, this term is responsible for the advection of the fluid from the

flow. Sometimes a full time derivative of the vorticity is used to engulf both the change

in vorticity and the advection term:

d~w

dt
=

d ~w(~p(t), t)

dt

=
∂ ~w

∂t
+

∂ ~w

∂~p

∂~p

∂t

=
∂ ~w

∂t
+ ~u · ∇~w ,

where ~w(~p(t), t) is the Lagrangian formulation of the vorticity carried by a particle at

position ~p(t) at time t. Needless to say, this term is vital in the flow behaviour and

cannot be neglected. We will address advection in greater detail in later sections of this

thesis.

3.2.2 Stretching Term

As vortices follow the flow, they stretch according to local deformations. Without these

stretching effects, the flow would exhibit very robotic motion. The evolution of the

flow is heavily affected by the interaction of vortices and certain interactions would not

occur unless the vortex field is stretched to increase the area of influence. Hence, the

stretching of vortices is an important flow mechanism that must be taken into account

during simulation.

3.2.3 Baroclinic Term

In fluid simulations that require explicit surface tracking and large density and pressure

variations, the baroclinic term is necessary to take these changes into consideration.

One such example would be the simulation of a liquid/air interface, where the density
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changes significantly at the interface. For the purposes of simulating smoke, we make the

assumption that the density and pressure changes between the smoke and atmosphere

are negligible. Thus, we omit the baroclinic term in the formulation of the vorticity

transport equation we use for our simulation.

3.2.4 Viscous Diffusion Term and External Forces

Our simulation will make the inviscid assumption and set ν to zero, thus eliminating the

viscous diffusion term. We explicitly handle external forces during the particle update

procedure (see section 5.3).

3.2.5 Final Form

After the assumptions summarized above, we simplify equation 3.19 to the following form

for our simulation purposes:

d~w

dt
= ~w · ∇~u

∂ ~w

∂t
+ ~u · ∇~w = ~w · ∇~u .

3.3 Vortex Representation

A number of different vortex representations have been proposed for using vortex meth-

ods, as defined in section 3.2, to track the vorticity as a flow evolves. The choice of

tracking representation plays an important role towards the organization and execution

of a simulation, and different representations have different maintenance requirements.

We will briefly outline the four most common methods for discretizing the vorticity

field, as summarized by [77], and later sections of this thesis will address our choice of

representation in more detail. The four most common discretizations are particles, sheets,
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volumes and filaments. Our model and implementation is based primarily on the vortex

filament discretization approach.

Vortex particles where first used in a two-dimensional simulation by Rosenhead [67,

77] and in three dimensions by Chorin [12]. Vortex particle methods typically require

very strict constraints on the spacing between vortex particles; particles’ influence regions

should ideally overlap, but inter-particle spacing must not grow larger than the radius

of the influence. To take vortex stretching into account, the regions of influence of each

vortex particle could be modified and extra vortex particles can be inserted or removed

during simulation.

Vortex sheets are geometrically represented by line segments in two-dimensions or by

planar regions in three-dimensions and the distinguishing trait of these methods is that

explicit connectivity information over the line segment or planar regions must be main-

tained [77]. Re-meshing techniques are typically required in three-dimensional vortex

sheet simulations to account for vortex stretching.

Vortex volumes have been used extensively in two-dimensional simulations [77], typ-

ically with triangles [26] or tetrahedra [31]. Vortex volume methods have not been em-

ployed often for three-dimensional simulations since the discretization and tracking of

volumetric points, as well as inter-connected stretching enforcement are non-trivial.

Lastly, vortex filament approaches discretize vortices into closed loops of constant

circulation (see section 3.6). Many techniques can be used to stretch and re-sample the

loops, yet according to Kelvin’s theorem the circulation for each filament need not be

adjusted due to stretching effects [77, 68]. Since our method is based on vortex filament

approaches, we will further investigate the rationale behind our choice of discretization

in section 4.2 as well as the details to our specific implementation of this discretization

in section 4.2.2.
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3.4 Boundary Conditions with Vortex Methods

Handling collisions of a fluid against an external object using vortex methods is not a

trivial process, as in Eulerian methods. Hess and Smith introduce the panel method in

[45], Park and Kim apply the panel method to vortex fluid simulations for computer

graphics [58]. The panel method can be used to satisfy the slip boundary condition

by placing vortices on the boundary surface such that the slip condition (cancelling the

normal component of the velocity at the boundary). Moreover, Park and Kim eject

vortex particles slightly above the boundary surfaces to cancel the tangent component

of the velocity at the boundary point to satisfy the no-slip boundary conditions. Figure

3.6 illustrates the use of the panel method and the modified emitting panel method for

slip and no-slip boundary condition satisfaction.

Figure 3.6: Park and Kim use the panel method (top row) and a modified ejecting panel

method (bottom row) to satisfy the slip and no-slip boundary conditions using a particle

vortex method [58].

Other methods have been proposed in computational fluid dynamics literature by

Summers and Chorin [78] and Gharakhani and Ghoniem [29], however only the panel

method has been employed for fluid simulations in computer graphics.
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3.5 Velocity Field Reconstruction

Unlike Müller et al., most vortex methods (and grid-based methods) do not couple the

vorticity carrying objects, whether they be particles, filaments, volumes or sheets, with

the fluid density. In this sense, these techniques simulate the evolution of the vorticity

field and then use this field to displace fluid particles or densities which are in turn used

to visualize the flow. This displacement cannot be generated directly from the vorticity

field; a velocity field must be reconstructed from the vorticity field.

Independent of discretization, the velocity at a point ~x and time t generated by the

flow captured by Lagrangian particles carrying vorticity ~w and influencing each other

is defined by the Biot-Savart Law adapted from electromagnetic theory to the use of

Lagrangian particles:

~u(x̄, t) =
1

4π

∫∫∫
P

~w(p̄, t)× (x̄− p̄)

|x̄− p̄|3
dp̄ , (3.20)

where P is the real domain of all vortices and ~p is the location of a single vortex. In

practice, we discretize P and store vorticity at points in space. This equation can be

used to compute the velocity at each discretized vortex position as well as the velocity

at each visualization marker position. These velocities are used to displace the vortices

and markers, after which stretching is taken into account to update the vortices. It is

important to note that the Biot-Savart yielded velocity field is divergence free, and so

we maintain the benefit of not having to explicitly enforce this requirement during our

simulation [77].

Many techniques in computational fluid dynamics have been proposed to solve the

Biot-Savart equation. The simplest method is direct integration of equation 3.20, however

this technique has complexity

O(N2 + NM) = O(NM), N << M ,
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where N is the number of discretized vortices and M is the number of visualization

markers. For large values of N or M , this method of calculating the velocity field is

unacceptable for computer graphics simulations. Using a threshold distance cut-off is

one way to reduce the complexity.

Christiansen [14] was the first to use a vortex-in-cell method to solve for the entire

velocity field. First, a vortex field is generated by placing the vortices on a grid, and the

velocity field is calculated by solving the following Poisson equation:

∇2~u = −∇× ~w . (3.21)

The vortex-in-cell method requires that the vortex field be divergence free [77]. Vortex-

in-cell methods can be coupled with direct integration techniques.

The Fast Multipole Method of Greengard and Roklin [32] extends the Treecode Meth-

ods of Barnet and Hut [8] that hierarchically subdivides vortices into clusters and uses

multipole expansions to attain a theoretical performance of O(N) evaluating the Biot-

Savart integral. Our method of evaluating the Biot-Savart integral is a hybrid direct-

integration/hierarchal-caching algorithm and will be discussed in greater detail in section

4.2.3.

3.5.1 Mathematical Notes Regarding the Biot-Savart Formula-

tion

Apart from the algorithmic challenges involved in efficiently utilizing the Biot-Savart

formulation to determine the velocity field given a vorticity field, the formulation also

suffers from some mathematical and physically-based considerations that we discuss here:

1. As noted in [1], the solutions to equation 3.20 are not unique since the field recon-

structed after sampling all vortex and particle locations is divergence free, hence



Chapter 3. Methods of Fluid Simulation 38

any additional divergence free velocity field that satisfies the mass conservation and

boundary conditions of the Navier-Stokes equations can be added to yield another

valid solution. This is useful for adding external force fields.

2. The most notable mathematical disturbance of the Biot-Savart equation is the

asymptotic singularity corresponding to local self-induction at ~x = ~p. Many the-

oretical filament models encounter this limitation. We will introduce a revised

Biot-Savart formulation in section 4.2.3 that avoids this singularity.

3.6 Smoke Filaments

We chose vortex filaments as our discretization scheme for the simulation of smoke. For

gaseous phenomena, vorticity tends to concentrate itself into filaments that can be used

to compactly represent the flow field [51, 77]. Figure 3.7 are photographs of scientific

studies in the visualization of vortex flow.

Figure 3.7: Vortex flow in fluids illustrating the concentration of vorticity into filaments

[10].

The advantages of using the Biot-Savart law with Lagrangian curves carrying vorticity

are the intrinsic incompressibility of the flow and the absence of numerical dissipation.

Furthermore, vorticity structured in a loop curve can be simply understood: the structure
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moves along the loop’s axis and induces a gust of wind in that direction. Figure 3.8 is

an illustration of our filament representation.

Figure 3.8: Left: A loop filament (blue) induces a gust of wind (yellow) traveling in

the direction of the loop’s axis (red). Right: a slice of the velocity field induced by the

filament.

Defining loops is a convenient way to specify initial conditions and manipulate the

fluid’s motion. Thus our simulation is based on this primitive, although open curves may

also be used in principle. Of the various ways to represent the geometry of a loop, we will

propose a scheme appropriate for the simulation and control of smoke in section 4.2.2.

The consequences of using this discretization scheme are as follows:

1. The vorticity field is completely represented by the set of all filaments, and these

filaments induce motion on themselves and surrounding filaments. Specifically,

filaments induce their own motion (see Figure 3.9a) and filaments can interact to

create complicated motion, such as the leapfrogging3 shown in Figure 3.9b.

2. As long as we make the inviscid assumption, filaments have an infinite lifespan

and conserve angular momentum in an interesting manner: the circulation remains

3Not to be confused with the leap frog integration scheme mentioned earlier in this chapter.
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constant for each filament independent of time, due to Kelvin’s theorem [9, 51],

independent of time or stretching.

Figure 3.9: Our filaments induce their own motion (top row) and interact with other fil-

aments, causing interesting filament behaviour such as the leapfrogging illustrated below

(bottom row) [5].

The circulation of a filament, also sometimes referred to as its strength, is defined as:

Γ =

∮
L

~u · ~t dl =

∫∫
S

~w · ~n ds [1], (3.22)

where L is the border closed curve of a vortex tube cross section S, ~u is the velocity, ~w

is the vorticity, ~t is the tangent to the closed-curve and ~n is the normal to the surface

of the sheet. In practice, despite the infinite lifespan of a vortex filament, we optionally

dissipate the strength to approximate atmospheric effects.

We will further elaborate on vortex filaments as well as our specific filament repre-

sentation in section 4.2.2.
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3.7 Summary

The Navier-Stokes governing equations of fluid dynamics were introduced and the two

main formalisms used to solve these equations were contrasted. Examples of work in com-

puter graphics using both these methods were overviewed and the benefits and shortcom-

ings of each technique were discussed. An introduction to vortex methods, the method

we chose to use, was followed by a review of different representations used in vortex

methods and the details of performing simulations with these different representations.



Chapter 4

Control Techniques for Vorticity

Based Flow

Chapter 3 focused on different methods of simulating fluids, including methods used in

computer graphics applications. Although one type of application of fluid dynamics in

computer graphics is concerned with the realistic and preferably physically-based simu-

lation of fluid behaviour, another important application of fluid dynamics in computer

graphics is the animation of a fluid’s behaviour. The key distinguishing factor between

these two areas is that the first is only interested in the output of a fluid simulation and

the second is interested in manipulating the output of a physical simulation to introduce

a controlled disturbance.

One of our main contributions is the ability to allow a user to interactively manipulate

a smoke simulation, providing more flexible control over the behaviour of the smoke not

previously available.

The problem of controlling the chaotic behaviour of a fluid is non-trivial. As with most

physical systems, chaotic phenomena (such as smoke) behave in a non-linear fashion and

prediction their motion, whether global or local, remains a difficult task. Furthermore,

chaotic phenomena add an extra layer of difficult during prediction since they cannot be

42
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controlled solely through the manipulation of the initial conditions and material prop-

erties of the system. Chaotic phenomena respond very sensitively to changes in initial

conditions. Many different techniques have been employed to control a fluid in computer

graphics.

We will first summarize previous work in the area of fluid control for computer graph-

ics. Our method of control is novel since it abstracts control using a compact basis

designed specifically to satisfy the requirements of physically-based simulation and com-

puter animation. We will detail the basis and follow with the techniques employed to

control our basis.

4.1 Previous Work in Smoke Control and Animation

During the early developments of fluid simulation in computer graphics (see chapter 2 and

section 3.1.1), researchers paid scant attention to the potential for controlled animation.

As the field of simulation in computer graphics matured, more serious questions were

slowly being proposed regarding the coupling of control with simulation for fluids [24].

Foster and Fedkiw introduced one of the first attempts to control a fluid simulation in

computer graphics [22]. Using a standard Eulerian grid-based Navier-Stokes simulator,

Foster and Fedkiw allow a user to plant velocities in the grid in order to control the fluid

at certain locations. This rudimentary form of control yields plausible results, however

apart from explicitly enforcing the incompressibility of the fluid with the added velocities,

this method of control does not obey the dynamics of the system.

In 2003, Treuille et al. introduced the first smoke simulator for computer graphics that

allowed for a more regimented form of artistic control with the added benefit of generating

an animation that respected the fluid dynamics of the system more precisely. Their

method is based on multiple shooting techniques previously used in computer graphics

to control rigid-body simulations [62].
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Our work has similar goals as that of Treuille et al. as well as approaching the solution

to these goals with similar motivations; as with Treuille et al., we wish to provide an artist

with control over the behaviour of smoke. Furthermore, our method of control and the

method of Treuille et al. are both based on abstracting the low-level details of the control1

mechanisms with tools that are familiar to artists. Treuille et al.’s choice of abstraction

differ from our own (see section 4.3). Treuille et al. choose to use key framing to allow

an artist to control a smoke simulation.

Their method allows a user to specify key framed shapes and uses an optimization

procedure to apply the appropriate forces to the simulation such that the smoke forms

shapes similar to the key framed shapes. The forces injected into the simulation are para-

meterized by a vector ~h, and the simulation procedure is converted into the optimization

problem of solving for the optimal parameter values [80]:

argmin~h φk(L(~q0, ~u)) + φs(L(~q0, ~u)), (4.1)

where L is the animation sequence derived from an initial state ~q0 and the applied forces

~u, φk is the objective function that measures the deviation of the simulation output

frames and the user key frames and φs is the objective function that is the sum of

the applied forces ~u (used to minimize the amount of forces necessary to achieve the

key framed behaviour, thus minimizing the potential for oscillations) [80]. Figure 4.1

illustrates some results from Treuille et al..

They note that their technique suffers from scalability problems: if the scale of the

regions of control are not on the same order as the global scale of the entire simulation,

then the optimization procedure does not typically yield a sufficient solution. In other

words, only large-scale detail can be controlled. Furthermore, their approach suffers

from the classical numerical problems encountered during optimization, such as failing

1Unlike the work of Foster and Fedkiw.
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Figure 4.1: Five balls of smoke rising to form the letters “SMOKE” [80].

to determine a global minimum of the objective function. As an introductory method of

controlling smoke, key frame animation is useful. Furthermore, all of the multi-resolution

simulation limitations outlined in section 3.1.1 still apply to this work since it is derived

from a Eulerian grid-based solver. Lastly, this work is limited to two-dimensional sim-

ulations, and requires many simulation passes to reach the target animation sequence,

making it an iterative and time consuming procedure. An artist has to wait a consider-

able amount of time before results are yielded. The method proposed in this thesis will

allow for interactive control using intuitive user interaction handles and multi-resolution

detail scaling.

In 2004, McNamara et al. extended the work of Treuille et al. through the use

of an adjoint method for calculating the gradients necessary for an extended non-linear

optimization problem similar to the one proposed by Treuille et al. [53]. McNamara et al.

solve a force-constraint system similar to the system proposed in Treuille et al. However

the physical simulation is now a fully three-dimensional simulation. They also present a

set of control parameters specifically tuned to handle the control of free-surface liquids, as
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well as gases [53]. Using the adjoint method for gradient calculation, McNamara et al.’s

system is able to produce results for three-dimensional simulations faster than Treuille

et al.’s system could for two-dimensional simulations, but a simulation still runs on the

order of hours to days. Figure 4.2 illustrates some of the results from McNamara et al.

Figure 4.2: Key framed shapes animated in water and smoke [53].

As opposed to formulating the problem of controlling a smoke simulation as an op-

timization problem, Fattal and Lischinski instead choose to approach the problem from

a unique and novel direction [18]. The target driven approach of Fattal and Lischinski

uses a set of target smoke density states, instead of key frames, that serve the purpose of

guiding the simulation towards a required goal. The significant contribution of this work

is a reformulation of the Navier-Stokes equations that is specifically designed to incor-

porate the appropriate control forces, thus eliminating the need for expensive non-linear

optimization of the simulation procedure [18].

In detail, Fattal and Lischinski outline their three main contributions. An additional

driving term in equation 3.3 that guides the flow behaviour towards one of the user-

specified target density states. A gathering term in the advection equation that minimizes

the dissipative effects of the numerical solution, allowing the flow to match target densities

more accurately. A system that allows for several smoke fields to be controlled within
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close proximity. This contribution addresses another area of future work outlined by

Treuille et al.

The gathering term is in place to handle transitions between density states that

may require physically impossible operations, such as a transition between a low valued

density field and a high valued density field. Although this term is not physically based,

its motivations are similar to the motivation of vorticity confinement (see section 3.1.1),

and restricting the dissipation of a simulation can allow for an interesting type of artist

control not previously provided.

The driving force term is largely responsible for creating the motion required to

match intermediate density states. Fattal and Lischinski re-formulate the Navier-Stokes

momentum conservation equation as:

∂~u

∂t
+ ~u · ∇~u = ~f − 1

ρ
∇p + αF(ρ, ρ) + β~u [18], (4.2)

where F is the force that drives the density field from its current value, ρ, to the next

target value, ρ and the two constants α and β scale the system to conserve momentum.

Fattal and Lischinski show that after blurring the original density to avoid numerical

issues in regions of zero density, the driving force can be solved:

F(ρ, ρ) = ∇ρ′ (4.3)

where ρ′ is the blurred target density state [18]. It should be noted that the method of

Fattal and Lischinski, due to its simplicity, operates much faster than the methods of

[80] and [53]. However, since it is based on a grid-based Eulerian solver, simulation times

still span on the order of tens of minutes to hours. Figure 4.3 illustrates some of their

results.

As with the work of Losasso et al., Feldman et al. present a Eulerian grid-based

data structure that allows the coupling of structured tetrahedral meshes with a standard
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Figure 4.3: Note the sharp details due to the gathering term of Fattal and Lischinski’s

method [18].

discretization grid [20]. This allows artists to simulate the complicated flow of gases with

various geometric shapes. These shapes can be used in turn to control the behaviour of

smoke.

Although Feldman et al. present novel solutions to the standard issues involving a

new Eulerian discretization method, such as interpolation across discretized cells, mass

conservation and the semi-Lagrangian integration scheme, their method suffers in per-

formance relative to standard and octree accelerated Eulerian solvers [20]. The results

generated are very impressive, but their system only handles static tetrahedral meshes

and there does not seem to be any proposed solution for a more robust and expressive

artistic control system. Figure 4.4 illustrates some results.

In summary, previous methods for controlling smoke and fluid animations can yield

stunning results, yet an artist cannot use any of the current techniques to edit the flow

of smoke in real-time while maintaining realistic flow behaviour. We will introduce our
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Figure 4.4: A smoke simulation exhibiting complicated object collision (top row) used to

control the behaviour of the smoke (bottom row) [20].

technique for controlling smoke by first discussing the underlying basis of representa-

tion. This basis is coupled to both the simulation and control aspects of our system.

Allowing artists to use animation tools with which they are already comfortable and in

a familiar workflow are the open problems we address in this work. Our vortex method

representation will be discussed in the following sections.

4.2 Multi-resolution Filament Basis

Our system is a vortex method based smoke simulator. We recall from section 3.2 that a

vortex method is a solution to the vorticity form of the Navier-Stokes equations coupled
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with a Lagrangian tracking method of the vorticity field. Our choice of tracking method

is based on vortex filaments (see section 3.3) which, among other benefits, maintain

constant circulation and provide a meaningful geometric link to the vortex stretching

operation. Recall that the ~w · ∇~u term in equation 3.19 describes the stretching of the

vorticity field through advection.

4.2.1 Previous Vortex Filament Representations

A näıve method to represent a filament is a piecewise linear approximation to a closed

curve, composed of point samples connected with line segments. During simulation,

filaments evolve through stretching and other deformations. Thus the approximation

quickly becomes undersampled. Resampling each filament to accurately represent the

increasingly complicated filament curve becomes difficult [4, 1, 5].

Angelidis and Neyret present a high-resolution filament sampling and level-of-detail

scheme in [4] that addresses some of the issues regarding the piecewise linear method of

representation. Starting with a coarse sampling (two points and one segment for an open

curve and three points and three segments for a closed curve), a level-of-detail binary

tree is constructed for every approximated curve with segments stored at tree nodes.

The leaves of the tree are the segments of the highest-detail curve, and each non-leaf

node is a geometric average its two children nodes2. During the first iteration, the only

parent node is the root node [4]. The purpose of the level-of-detail tree is to simplify the

approximate calculation of the velocity field generated by the vorticity being carried by

the filament curves.

During filament advection, the point samples on the approximated curve are advected

and a new level-of-detail binary-tree is constructed with the updated curve. Segments are

sub-divided if they are stretched past a certain threshold. Since evaluating the velocity

at a point p̄ is normally an expensive O(N2) operation (with N being the sum of curve

2The approximated whirl of a parent node must equal the sum of the whirls of its children [4]
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samples across all filaments in the simulation), a computationally feasible approximation

of the velocity is calculated using the level-of-detail tree and an adaptive error metric.

Our method of representing a vortex carrying filament avoids the sampling issues

presented above by modeling a filament mathematically as a periodic signal. Our repre-

sentation is based on the periodic signal processing literature. We will elaborate on how

we employ a novel three step projection mechanism to control the degree of complexity

and sampling of our vorticity carrying filaments. Furthermore, our representation guar-

antees the stability of our numerical solution for arbitrarily long time step durations.

During each time step, all filaments are synthesized and advected. We will present the

details of filament advection as it pertains to our representation after elaborating on our

multi-resolution filament basis representation.

4.2.2 Filament Co-ordinate Frame Analysis

We present a mathematical representation for vortex filaments that specifically supports

multi-resolution filament detail. Our representation is derived using a method similar to

the covariance method used to generate a principal component analysis of a system [38].

During simulation and animation, an artist can control the degree of filament complexity

by controlling the number of harmonic coefficients used to reconstruct each filament. This

allows multiple levels of editing, starting from coarse to fine level physically modeling

analogous to the way some painters paint in layers: adding detail to the preceding layer

with each new layer until the final image is created. This type of multi-resolution editing

of fluid behaviour has not been available with Eulerian grid-based simulations3.

We perform the principal component analysis and Fourier series decomposition of a

filament’s periodic signal on the following initial representation of a filament: a filament

of length L is initially defined with n point samples {ci|i = 1, 2, · · ·n}. The geometric

3For example, performing an Eulerian fluid simulation at one grid resolution, then simply rescaling
the grid resolution, will not yield coherent physical behaviour.
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centroid of the points is defined as

c̄ =
1

n

n∑
i=1

ci . (4.4)

Furthermore, we define c(l) as the cyclic linear interpolation of the ci’s. A suitable

filament coordinate frame is built such that a Fourier series decomposition of the signal

can be conducted: the 3× 3 covariance matrix of the ci points is defined as:

1

n

n∑
i=1

(ci − c̄) · (ci − c̄)T , (4.5)

and the eigenvectors of this matrix, λx > λy > λz, are the orthogonal unit vectors

that, with the centroid c̄, define the local coordinate frame of the filament. These unit

orthogonal eigenvectors, {~ea|a ∈ [x, y, z]}, also define a planar approximation (c̄, ~ez) to

the closed curve that is the best fit to the filament’s geometry. Given a filament’s local

coordinate frame, the periodic signal describing the filament is defined as [5]:

s(θ) =


~ex

~ey

~ez

 ·
(
c

(
Lθ

2π

)
− c̄

)
. (4.6)

The Fourier series representation of each of the dimensions of the 2π-periodic signal of

the filament is determined such that s(θ) can be reconstructed with an arbitrary amount

of precision depending on the number of harmonic coefficients used. In the limit,

s(θ) =
a0

2
+

∞∑
n=1

(an cos(nθ) + bn sin(nθ)) ,

where an and bn are the Fourier coefficients, defined as:

an =
1

π

∫ π

−π

s(θ) cos(nθ) dθ (4.7)

bn =
1

π

∫ π

−π

s(θ) sin(nθ) dθ . (4.8)

The reconstructed signal, s′(θ), depends on the number of harmonic coefficients.

These can be controlled by an artist during animation to trade off the speed and ac-

curacy of the simulation. An important note is that although using more coefficients to
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reconstruct a filament yields a more accurate simulation, this accuracy typically presents

itself in high-frequency detail, as opposed to large scale variation. This means that an

artist can model and animate our smoke using very few coefficients to reproduce the fil-

ament signal, and once modeling is complete, a large number of coefficients can be used

to simulate and render the final animation sequence without losing any of the large-scale

flow behaviour modeled at the lower resolution.

Given the reconstructed signal approximation to the complete filament signal, a newly

synthesized curve can be obtained as follows [5]:

c′(l) = c̄ +

(
~ex ~ey ~ez

)
· s′

(
2πl

L

)
. (4.9)

Figure 4.5 illustrates our filament representation. Figure 4.6 shows the evolution of

four identical simulations, each using a different number of coefficients to reconstruct

the filament signals. For each filament, the centroid c̄ and basis vector ~ez can be used

to identify the average location of motion and approximate direction of motion for that

filament.

Figure 4.5: The parametric description of a filament’s geometry (blue) consists of a local

coordinate system (red) and three Fourier series (shown on the left as curves).

The advection of the filaments will be described below, followed by an elaboration on

the suitability of our basis for controlling our smoke simulation, as well as the mechanisms
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Figure 4.6: Simulation of filaments with bounds on the different number of frequencies

(i.e., increasing bandwidths). From left to right: 1, 2, 4 and 8. Note the similarity in the

motion.

we use to control our basis.

4.2.3 Advection of Filaments

During every time step of our simulation, a three step procedure is required to update

each filament. Geometry synthesis applies equation 4.9 to the current parameters of

the filament using the user-controlled number of coefficients to reconstruct the filament.

Advection reconstructs the (approximate) velocity field from the vorticity field carried

by all the filaments in the system and then advects the filament points with the field

4. We will elaborate on the methods used to generate the velocity field and advect the

filaments in this section. Harmonic analysis reconstructs a new Fourier representation

of the updated/advected filament using the procedure outlined above.

To reconstruct the velocity field from the vorticity field, the Biot-Savart law was

4Smoke particles used to visualize the flow and represent the actual smoke are also advected by this
field, however their advection and visualization will be covered in chapter 5.
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introduced in section 3.5. The numerical and algorithmic issues involved with evaluating

the velocity at a point using the Biot-Savart law were also introduced and we shall now

discuss these issues in further detail.

Modified Biot-Savart Kernel and Integral Evaluation

If, using the filament assumption, we assume that vorticity is only concentrated at the

filaments, we can re-write the Biot-Savart equation for the velocity at a point due to one

filament, c’(l), with l ∈ [0, L], as

~u(p̄) =

∫ L

0

S KBS

(
|p̄− c′(l)|

r

)
(p̄− c′(l))× ~τ(l) dl (4.10)

where KBS is the spatial weighting kernel, S is the circulation (or strength) of the fila-

ment, r is the thickness of the filament and ~τ is the cyclic piecewise linear interpolation

of the tangent of the filament at the corresponding point. Of special numerical impor-

tance is the weighting kernel. We designed our kernel to closely represent the physically

correct distance fall-off rate, while also satisfying continuity over its whole domain and

performance-efficient computation. The kernel we have implemented is defined as

KBS(x) =

 (4− 20
x2+4

)2 if x2 < 1,

0 otherwise.
(4.11)

Furthermore, this kernel is monotonic, C1 continuous, numerically very close to C2

continuous and almost anti-symmetric about 1
2
. Figure 4.7 illustrates our kernel’s re-

sponse. Although simpler polynomial kernels may be used, we have found in practice

that this particular kernel yields pleasing results and requires few arithmetic operations

to implement.

The Biot-Savart integral can be evaluated as a Riemann sum using the samples ci or

using the connected edges5. Once the velocity induced by one filament at each particle

5[7] states that using edges as the discrete domains will help avoid motionless areas around a filament
with small thickness.
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Figure 4.7: The distance fall-off profile of our modified Biot-Savart kernel [5].

location is calculated, the total velocity at each particle location is merely the sum of the

individual contributions of the filaments.

We note that there is an underlying geometrical connection between the Biot-Savart

law and the twist (also sometimes referred to as the screw) transform that we can take

advantage of for higher-order advection of filament and smoke particles. We will elaborate

on the geometrical connection that allows us to obtain a higher-order advection method

as well as another reformulation of the Biot-Savart law that uses this connection.

Higher-order Advection Method

The Biot-Savart law can be explained in physical terms as being responsible for determin-

ing the velocity induced at a point due to a vorticity field, it can be also be investigated

in geometric terms as determining the velocity induced on a point due to simultaneous

rotations proportional to the Biot-Savart integrand kernel (see section 4.2.3 above) [5, 4].

This velocity is tangent to the trajectory of the particle and the method described in

section 4.2.3 can be used to approximate the new trajectory with a linear translation of
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the form p̄ + ∆t · ~u(p̄), where the velocity is determined using our modified Biot-Savart

kernel and ∆t is the time step.

A twist transform is a transformation composed of multiple simultaneous rotations [3,

27] and is formulated as a transformation with translational and rotational components.

The original Biot-Savart law can be reformulated as the product of a matrix composed

of a scaled twist transformation and the input position:

~u(x̄, t) =

[∫∫∫
P

1

4π (|~x− ~p|3)
Tp̄×~w

~w dp̄

]
· x̄ , (4.12)

where the twist transform is defined as

Tp̄×~w
~w =



0 −wz wy pywz − pzwy

wz 0 −wx pzwx − px − wz

−wy wx 0 pxwy − pywx

0 0 0 1


=

 ~w × p̄× ~w

0 0 0 0

 [5, 4].

Considering this formulation gives us more insight into our choice for a Biot-Savart

kernel, since it is clear now that the kernel describes the scaling of the simultaneous

rotation velocities as a function of distance from the point they are being applied to.

Let us define the term between the square brackets of equation 4.12 as the matrix

M. We can think of the exponential of a matrix as performing an integration operation

on a transformation’s motion path. The logarithm of a matrix, considering only matrices

that perform rigid-body transformations, is a derivative of the motion path defined by

the transformation. In other words, taking the logarithm of a matrix yields the tangent

to its motion path. Since M encodes the scaled simultaneous rotations (twists) applied

on a point p̄, we can advect p̄ in the usual fashion with p̄′ = p̄ + ∆t ·M · p̄︸ ︷︷ ︸
~u(p̄)

or we can

extract the trajectory of p̄ using the matrix exponential operator:
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p̄′ = exp(∆t M) · p̄ , (4.13)

given that M(t) = exp(t log M). The full expansion of the exponential operator is defined

in [27] as

exp(Tp̄×w̃
w̃ ) =


I + Tp̄×~w

~w if |~w| = 0

I +
1− cos(|~w|)

|~w|2
(Tp̄×~w

~w )2 +
sin(|~w|)
|~w|

Tp̄×~w
~w if ~w · (p̄× ~w) = 0

I + Tp̄×~w
~w +

1− cos(|~w|)
|~w|2

(Tp̄×~w
~w )2 +

|~w| − sin(|~w|)
|~w|3

(Tp̄×~w
~w )3 otherwise.

We can see that the first term of the expansion encodes the linear trajectory used prior to

the introduction of the higher-order advection method. The equation for the discretely

integrated twist trajectory induced by a single filament on a point using the modified

Biot-Savart kernel introduced in section 4.2.3 is

M =
n∑

i=0

S f̃(‖p̄− ci‖2/r2)

 ~τi × ci × ~τi

0 0 0 0

 (4.14)

Figure 4.8 illustrates the difference between linear advection using the generated

velocity field and our higher-order advection method.

After the appropriate twist transforms are calculated, advecting the vortex filaments

(and smoke particles) with the higher-order advection procedure can be performed in

parallel. Section 6.4.2 will elaborate on a Graphics Processing Unit (GPU) advection

acceleration component we have implemented.

4.2.4 Filament Stretching During Advection

After a filament is advected and re-analyzed, the total kinetic energy of the system

must be preserved (to satisfy the vorticity stretching term in equation 3.19: ~w · ∇~u ).



Chapter 4. Control Techniques for Vorticity Based Flow 59

Figure 4.8: Comparison between linear and higher-order advection methods used on

vortex filaments and smoke particles [5, 4].

The stretching term can be enforced by preserving the strength of each filament after

deformation 6.

As a filament stretches, its strength must decrease and we enforce this using a simple

ratio in the difference of lengths between the previous filament state and the current

filament state. The new filament strength, after stretching is:

S ′ = L

L′
S [5]. (4.15)

Although in real physical systems a vortex filament may stretch indefinitely, we clamp

the maximum length of a filament in our simulation in order to maintain the support of

the flow generated by many subsequent filaments. Each filament in our simulation also

has a lifespan. Alternatively, we could link the lifespan of a filament to a constraint on

its (maximum) length.

So far we have summarized some key details on the flow carrying physical nodes in our

simulation. However, we have not yet elaborated on how we control the overall flow. We

6Kelvin’s theorem states that the circulation remains constant for inviscid (and barocyclic) flow as
well as linking the preservation of circulation to the stretching term in the vorticity form of the Navier-
Stokes equation [5, 68].
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will present the control mechanisms used together with our multi-resolution basis to con-

trol the behaviour of each filament while maintaining a realistic and physically motivated

simulation behaviour. Furthermore, the abstracted control tools we have implemented

for an animator to control the smoke’s behaviour in real-time using our system will be

presented below.

4.3 Filament Basis Control

Earlier in this chapter we presented our novel multi-resolution basis used to describe the

vortex filaments that carry the flow behaviour of our system.

To manipulate the direction of the flow, filaments must be guided towards the de-

sired direction without disturbing the differential flow trajectory. Simply repositioning

filaments in hopes of shifting the region of flow support will not yield the desired behav-

iour. Alternatively, we modify the parameters of a filament such that the desired flow

is self-induced by the physical simulation which maintains consistency. We will present

two mechanisms we have used to modify the filaments such that they naturally induce

the desired motion in the following section.

4.3.1 Control Mechanisms

The two underlying mechanisms used to control the direction of the flow are paddling

and turning.

Paddling

Using the Biot-Savart law as a reference, we see that according to the distance fall-off

kernel, the movement induced on a filament due to its own influence is typically greater

than the influence on the filament by other filaments in the system, assuming that the

strength of filaments in the system are of approximately the same magnitude. Thus,
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we can reweight a filament’s strength such that the self-induction steers that filament

in a desired direction. This behaviour is physically plausible and generates motion that

maintains the flow support criterion.

The filament strength is redistributed according to the following profile function [5]

γ(ci) = ~m · ~τ(ci) , (4.16)

where ~m is the desired direction of motion for the filament and τ is the tangent at the

filament redistribution locations. The profile function γ(ci) is bounded in the interval

[0, 1] and conserves the total kinetic energy of the system since

∫ L

0

~m · ~τ(ci) dl = 0 .

Energy about a filament is merely being shifted to the locations it is required in order

to induce the proper motion and the circulation about each manipulated filament remains

constant. For more details please refer to [5].

To simulate the effects of an external force, such as a gust of wind, acting on the

filament, we multiply the strength of a filament by 1+ fpγ(ci), where fp is the amount of

paddling. This increases the vorticity in the direction of ~m and weakens the vorticity in

all the other directions. Figure 4.9 is a conceptual illustration of the effects of paddling.

Turning

If the strength of the filaments in a system are unevenly distributed, or the desired rate

of change of the flow direction is large, the self-induced motion change of the paddling

method might not be adequate. In this case, we can rotate a filament’s frame by rotating

its average direction vector ~ez. We call this mechanism turning and although the changes

it causes to the flow behaviour are not physically motivated, it introduces discontinuities
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Figure 4.9: Paddling allows a filament to induce motion in a desired direction by modi-

fying the magnitude of the vorticity (curly arrows) at the appropriate locations around

the filament [5].

to the flow behaviour that are not as extreme as the näıve approach of frame shifting

explained above.

Since turning does not maintain the flow support criterion, paddling is the preferred

mechanism of control. Paddling will create motion that is physically based, yielding

animations that behave much like real smoke would. The amount of turning used to

control a flow is a user controllable parameter since, if used excessively, it will yield results

that may look suspicious to an experienced critic. Figure 4.10 illustrates turning’s frame

rotation effect.

4.3.2 Control Tools

Some of the more rudimentary fluid control methods mentioned earlier in this chapter

allow a user to add control to a simulation by adjusting physical parameters. This method

of control is frustrating for a user since the effects of parameter tuning, especially when

applied to chaotic phenomena, are hard to predict and because grid-based simulators

require a large amount of time before results can be generated. Our system aims to
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Figure 4.10: Turning modifies the direction of a filament by rotating its local frame [5].

solve this workflow problem by reducing the turn-around simulation time (often yielding

simulations that are run in real-time or interactive frame rates) as well as supporting

a multi-resolution level of animation and detail control that scales intuitively from an

artist’s perspective. Furthermore, the simulation is controlled by tools with which artists

are familiar with as opposed to tweaking, for example, the amount of paddling and

turning. We abstract these low-level control mechanisms away with tools that provide

intuitive and predictive flow manipulation.

This section will describe the three control tools we have created for meaningful and

artistic smoke simulation control: current control curves, current control attractors and

current tornado effects [5].

Current Control Curves

The extensive use of two-dimensional curves embedded in three-dimensional space in

the areas of computer animation and modeling makes them a familiar tool for computer

artists. Figure 4.11 illustrates the use of curves for various purposes in a few graphical

content creation packages.

Controlling the flow carrying filaments leads to indirect control of the smoke particles
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Figure 4.11: Many common 3D modeling tools, such as MayaTM (left and right) and

3D Studio MaxTM (middle), provide artists with the ability to modify curve parameters.

in the vicinity of the filaments. We enable users to create a current that influences

filaments to move in the desired direction of the flow by specifying curves. These current

control curves guide the filaments on a desired path, while our simulation enforces the

physical accuracy of the flow. Without resorting to introducing an unrealistic amount

of turning contribution, these curves are designed to guide filaments with a physically

realistic level of control. For example, filaments will very rarely follow current curve

paths containing loops, unless the physical specifications of the system allows for the

flow.

The filaments are driven against the tangents of the specified curve, much like a

train is driven on its tracks. We use a customized method for tracing a filament’s path

according to the tangent of a specified curve. First we parameterize the B-spline control

curve by its arc-length d, and assign the parameter to the filaments associated with the

curve7. Updating a curve controlled filament is a two step procedure. Firstly, the filament

is advected without the control constraint, yielding its new centroid c̄new, and coordinate

frame (see section 4.2.2). Lastly, a new curve arc-length parameter, d′ = d + |c̄ − c̄new|

is assigned to the filament and its updated average direction vector is paddled and/or

turned to align with the tangent along the new curve position, ~e′z = τ(d′). The new

7The user can associate a set of filaments with a control curve as well as giving the control curve
global control privileges.
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constrained filament centroid is a projection of its updated unconstrained centroid onto

the plane perpendicular to τ(d′), the tangent at the new curve location.

This straightforward procedure maintains the stability of the physical simulation, is

inexpensive and can be performed independently on each filament. Our smoke animation

and control system allows a user to animate a curve by key framing its control points.

Figure 4.12 illustrates a user interface for specifying control curves in our system that is

similar to curve specification tools in other graphics content creation packages. Figure

4.13 illustrates a smoke simulation with filaments following the control curve and smoke

particles advected by the generated flow.

Figure 4.12: The user can specify a curve by moving one (left and middle) or more

(right) of the curve’s control points at a time.

Figure 4.13: To control the motion, the user animates a curve [5].
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Current Control Attractors

If an artist simply wants to specify a intermediary flow checkpoint location, a current

control curve can be used as a current control line from the smoke source to the interme-

diary location. However, this is a cumbersome work-around for a simple problem. Hence,

we introduce another intuitive animation control called a current control attractor that

allows the user to place a point in space as well as a spherical area of influence such

that filaments within the area of influence will paddle towards the checkpoint. Once a

filament reaches the checkpoint, the attraction is eliminated and the filaments are free to

flow in the system’s field or according to any additional active control tools in the system.

Figure 4.14 illustrates the user interface visualization of an attractor. Figure 4.15 is an

animation created with the same attractor configuration as in figure 4.14, illustrated with

and without all system components being rendered.

Figure 4.14: Current control attractor user interface visualization and manipulation of

region of influence.

Current Tornado Effects

Another type of control we present to users is the ability to twist the smoke around its

axis of motion yielding an up-side-down tornado effect. By modifying the Biot-Savart

law, forcing it to induce velocities tangent to a filament’s average direction of motion,

we can achieve the desired effect. Once again, our basis decomposition allows us to
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Figure 4.15: A simple animation illustrating the behaviour of smoke filaments and a

current attractor, with (top) and without (bottom) UI elements illustrated. Note how

filaments outside the region of influence do not deviate from their path.

determine the desired direction, yielding an equation for the twisting velocity induced by

one filament on a point:

~utwist(p̄) =

∫
l∈[0,L]

SKBS

(
|p̄− c′(l)|

r

)
p̄− c′(l)× ~ez dl .

This velocity is added to the existing velocity field of the physical system, it is not

a substitute for the velocities required for regular advection. Figure 4.16 illustrates the

smoke twisting effect.

4.4 Fine-level Detail with Noise

The system we have discussed so far incorporates all that is necessary to generate a

realistic flow field for carrying smoke markers in a simulation. Our basis allows the user

to increase the complexity of the large-scale flow behaviour, however many small-scale

behaviours can not be accurately modelled without introducing small-scale filaments
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Figure 4.16: The smoke twists along its motion in a controlled manner by adding an

external velocity [5].

parameterized specifically to reproduce the necessary small-scale changes in the system.

Although this is feasible, we propose an alternative method of introducing this small-

scale detail into our simulation based loosely on ideas previously used in the area of fluid

simulation for computer graphics by Stam and Fiume in [75].

4.4.1 Previous Work

Stam and Fiume couple the deterministic behaviour of a large-scale flow simulator with

a stochastic simulation of the small-scale behaviour that can be used to introduce subtle

flow complexity. Assuming that the large-scale and small-scale flow fields are indepen-

dent8, we will summarize the method of Stam and Fiume used to stochastically model

the small-scale flow component of the system.

Starting with a space-time distribution of random velocities ~u(~x, t) with component-

wise averages equal to zero, the field is also assumed to be homogeneous in space and

stationary in time, leading to a simplification of the cross-correlation function: it only

depends on the difference between two points and the difference between their two time

8Which is not physically accurate.
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values. This assumption allows the spatial and temporal components of the velocity field

distribution to be represented in spatial and temporal frequency domains using a straight-

forward Fourier transformation [7]. Furthermore, the frequency domain equivalent of

the cross-correlation functions, the cross-spectral density functions, can be obtained by

simply taking the Fourier transform of the cross-correlation functions with the above

formulation. Lastly, Stam and Fiume assume that the random velocity field is spatially

isotropic, and coupled with the standard incompressibility constraints on the field, the

work notes that the cross-spectral density functions are of the form [75]

Ωij( ~X, ω) =
E(l, ω)

4πl4
(
l2δij −XiXj

)
for i, j = {1, 2, 3} , (4.17)

where δ is the Kroenecker delta, ~X is the spatial frequency, ω is the temporal fre-

quency, l is the length of the spatial frequency and E is the energy spectrum function

of the signal. The type of small-scale contribution is controlled using different energy

spectrum functions, so long as they meet the following criterion:

1

2
A( ~u2) =

∫ ∞

0

∫ ∞

−∞
E(l, ω)dωdl [75], (4.18)

Where A denotes the statistical averaging operator. The details for choosing an ap-

propriate energy spectrum function can be found in [75]. Once chosen, a generalized

version of Voss’ inverse Fast Fourier Transform [81] is used to obtain the small-scale ve-

locity field [75]. The contributions of [75] as they pertain to smoke particle representation

and rendering will be further investigated in sections 5.1 and 5.4.

4.4.2 Our Noise Representation

Noise can be viewed as an artistic tool used to further mask the synthetic touch of an

artist, and as such, we have included it in our system. To maintain the overall goal of a

responsive and accurate smoke animation workflow, it is important that our detail adding
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noise implementation does not interrupt or skew the effects of the control mechanisms

nor reduce the performance of our system beyond an acceptable threshold. Lastly, the

usability of this feature must be intuitive and simple from an artist’s point of view (see

chapter 6 for more details on usability).

We superpose a separate simulation responsible for generating the appropriate noise

vortices over the existing smoke simulation that drives the filaments according to the

system’s physics and control mechanisms. To maintain animation consistency with this

layered approach, we must ensure that the small-scale detail generated by the noise

vortices does not interfere with the large-scale behaviour of the filaments.

The noise is generated in the spatial domain of a unit cube. A user-controllable

number of vortices are placed randomly within the cube every frame. Each noise cube

can be tiled with fall-off functions applied at the tiled cube faces. The area of the influence

of each noise vortex is bounded by half the minimum thickness of the filaments in the

system, to maintain a distinction between the amount of influence they have compared

to the filaments (this is the small-scale vs. large-scale distinction) [5]. Figures 4.17 and

4.18 illustrate simple animations with and without noise vortices.

4.5 Summary

Although previous methods have been proposed to control the simulation of a chaotic

natural phenomenon, we believe they are not sufficiently mindful of the needs of artists

involved in this type of modeling nor do they provide a system that matches the workflow

an artist is used to. This chapter introduced our multi-resolution basis and the control

mechanisms built to leverage this basis, which allow an artist to model smoke in a manner

that is intuitive, responsive and similar to other types of computer modeling tools.

Our system is designed to maintain the plausibility of the generated animation. Us-

ing a modified Biot-Savart kernel and a novel higher-order advection method, we take
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Figure 4.17: An animation illustrating the effects of noise on a smoke generator. Top

row : the smoke generator acts without the noise’s influence. Middle row : the smoke

generator’s particles are affected by the noise cube, illustrated as the base noise corner

replicated throughout a larger region. Bottom row : the same animation as the middle

row without UI components.

full advantage of our filament-based representation. Although manipulating the flow is

critical to obtaining the desired smoke effects, it is the visualization of this flow with

smoke particles that can captivate an audience. The behaviour of smoke in the flow as
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Figure 4.18: Noise disabled (left) and enabled (right). The large scale motion remains

identical [5].

well as computer graphics techniques of displaying this type of participating media will

be discussed in the following chapter.



Chapter 5

Smoke Particle Representation

As mentioned earlier, our physical simulator manages two separate entities: the flow

carrying filaments and the smoke particles used to visualize this flow. The smoke particles

are advected by the flow generated by the filaments in the system. This chapter will

focus on our smoke particle model as well as the real-time visualization procedure we

have implemented.

Using smoke particles for visualization allows us to isolate the advection computa-

tions in the areas of high particle density, implicitly yielding speed-ups similar to the use

of adaptive spatial data structure partitioning in grid-based simulators. Furthermore,

particle systems are straightforward to integrate into real-time and offline rendering al-

gorithms. Each particle of smoke in our system has various parameters, including diffuse

and shadowing colors1, size and density. We will elaborate on some these properties in

section 5.2.

The properties of smoke particles as well as smoke generators can be tuned by an artist

to achieve the desired effect; section 6.3 illustrates the widgets and forms used to easily

control these parameters. We will first examine previous work on the representation and

visualization of smoke particles and densities.

1The physical process underlying the perceived color of different types of smoke is very complicated
to simulate, thus we simply allow an artist the ability to assign colors manually.

73
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5.1 Previous Work

In section 4.4 we introduced the work of Stam and Fiume that separated the small

and large scale detail of a flow field. They also separate the flow characteristics from the

actual material characteristics of their simulator: instead of representing individual smoke

particles, Stam and Fiume consider the effects of their flow fields on smoke densities2 [75].

Stam and Fiume propose a temporal density distribution composed of a sum of

weighted Gaussian distributions with standard deviations significantly smaller than the

finest scale of detail of the system’s flow field. These assumptions allow for an analytic

formulation of the evolution of the density distribution due to the effects of the flow field

on the individual Gaussian components. They also propose a modification to the stan-

dard ray tracing algorithm to handle the effects of participating media in a scene. The

intensity of light visible through smoke is determined with a front-to-back attenuation

algorithm. Since smoke, unlike typical geometrical objects in a virtual scene, does not

have a fixed boundary to intersect a ray, intersection of every ray is tested against the

individual Gaussian density distributions. Furthermore, the ray-intersection test does

not only maintain the closest intersection points: each ray is subdivided into intervals,

using the entry and along the intervals according to the transparency value of each blob

at the relevant positions in the blob [75]. Figure 5.1 below illustrates the results obtained

with this rendering algorithm.

Fedkiw et al. present two algorithms for visualizing the smoke densities stored in a

grid [19]. The first is a hardware-accelerated rendering algorithm based on the Stable

Fluids rendering algorithm [74]. A Bresenham line drawing voxel traversal algorithm [42]

is used to determine the amount of light entering at each voxel in the grid, and appropriate

voxel transparencies are roughly approximated with an exponential drop-off dependent

on the smoke’s extinction coefficient and the voxel width. Once the approximate radiance

2Assuming that these densities do not affect the flow field and are governed by the advection-diffusion
process.
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Figure 5.1: The results of Stam and Fiume’s offline rendering algorithm [75].

is set using this information at each voxel, grids are sliced along the view direction and

each slice is rendered as a quad in front-to-back order, alpha-blending the transparency

along the way [19].

Fedkiw et al. propose a high-quality offline renderer to generate images from the

simulation with a more regimented analysis of the scattering mechanisms involved in a

participating medium. A modified two-pass photon-mapping algorithm is used for this

purpose. During the first pass, indirect illumination photons are stored in a volume

photon-map [37]. The second pass implements a novel forward marching ray tracing

algorithm gathering radiance of the form
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Ln(pn, ~ωo) = Ln−1(pn−1, ~ωo) + exp (−τ(pn)) ∆pn Linscattered(ε, ~ωo) [19], (5.1)

where Ln is the radiance at pn, the nth scattered intersection point of the ray, ~ωo is the

outgoing view direction, τ(p) =
∫ pn

p0
σ dp is the optical depth with extension coefficient σ,

Linscattered is the inscattered radiance at a randomly chosen location ε along the current

ray segment, and ∆pn is the step size of the ray segment. The inscattered radiance is

defined, in terms of a single scattering term, Ls, and a multiple scattering term, Lm as

Linscattered(p, ~ωo) = α σ(p)

∫
4π

(Ls(p, ~ω) + Lm(p, ~ω)) β(~ω) d~ω [19], (5.2)

where α is the albedo3 of the medium and β is the local scattering profile of the light.

Typically, β is derived from the Henyey-Greenstein phase function first proposed in the

graphics literature by Hanrahan et al. [34] who also note that the choice of scattering

profile function can be tuned.

The single scattering radiance term is computed with a ray marching algorithm that

travels along intervals of a ray and determines whether the ray’s direction should be

altered, and the multiple scattering radiance is reconstructed from the volume photon-

map using the following gathering kernel:

Lm(p, ~ω) =
1

σ

N∑
1

P (~ω′) β(~ω′)
4
3
πr3

[19], (5.3)

where N is the number of photons used during reconstruction, r is the radius of the

sphere enclosing the nearest N photons to position p and P is the power of each photon.

Figure 5.2, as reproduced from figure 3.3, illustrates the results of the physically-based

photon-map renderer. We will briefly overview some visualization techniques used in

Lagrangian simulations of water and smoke.

3Which can be thought of as either the probability of scattering, or the translucency of the smoke.
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Figure 5.2: A physically-based photon-map rendering of smoke [19].

The work of Müller et al. introduced in section 3.1.2 used density distributions

(defined with weighted kernels) to represent particle regions. Müller et al. define a color

field, in a fashion similar to the density field definition, as:

C(~x) =
∑

i

mi

ρi

W (~x−−→xi , h) [55]. (5.4)

The normal and curvature of the surface field are the first and second moments of

the color field. Müller et al. define surface particles as density centroids that satisfy the

following condition:

∇C(~x) > l ,

where l is a user defined threshold parameter. With this information, a set of unconnected

surface points can be determined for use with a point-splatting [84] algorithm to visualize
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a plausible surface with interactive results. Alternatively, Müller et al. triangulate a

iso-surface of the color field using the marching-cubes algorithm. This procedure is time

consuming, and thus cannot be used for the interactive rendering of the water surface, but

the results are smoother and more realistic than those of the surface splatting technique.

Figure 3.5 illustrates the results of the marching cubes visualization algorithm.

As with the work of Fedkiw et al., Park and Kim describe two different rendering

alternatives for their vortex-based particle simulator. The first is an offline renderer based

on the Stable Fluids work: densities are stored on an overlaid grid and these densities

are advected in a Eulerian fashion using velocities defined by the Lagrangian vortex

particles. Visualization of the density field is performed in a similar fashion to [74] and

[19]. However, the use of a secondary rendering grid side-steps the potential benefits of

their Lagrangian formulation. Alternatively, Park and Kim describe how neutral particles

can be introduced into the system for visualization purposes. These particles are advected

with the velocity generated by the vorticity field, and a standard texture billboarding

algorithm is used to visualize the particles. The latter rendering alternative’s quality

depends substantially on the distribution of visualization particles. If too few are used,

the resulting smoke may look patchy; if the distribution of the visualization particles

is not set to sample the field variation adequately, then the resulting smoke may not

represent the simulated flow accordingly. Figure 5.3 illustrates the second, real-time

billboarding results of Park and Kim.

With this background we shall proceed with an outline of our smoke particle repre-

sentation, advection and adaptive particle splitting.

5.2 Our Smoke Particles

In contrast to the offline method proposed by Park and Kim, the rendering procedures

outlined from Fedkiw et al. and Stable Fluids, we do not introduce a separate density
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Figure 5.3: Park and Kim’s real-time billboard rendering algorithm results [58].

grid for rendering purposes; instead, we propose the use of adaptive smoke particles

coupled with a real-time rendering algorithm. This algorithm, covered in section 5.4, is

computationally cheap in both time and memory and produces surprisingly convincing

results compared to previous offline and real-time smoke renderers.

Using particles instead of grid-based densities typically accelerates the rendering pro-

cedure, since processing time can be focused only on the regions of interest (the particle

locations), and takes advantage of the benefits of our Lagrangian simulation. Our system

supports two types of particles: standard and adaptive. Standard particles are used to

simulate large scale phenomena, such as the cloud of smoke from a volcano eruption.

These particles have larger opacities and do not respond to small scale perturbations.

Adaptive particles are used to represent smaller scale phenomena, such as the wispy

smoke from an incense stick. These particles bend and twist as well as split adaptively

if they are deformed past a threshold during the simulation [5]. Both types of particles

have the same underlying representation; it is the various particle settings (such as size,

density and splitting) that allow us to distinguish between what type of particle we are

currently using. Figure 5.4 below illustrates how different particle parameter settings

yield drastically different results for the same system layout.

The deformation mechanism and the splitting procedure used with adaptive particles
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Figure 5.4: Modifying smoke particle parameters. Top row: Particles with adaptive

splitting disabled. Left column: Our animation package illustrating the design procedure

for the animation sequence, with smoke particles rendered as un-shaded ellipsoids. Middle

column: Shaded particles without our self-shadowing rendering algorithm. Right column:

Shaded particles with our self-shadowing algorithm; the inset identifies the diffuse (top)

and shadowed (bottom) color settings that our self-shadowing algorithm uses to determine

the final pixel colors.

will be discussed, followed by the advection of particles and our novel particle rendering

algorithm.
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5.2.1 Adaptive Particle Stretching and Splitting

Our smoke particles stretch according to the advection forces applied to them during

the simulation. If particle splitting is enabled, the smoke particles split to avoid under-

sampling due to excessive stretching. The method we use to determine the amount of

stretching a particle undergoes during advection is based on principles of space defor-

mations. If we abstract the notion of a smoke particle to that of a volume of matter

as well as abstract the advection forces to a deformation function, we can analyze the

stretching of a particle in terms of the deformation of a volume. Figure 5.5 illustrates

the deformation of a volume due to a function F : R3 7−→ R3.

Figure 5.5: Volume calculations after a deformation function, F , is applied on the original

shape (left). Original and transformed points are identified in red and green.

Let us define the Jacobian of the deformation as J =

(
∂F
∂i

∂F
∂j

∂F
∂k

)
. The deter-

minant of the Jacobian is equal to the ratio of the deformed volume to the undeformed

volume. For an incompressible fluid, this determinant must be unity. In the case of our

simulator, the partial derivatives of the deformation are discretely approximated every

time step. For example, ∂F
∂i

= F(p̄+ε i)−F(p̄)
ε

. Some fluid simulators perform many simu-

lation steps prior to displaying a rendered frame4, however our simulator performs one

4This is typically done to allow for a reduced time step size for each simulation step in hopes of
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simulation step per rendering step. If we were to perform multiple simulation steps prior

to each rendering step, we could use these simulation results to better approximate the

partial derivatives required to obtain the Jacobian of the deformation applied to each

smoke particle. To re-align ourselves from shape modelling terminology back to physical

dynamics’ terminology, the Jacobian matrix is equivalent to the Displacement Gradient

Tensor [2].

We initialize every smoke particle as a spherical volume. During simulation, the

stretching effect is accumulated every time step and applied to each spherical smoke

particle, and they are approximated by non-uniform ellipsoids. The parameters of the

updated ellipsoids of each particle are obtained efficiently using the eigenvectors and

eigenvalues of the Metric Tensor, M, derived from the Displacement Gradient Tensor :

M = JJT [6, 5]. (5.5)

In detail, each smoke particle is initialized as a sphere with eigenvectors (~ex, ~ey, ~ez) and

eigenvalues (v1, v2, v3) which define the principal axes (which initially coincide with the

world coordinate axes (i, j,k)) and radii along those axes of the particle. This data

is represented in a matrix of covariance C. The covariance matrix is updated after

deformation using the Metric Tensor as follows:

Cnew = J · C · JT [1, 4, 6]. (5.6)

Therefore, the updated eigenvectors and eigenvalues of Cnew define the updated el-

lipsoidal shape of a deformed smoke particle. Figure 5.6 illustrates the stretching of

particles from spheres to ellipsoids during simulation.

If the amount of stretch in any one of the three principal directions exceeds an absolute

threshold, the particle is split along the over-stretched axis, say ~ex, into two particles with

minimizing numerical dissipation effects introduced by increased time step interval lengths.
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Figure 5.6: Three close-ups of regions (blue rectangles) of an animation sequence illustrat-

ing the stretching of smoke particle ellipsoids. Close-ups are rendered as flat ellipsoidal

particles without shading.

new centers {p1, p2} = pold ± ζ
2
~ex, where ζ =

√
2v1 is the amount of stretching along the

axis [6, 1]. Figure 5.7 illustrates the difference between an animation with and without

particle splitting enabled. The frequency of smoke particle output is intentionally defined

to be low to emphasize the effects of splitting. The sampling and smoothing benefits of

particle splitting are more evident in a scene with a sparse distribution of particles.

5.3 Smoke Particle Advection

Smoke particles are advected in the flow as passive markers using the velocity field derived

from the vorticity field of the system. As with filaments, we advect smoke particles using

the higher-order advection procedure described in section 4.2.3 and our modified Biot-

Savart kernel. The smoke particle positions are updated with equation 4.13, which also
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Figure 5.7: Identical frames of an animation with two smoke swirls with (bottom row)

adaptive smoke particle splitting and without (top row).

provides us with the the base from which we can perform the covariance update for

particle stretching and splitting described in the previous section.

5.4 Particle Shading Model

We have discussed previous techniques used for smoke rendering. These techniques apply

different illumination models (some physically-based and some completely ad-hoc) to

obtain the final lighting effects due to smoke. We proposed a simple yet compelling

illumination model for rendering our adaptive smoke particles with real-time performance

similar to the technique originally presented by Angelidis and Neyret [4].

In order to enhance the visual quality of our results, we simulate a self-shadowing
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process by sorting particles in front-to-back order according to the viewpoint and col-

lecting particle opacities during rendering (this feature can be toggled for a slight per-

formance enhancement, if necessary). Once sorted, we project each ellipsoidal particle

onto a two-dimensional viewer-aligned billboard and calculate the shading according to

a density gradient defined over each particle.

Projecting a particle onto a viewer-aligned billboard requires obtaining orthogonal

view plane axes, x and y and then simply performing the following operation to obtain

a covariance matrix describing a two-dimensional image-plane projected ellipse:

Cview = (x y)T · C · (x y) [1]. (5.7)

User adjustable parameters, such as color, are combined with our diffuse shading

model to obtain the color gradients blending throughout each projected billboard, result-

ing in a smoothly shaded smoke particle without any perceivable boundaries. This visual

cue is often sufficient, in the perceptual sense, to convince a viewer that our smoke parti-

cles are not composed of geometric primitives, as with other computer rendered objects.

Unlike many two-dimensional billboarding effects, we maintain a three-dimensional vi-

sual representation of each smoke particle by assigning the gradient-adjusted color using

a three-dimensional shading model. The most important piece of information required

for shading our particles is the normal to each particle. Thin smoke often exhibits surface

like visual behaviour despite our previous statement regarding the disassociation between

smoke particles and geometric surfaces, thus we emphasize the importance of obtaining

a normal for shading.

The gradient of the density of a ellipsoidal smoke particle near the boundaries of the

particle define the normal at the surface [5]. We can obtain the normal analytically given

the viewer’s eye position:
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~n =
(
JJT

)−1
e [5, 2], (5.8)

where e is the viewer’s eye position in the same co-ordinate frame as the normal (typically

the world co-ordinate frame). Furthermore, we can incorporate the shading of smoke

using the normal information with our hybrid image-based billboard rendering algorithm.

If we already have normal information, we could determine the deformed normal of an

ellipsoid after it has been advected by one time step with the following equation:

~ndeformed =
∂F(p̄)

∂x
× ∂F(p̄)

∂y
(5.9)

= J−T · ~n [2], (5.10)

however we can only use this formulation if the viewer position does not change. Since

equation 5.8 is computationally efficient, we simply recompute the normals of the particles

during each rendering pass. Figure 5.8 illustrates a profile of the viewer’s eye position

in relation to a single smoke particle, as well as the particles normal for one particular

viewing direction.

Figure 5.8: The normal vector ~n is derived according to the local gradient of density of

a smoke particle. ē is the viewer’s eye location [5].

Figure 5.9 (as well as the second and third columns of figure 5.4) illustrates the

difference between a frame rendered with and without our view-dependent depth-sorting
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algorithm. With the depth-sorting and opacity collection algorithm enabled, the smoke

seems to shadow itself realistically. This effect, although substantial, incurs a very small

performance price. In fact, for most of the animation sequences generated for this thesis,

the self-shadowing rendering algorithm uses up about one percent of the total CPU

processing power.

Figure 5.9: Self-shadowing disabled (left) and enabled (right) [5].

We justify using a real-time physically-motivated rendering algorithm instead of an

offline physically-based5 rendering algorithm with our original motivations of empow-

ering an artist with a workflow solution that does not constrain the artist within the

computational confines of an overly-complicated system.

5.5 Summary

Leveraging the benefits of a Lagrangian simulation, we proposed and outlined our particle

representation in this chapter. Various particle parameters can be adjusted by the user

of our system. For simulation purposes, adaptive splitting of smoke particles is the

most significant parameter which allows an artist to represent thin, wispy smoke more

5The terms physically-based and physically-motivated are sometimes confused in computer graphics
literature. We refer to methods that aim to strictly enforce physical laws, such as offline volumetric path
rendering algorithms, as physically-based, and methods that model themselves after approximations
based on physical laws as physically-motivated.
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realistically. For rendering purposes, our physically-motivated self-shadowing shading

model is the most significant effect that an artist can control.

The compact mathematical representation of each particle is used to track the defor-

mation of the smoke as it is advected, and this representation is used unchanged in our

rendering module. Furthermore, we can calculate the strain and other useful physical

properties using the representation described in this chapter.

Finally, although our system uses a high-performance real-time shading algorithm in

order to create a seamless user experience, the software architecture of our system (see

chapter 6) allows for the addition of a more accurate, physically-based offline rendering

algorithm. Our rendering algorithm does sometimes yield results that are visibly unre-

alistic, such as when the density of particles is too coarse and the visual space is poorly

sampled. This can occur when the smoke particle emission rate is too slow. Enabling

particle splitting nearly always increases the particle density to a point where our results

become realistic. This sampling issue is present in figure 5.7.



Chapter 6

Implementation

6.1 Graphics Blue Box Architecture

Our smoke simulation system is implemented as an extension, or software plug-in, on top

of an existing open-source computer graphics software framework called the Graphics

Blue Box (GBB). This open-source platform is developed by Alexis Angelidis with the

goal of balancing a lightweight architecture with a robust and extensible framework

similar to Maya’s API. Also, the GBB implements a standard set of graphical data

structures, such as curves, bounding boxes, vector/matrix operations, frustum culling

and scene graphs.

The architectural framework of the GBB is based on the exchange of data through

connected nodes. We will briefly outline the behaviour of data exchange under the GBB

architecture in the following section.

6.1.1 GBB Data Management

Much like the underlying development platform of Maya, the GBB introduces the concept

of connected nodes as a means of encapsulating data and exchanging information between

the separate components of a functional software add-on. The GBB uses nodes and plugs

89



Chapter 6. Implementation 90

at its foundation for data exchange [2].

Nodes

In the GBB architecture, nodes are designed as high-level data encapsulator and transfer

mechanisms, much like Maya’s nodes. Unlike Maya’s node structure, only one line of

code is required to add an attribute (of arbitrary type, in the programming sense) to

a node in the GBB. Nodes may also contain sub-nodes, and a developer can designate

input and output node attributes. Connectivity of attributes across separate nodes is

defined using plugs.

Each node must have an initialize function and a compute function. Moreover,

each node must be registered with the GBB’s node management system. Internal node

data attributes as well as the connectivity information between data attributes inside

the node and external nodes are defined within the initialize method. The compute

method’s sole parameter is a generic Plug data type. This method is responsible for

generating output for data attributes that are connected to other attributes, whether

internal to the node or from external nodes. The compute method compares the re-

quested output plug with the potential output data attributes of the node and, upon

determining the appropriate match, computes the required information and forwards it

to the requesting plug object.

Registering a node object adds it to the scene graph management system built into the

GBB. The reserved Scene node name is automatically initialized as the root of the scene

graph during the start-up procedure of the GBB. The GBB’s command line functionality

allows a user to manually access the property window, listing all the UI-bound input

and output data attributes of a node, by explicitly entering the full scene graph path

of the desired object. Alternatively, if the object of interest is a rendered object that is

visible from the current view orientation, clicking the object and pressing CTRL + A

will also bring up the property window. Figure 6.1 is a screen capture of a user manually
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requesting the property window of the default camera object of the scene by using a

command prompt query with the object’s full path (red).

Figure 6.1: Using the GBB’s command prompt to access the property window of the

Camera0 object.

The GBB UI automatically uses the appropriate number and type of windowing

interaction components to display the attributes of a node in its property window. For

example, in figure 6.1 above, three adjacent scrollable input boxes are used to represent

vector-type attributes, such as eye, dir and up, which define the orientation properties

of the camera object. Not visible in this example, checkmark input boxes are used to

represent boolean node data types. The developer may also define upper and lower limits

for integer and float data types. These limits are enforced by the UI system.
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Plugs

Each data attribute has a plug object associated with it. Apart from allowing the devel-

oper to associate directional connectivity between attributes 1, the plug mechanism also

handles the maintenance of data values and the proper propagation of values through-

out the underlying system. The pink and blue arrow buttons next to attributes in an

object’s property window (see figure 6.1) allow a user to request a curve editor window

for defining time varying data values. Figure 6.2 illustrates this functionality.

Figure 6.2: Curves can be defined to vary the value of a data attribute over time.

These time varying data values are handled appropriately by the plug mechanism.

The procedure of data attribute propagation will be discussed in section 6.4.1. Data

attribute values may also be key-framed by the user. The plug architecture manages

the key-framing of data attribute values, as well as a interpolation of the values between

key-frames using a simple quadratic interpolator. As with nodes, plugs may also consist

of sub-plugs. The UI features of the GBB, such as the property window and curve editor,

are specifically designed with computer artists in mind and thus maintains the objective

of an artist-friendly work environment for our smoke animation package.

1One input plug may be associated with many output plugs, and vice-versa.
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6.1.2 User Interface

The previous section illustrated the main UI construction of the property and the curve

editor windows. We will briefly overview the other main UI features of the GBB. The

most used UI tool of the GBB is the aptly named gizmo illustrated in figure 6.3. This

widget allows a user to select, scale, rotate and translate any visible object. Furthermore,

once selected, an object’s position and orientation can by key-framed and its property

window can be opened. This type of on-screen object manipulation is common to many

standard computer animation tools.

Figure 6.3: A gizmo selecting, scaling and rotating a current generator object.

Another useful GBB feature is the ability to key-frame any presented data attribute.

As with Maya, key-frames are tracked on a per-object basis and setting/deleting key-

frames is a key-stroke (with optional menu item) operation. Figure 6.4 illustrates the

key-framing and interpolation of various orientation properties of a current generator

object.

6.2 Simulation Flow

We refer to [5] for a simple five step breakdown of each time step of our animation engine:
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Figure 6.4: Key-framing and interpolation of current generator orientation.

6.3 Smoke Simulation and Control Software Compo-

nents

As mentioned at the beginning of this chapter, our smoke animation system is built on

top of the GBB architecture. Our smoke animation extension is implemented as a set of
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interacting GBB nodes. Of this set, will discuss three major node types, two minor node

types and a brief summary of some control node types. Instead of overviewing the details

of these nodes from a developer’s perspective, we chose to summarize the key attributes

and properties of these nodes from a user perspective. Most of the major, minor and

control nodes implement a render routine, allowing a user to visualize their behaviour.

The three major node types we will overview are the CurrentGenerator, SmokeGenerator

and SmokeParticles node types. The two minor node types we will overview are the

VortexRing and the VortexSet nodes. The control node types we will investigate are

the CurrentAttractor and CurrentTurbulence nodes. A description of these nodes, as

well their key parameters and screenshots will be provided.

6.3.1 CurrentGenerator Node

The CurrentGenerator node is responsible for generating vorticity carrying filaments.

Each filament is created as a nested node of type VortexRing. This node type will

be discussed in section 6.3.4. The CurrentGenerator creates a new filament on the

appropriate time steps and enqueues the filament into the appropriate processing bin

according to whether or not the current generator object has a control entity, such as

a current control curve, associated to it. Each generated filament has its initial local

coordinate frame calculated by the current generator object. Figure 6.5 is a screenshot

of a current generator’s visual widget as well as its property window. Table 6.1 describes

the key attributes of the current generator.

6.3.2 SmokeGenerator Node

The SmokeGenerator node’s function is to introduce smoke particles into the physical

system. The initial distribution of smoke particles can be contained in a cubic region

(see figure 6.6, top right) or a region defined by a torus (see figure 6.6, bottom right).

The properties of the generated particles can be modified using the SmokeGenerator
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Figure 6.5: A current generator’s property window and visualization widget.

attributes coupled with the attributes of the SmokeParticles node (see below). Table

6.2 describes the key attributes of the smoke generator.

6.3.3 SmokeParticles Node

The SmokeParticles node, coupled with the SmokeGenerator node, implements all the

functionality of each smoke particle in the system. Particle splitting, as discussed in

chapter 5, is implemented in this node. Furthermore, our smoke shading algorithm is

also implemented in this node. Figure 6.7 is the property window of the SmokeParticles

node. Figures in chapter 5 illustrate the visualization of smoke particles with different

attribute settings of this node type. Table 6.3 describes the key attributes of the smoke

particles.
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Attribute Description

mod The period of filament generation. Reducing this number

causes the generator to create filaments more frequently.

nbMotionHarmonics The number of frequency components to use during the

synthesis of each filament.

nbMotionSamples The number of equi-distant (in the radial sense) motion

samples to use for each filament. The larger this value,

the more accurate the generated motion.

strength The relative strength of the generated filament

vorticities across separate current generators.

twist The amount of twist force applied to the filaments.

thickness The thickness of each filament. The larger this number,

the greater the vorticity generated.

Table 6.1: The key attributes of a current generator.

6.3.4 VortexRing Node

The VortexRing node implements per-filament functionality and is a sub-node of the

CurrentGenerator node type. A CurrentGenerator node iterates through these nodes

and propagates requests, such as advection requests, control requests and display re-

quests. The major properties of a single filament, or VortexRing node, are very similar

to those of a CurrentGenerator object. An additional property, presence, is a toggle on

whether the ring is active in the system or not. Figure 6.8 illustrates the property window

of a single filament, as well as a filament rendered with (top) and without (bottom) texture

sampled interpolation between motion samples (visible on the bottom right filament).
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Figure 6.6: A smoke generator’s property window and visualization widgets.

Figure 6.7: The smoke particles’ property window.
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Attribute Description

radius The size of the smoke generator. This size affects the spatial

distribution of generated smoke particles. Using the gizmo to perform

a uniform scale on the smoke generator widget has the same effect as

modifying the radius attribute.

freq The frequency of particles generated per second.

spaceRes The sampling frequency of the distribution of particles about the cube

or torus shape. For example, with the cube distribution and a spaceRes

of 3, particles are spawned in a 3× 3× 3 cube.

mass The mass of individual particles. Particle volume is manipulated by the

flow, thus adjusting the mass is an indirect method of having control over

the density of smoke particles in the system.

speedSlow Defines the slow speed of particles.

speedFast Defines the fast speed of particles.

color The base color of the smoke particles.

colorFast The color of fast smoke particles. The final color of a smoke particle is a

combination of all the color settings, including an interpolation of the base

and fast colors using the speedSlow and speedFast attributes.

mode Toggle between a cubic (mode = 0) or torus (mode = 1) distribution.

Table 6.2: The key attributes of a smoke generator.

6.3.5 VortexSet Node

We store various properties in an octree for acceleration purposes. This octree will be

discussed in section 6.4.3. We allow the user to directly set the resolution of the octree for

performance tuning. The VortexSet node type implements this functionality. Figure 6.9

illustrates the property window of this node type as well as a simple simulation running

with octree visualization enabled. Table 6.4 summarizes the attributes of the VortexSet
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Attribute Description

light The position of the point light source used during shading. As it

stands, our system currently only supports one point light source.

maxStretch The limit on the amount of stretching about the axis of

maximum stretch prior to splitting a particle.

minDensity The minimum density that must be maintained. Splitting will

not occur unless the particle maintains at least this density.

renderEllipse Toggles between rendering the smoke particle or its

bounding ellipse.

split Enables and disables particle splitting effects.

shaded Enables and disables our self-shadowing algorithm.

Table 6.3: The key attributes of smoke particles.

node type.

Attribute Description

renderOctree Toggle between rendering with and without the octree grid.

octreeResolution This value determines the degree of octree sampling and

interpolation performed between leaf node samples. Varying

this value allows an artist to trade performance for

accuracy during design.

g This is the definition of the global gravity field.

Table 6.4: The key attributes of the vorticity octree cache.

6.3.6 Control Node Types

We will overview the attributes of some the nodes that implement the control features

of our system.



Chapter 6. Implementation 101

Figure 6.8: The filament’s property window and visualization widget, with and without

sample interpolation.

Figure 6.9: The vortex set’s property window and visualization of the velocity/twist

storing octree.



Chapter 6. Implementation 102

CurrentAttractor Node

The CurrentAttractor node type implements the functionality of the current attractor

control tool. If a vortex ring is within the appropriate region of influence of the attractor,

its direction and orientation are manipulated by the attractor. Figure 6.10 illustrates the

property window and visualization widget of this node. Table 6.5 summarizes the key

node attributes.

Figure 6.10: The current attractor’s property window and visualization widget.

Attribute Description

inner The radius of the inner region of the attractor.

outer The radius of the outer region of the attractor.

strength This attribute affects the rate at which filaments are diverted.

Table 6.5: The key attributes of the current attractor control tool.

CurrentTurbulence Node

The CurrentTurbulence node implements the fine-level detail adding noise feature de-

scribed in chapter 4. The user can specify the scale of the noise as well as the amount
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of turbulence added to the system. Figure 6.11 illustrates the property window and vi-

sualization widget of the current turbulence detail tool. Table 6.6 provides a description

of each of the node’s key user-definable attributes.

Figure 6.11: The current turbulence’s property window and visualization widget.

Attribute Description

size The number of turbulent particles.

repeat The amount of replication of the noise pattern. This value, x,

subdivides the noise simulation region of the blue volume

by a factor of x2 and tiles this sub-region x2 times.

Table 6.6: The key attributes of the current turbulence tool.

Acceleration techniques used in our implementation will be discussed in the following

section.

6.4 Acceleration Techniques

One of the goals of our smoke animation system is to minimize the delay between design

and visualization of results. We wish to empower our users with the ability to quickly

realize whether their artistic goals are being properly reflected by the designs they im-

plement with our system. Our smoke animation allows an artist to interact with the
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smoke interactively. This is facilitated in part due to the compact representation of flow

using our frequency-space analysis. The control tools operate on this basis while incur-

ring negligible performance costs. Moreover, these tools manipulate the flow without

abstracting control operations. Unlike standard fluid control mechanisms coupled with

Eulerian grid techniques, the workflow of our system is suitable for rapid prototyping as

well as production-quality design.

We supplement the performance advantage of our vorticity formulation with other

acceleration techniques. Firstly, the GBB’s node and plug architecture was designed with

a data-exchange system that minimizes overhead between inter-node communication.

Secondly, we accelerate the calculation of the physical properties of our system with an

octree data structure. Lastly, a GPU accelerated advection engine was integrated into

the GBB. We will detail these three acceleration features below.

6.4.1 Dirty Bit Updating

Recalling earlier information on GBB’s plugs and nodes, node attributes are wrapped by

plug objects used to communicate between attributes within a node and between separate

nodes. Whenever an attribute’s value is overwritten with a new value, instead of propa-

gating the new value to all the other attributes connected to the modified attribute, and

thus require them to all be updated too, the plug architecture simply propagates a dirty

bit down the directed acyclic graph (DAG) of connected plugs. Since some attributes,

such as velocities and positions, may require substantial computation for updates due to

modifications of connected attributes, this dirty bit propagation mechanism can signif-

icantly reduce the performance load of our system. For example, in scenes with many

interdependent nodes and constraints, such as key frames, this framework manages data

transfer and reduces unnecessary computation. However, in scenes where almost all enti-

ties require updating every frame, the overhead of managing dirty bit propagation can be

larger than the performance gains of avoiding the few computations that are not required.
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Whenever an attribute is read, if its dirty bit is set due to an update of a connected

attribute on a higher level in the DAG, then the attribute’s value is updated and the

potentially costly update routine is called only when necessary. Architecturally, this

is a sound design feature of the GBB but there are some features of the GBB that

may actually incur heavier performance costs than the potential benefits. For example,

currently in the GBB the most common method of retrieving or modifying an attribute’s

value is to index the attribute by a string identifier. This operation, on a lower-level,

becomes quite expensive since string comparisons must be conducted every time attribute

data is accessed in the system. Our benchmarking shows that these string comparisons

can combine to form the computational bottleneck of our system. Another drawback of

using the GBB will be discussed shortly.

6.4.2 Hardware Acceleration

Shader Model 3.0 introduces features useful for implementing complicated shaders on

graphics hardware. Of special use for physical simulations, increased shader instruction

counts as well as introducing dynamic branching capabilities and native 32-bit floating

point support are some key additions.

Recent advancements in the field of general programming on graphics processing

units (GPUs) has motivated a hardware accelerated implementation of our advection

procedure. [33] and [44] demonstrate the feasibility of accelerating physical simulations

with GPUs. We will discuss the implementation of our hardware accelerated advection

unit although all performance results presented in chapter 7 use an unaccelerated software

implementation. For reasons that will be explained shortly, our hardware acceleration

implementation is not well-suited for integration with the GBB architecture, and thus,

the effect on performance due to the hardware acceleration is not fully representative of

the potential this new technology can present to our specific application. However, we

feel that the merits of our approach as well as our implementation can pave the way for an
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implementation of our system that can maximize the benefits of a GPU implementation.

We list such an implementation as one of our areas of future work in chapter 8.

Although the latest generation of GPUs are capable of achieving remarkable compu-

tational throughput, memory bus bandwidth limitations introduce performance bottle-

necks.

Our hardware accelerated advection takes advantage of two fundamental benefits of

our method: the compact representation of the twist transform and the straightforward

vector operations required for the exponentiation of the twist. Recall from chapter 3

that our higher-order advection procedure’s primary mathematical operation is the ex-

ponentiation of the twist transform. The aforementioned properties facilitate transferring

the twist data over texture maps to the GPU’s fragment processing unit. We choose to

perform our hardware acceleration in the fragment processor since there are typically at

least twice as many of these units on a standard GPU as there are vertex processing

units. A pixel shader reads in the twist information and performs the advection of smoke

particle and filament motion samples by taking the exponentiation of the twist transform

over the desired time step.

Once the operations are complete, the updated positions are returned to the CPU for

use in the next frame. Notice here that each parallel batch of position updates require a

set of CPU-GPU data exchanges. From our experience, these data transfers are actually

more costly (on a strict timing basis) than the actual operations performed on the GPU.

We have investigated many methods for optimizing the data uploads and downloads

between the CPU and GPU during accelerated advection. Using the OpenGL 2.0 pixel

buffer object and floating point render target extensions yielded the optimal data transfer

rates and minimal per-frame setup overhead. Although we have spent the majority of this

chapter illustrating the benefits of the GBB architecture, it is evident that the GBB was

not designed with general programming on GPU functionality in mind. Since our smoke

particle advection and filament advection are performed in separate nodes intertwined
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with a larger array of support nodes as well as the control nodes, we were constrained in

our GPU acceleration implementation. Specifically, although the hardware accelerated

advection procedure is largely identical for both smoke particles and filament motion

samples, we require that two separate hardware acceleration procedures be implemented

to handle the advection of these two sets of samples. In a re-engineered solution, it is

plausible that a single hardware advection unit could simultaneously advect both the

smoke particles and filaments in parallel. This would not only eliminate the duplicate

code execution on the GPU, but would also allow us to reduce the number of CPU-GPU

data exchanges by bundling the relevant twist data for both the smoke particles and

filament motion samples into a single texture map. This would increase the ratio of data

size to number of data transfers between the CPU and GPU, which has been shown to

significantly increase the performance of a GPU accelerated procedure.

Our accelerated technique was benchmarked using an nVidia GeForce 6800 graphics

card with 256 megabytes of video memory. With a minimal ratio of smoke particles

and filament motion samples to CPU-GPU data transfers, the accelerated advection

still performed no worse than the software simulation. As a simulation progressed and

the number of particles increased, performance gains of the accelerated implementation

became more apparent, however we have only noticed a maximum performance gain of

approximately 8% , although this value depends heavily on the scene being simulated [5].

6.4.3 Octree Caching

One computational issue we must consider when evaluating the velocity at a point given

the entire vorticity field using our Biot-Savart formulation is that for N filaments (or

furthermore, N ×M samples, where M is the average number of motion samples across

all filaments), a näıve implementation yields an O(N2) complexity for calculating all

the necessary velocities of a single time step. Although this complexity is much better

than the O(N3) performance of näıve Eulerian uniform grid based simulators, it is still
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unacceptable if we are aiming for real-time or interactive simulation performance.

We accelerate this calculation by storing the velocities (or twist transforms, for higher-

order advection) in a dynamically updated octree whose grids are concentrated only

around the filament motion samples and smoke particles. Velocities (or twists) are inter-

polated in between the octree leaf nodes. This spatial data structure reduces our time

complexity to O(N), on average, at the cost of added memory requirements and the cost

of maintaining the octree. As the number of filaments increases in a system, the benefits

of this acceleration technique become more prevalent.

Furthermore, this octree mechanism provides a user with a way of fine-tuning the

performance versus accuracy settings of our simulator. Recalling the attributes of the

VortexSet node type, the resolution of the octree can be varied to increase or decrease

the sampling of the data structure in exchange for decreasing or increasing the amount

of (physically incorrect) interpolation of the velocities or twists used to propagate the

filament motion samples and smoke particles. The performance results presented in

chapter 7 illustrate the performance of our system under two separate set of system

settings: one tailored for low-accuracy and fast-feedback and the other tailored at high-

accuracy and slow-simulation. One of the direct contributors of this trade-off is the octree

resolution used in each of these two system settings.

6.5 Summary

We introduced the open-source GBB software framework, developed by Alexis Angelidis,

that we used as the foundation for our smoke animation system. Research software has a

bad reputation of providing lack-luster user experiences and solely revolving around the

needs of the researcher. While there are occasions when the fast-prototyping brand of

software engineering is valid, since our contribution revolves around the user’s experience

the GBB framework was well-suited to our needs.
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The powerful yet easy-to-use interaction components of the GBB were overviewed,

its underlying data transfer architecture as well as its large support of common computer

graphics and computer animation functional units were also summarized.

In a sense, despite the professional and robust architecture of the GBB and its strength

through generality, it is this general computer graphics development platform design that

also somewhat limits the full performance potential of our smoke simulation and anima-

tion system. With careful planning, a more suitable and specially-tailored implementa-

tion of our system will allow the full benefits of GPU acceleration to be attained. A more

optimized data transfer mechanism, as discussed earlier in this chapter, will also likely

yield further performance gains. The UI themes and features of the GBB will most likely

remain, in one form or another, given time to re-engineer a new system.

Our smoke animation system was implemented as an extension to the GBB comprised

of multiple additional components. The key simulation and control components were

overviewed as well as their visualization entities in the GBB and the main attributes of

these components exposed to the user. We ended with a summary of the performance-

tailored features of the GBB and our implementation.



Chapter 7

Results

We will present results, feedback and performance measurements of our smoke animation

system in this chapter. Firstly, final rendering frames from animation sequences we have

generated with the system will be presented. Since the effect of varying smoke particle

settings on final rendered images was presented in chapter 5, we will focus on effects

based solely on the control of filaments in our system.

7.1 Simulation Renderings

The final renderings are presented in this section to illustrate some of the different effects,

both artistic and functional, an artist can incorporate into an animation sequence using

our method.

7.1.1 Control Curve Effects

A control curve is used in the scene below to prevent the smoke from obscuring the

character’s face and to bring the smoke into view after the view orientation and position

have changed.

110
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Figure 7.1: Using a current control curve to move the smoke into an artistically required

location [5].

Moreover, the following two animation clips use current control curves to smother a

fly with a toxic gas.

Figure 7.2: Toxic smoke chasing the fly [5].
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Figure 7.3: Toxic smoke catching the fly [5].

The control curve is illustrated and particle splitting is turned off to exaggerate how

a simple scene setup can yield convincing results.

Figure 7.4: The design view of the fly scene [5].

7.1.2 Current Attractor Effects

Current attractors are used in the following animation to ensure that a layer of smoke

always remains under the genie.
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Figure 7.5: A genie’s lamp smoke follows him throughout his flight [5].

7.1.3 Tornado Effects

The twist feature can create some very interesting effects at low computational cost

thanks in part to our compact filament basis. The following animation sequence illus-

trates the twisting effect on a swirl of three different smoke strands.

Figure 7.6: Smoke swirling about an axis along its path [5].
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7.1.4 Fine-level Detail Effects

The following sequence illustrates the effects of adding noise vortices into the flow. The

top row is the sequence without the added noise vortices and the bottom row is the

sequence with the noise added.

Figure 7.7: The effect of noise vortices for adding fine-level detail [5].

7.2 User Experience Feedback

We have distributed our animation system to a set of computer graphics aware users

with novice and intermediate animation expertise. With little to no instruction, the users

were able to generate simple animation sequences in a short period of time. Adding more

complicated effects to the animation sequences was found to be straightforward, from a

user perspective, once certain advanced usage techniques were explicitly demonstrated.

Users found our system’s interface intuitive despite its simplicity. Including more

common functionality as buttons or widgets outside of the menuing layout was a sec-

ondary request. Scene entity layout, key framing and interaction were easily grasped by

the users with prior animation experience. Users were particularly impressed with the

responsiveness of our system and the quality of their final rendered animation sequences.

Apart from this informal user study, we have analysed the key reviewer comments from
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anonymous academic experts in the fields of computer graphics, computer animation and

applications of computational fluid dynamics in computer graphics. Comments spanned

the key areas of our contribution: our filament basis, our control tools and our rendering

algorithm.

The comments on our compact filament basis from the reviewers were generally posi-

tive. For the most part, reviewers understood the benefits of our representation and those

who made the connection to the relevance of this representation for filament control were

especially impressed. Although our frequency space analysis does contribute toward the

speed improvement of our system over previous systems as well as providing improved

sampling, the main benefit of our representation is its connection to the control tools.

The quality of the screenshots of our final animation sequences drew the attention of

most of our audience. Considering the fact that our rendering algorithm is computational

efficient and not specially designed for feature-film quality productions, the feedback we

received was pleasant.

Furthermore, a handful of experts were very impressed by our system and the results

we presented and suggested that our technique be incorporated into current production

pipelines as well as educational programs for computer graphics and fluid dynamics.

Moreover, some reviewers could not distinguish whether our renderings were performed

in real-time or using a ray-tracing method.

7.3 Runtime Performance

The performance of our method is measured in tables 7.1 and 7.2 using sample animation

sequences generated with our animation system. We measure the performance of our

system using two sets of system settings. Modeling settings are a combination of system

setting values set with the purpose of reducing computational cost. These values are set

while trying to balance a level of accuracy close to the more physically-accurate results of
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our higher-quality simulations and renderings. The high-quality settings include effects

such as noise, adaptive particle splitting and a higher number of filament basis component

frequencies used during simulation. Furthermore, the number of filament motion samples

and the number of smoke particles are increased to properly sample the visual space.

Lastly, the octree resolution is reduced in the modeling settings in order to increase the

responsiveness of our system. Modeling settings are meant to represent the settings an

artist would use during the animation design phase. High-quality settings would then be

used during the refinement and final rendering phases of the production.

The complexity of a scene is measured with the average number of filament particles

per frame, the average number of smoke particles per frame and whether the scene takes

advantage of particle splitting and/or noise effects. The performance is measured as the

average frame rate over a 200 frame long animation.

Scene
Modeling Settings

Avg. # of

Motion Samples

Avg. # of

Particles

Avg. # of

FPS

Happy Boy 113 72 21.71

Simple

Benchmark
78 96 18.43

Toxic Fumes

vs. the Fly
45 112 18.32

Noise

Benchmark
91 112 12.63

Genie & Lamp 67 2493 12.435

Forest Fire 120 4875 5.16

Walkthrough

Smoke
395 1280 4.744

Table 7.1: Benchmarks with modeling settings settings.
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Scene
High-Quality Settings

Particle

Splitting
Noise

Avg. # of

Motion Samples

Avg. # of

Particles

Avg. # of

FPS

Happy Boy ✓ 450 1197 3.61

Simple

Benchmark
90 168 7.63

Toxic Fumes

vs. the Fly
✓ ✓ 182 3787 0.37

Noise

Benchmark
✓ ✓ 364 3038 2.516

Genie & Lamp ✓ ✓ 450 73357 0.24

Forest Fire ✓ 336 20250 0.54

Walkthrough

Smoke
✓ ✓ 750 7040 1.03

Table 7.2: Benchmarks with high-quality settings.

The results in Tables 7.1 and 7.2 illustrate the linear scalability of our method in the

number of particles and filaments. Interactive framerates are achieved in all modeling

settings simulations, and some less demanding high-quality settings simulations.

7.4 Summary

We have presented screenshots of some animation sequences modeled with our system,

demonstrating examples of different effects that can be designed using our system’s con-

trol tools. Every animation sequence was modeled in under two hours, some in under

one hour, by an artist with intermediate to advanced level knowledge of our system.

Furthermore, the simulation and rendering time of the final animation sequences for all

the scenes combined took less than eight hours, demonstrating a significant reduction in

the time required to design and yield final animation results when compared to standard
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Eulerian grid-based techniques.

The general comments from a pool of student volunteers as well as the technical

comments from anonymous academic experts were presented in this chapter, followed

by performance data captured on a set of animation sequences we designed using our

system. The performance measurements illustrated the scalability of our system as well

as the ability of providing an artist with a multi-level editing framework.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

We have presented an animation system that allows an artist to manipulate both thin

and thick smoke with tools that are familiar to computer graphics content designers.

We use a vortex method simulation engine to represent the flow field used to advect

visualization particles. Vorticity filaments are the main flow inducing entities of our

physical simulation and we perform a frequency-component harmonic decomposition on

the filaments. This novel decomposition allows an artist to animate smoke with a level-

of-detail representation previously unavailable in a single pass of a simulation. Our

decomposition is also used to provide a basis for controlling the filaments. The path of

the filaments can be constrained without jeopardizing the physical integrity of the system

in a manner that has not previously been investigated for fluid control.

The main advantage of our system over previous high-quality fluid animation pack-

ages is that we enable an interactive manipulation of smoke parameters during simulation

as well as real-time visualization of the phenomenon, eliminating the typical delays in

previous design pipelines. Level-of-detail filament representations allow an artist to de-

sign an animation with a simulation engine that responds in real-time. Intuitive control

119
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mechanisms, such as control curves, allow for powerful control over the flow without

over-complicated and restrictive interfaces.

Our system is built on top of a robust, open-source computer animation software

architecture with a straightforward application programming interface (API) that easily

allows additional functionality to be added. A testament to the usability of our software

is that a novice user can create a relatively complicated animation sequence with little

or no training in under an hour. All of the animation sequences created for this thesis

and for [5] were created in under two hours.

8.2 Future Work

We foresee potential areas of future work and research focusing on the physical simu-

lation component of our system, different rendering models for our system and further

acceleration of our system.

8.2.1 Physics Future Work

We can extend the capabilities of our physical simulator by adding some of the terms

we omitted in the vorticity transport equation. Recently, computer graphics researchers

have extended standard grid-based simulators with support for viscous fluids [30] or

have devised ad-hoc simulations of viscous materials [15]. If we reformulate the vorticity

transport equation to include the viscous diffusion term ν∇2 ~w and devise an efficient

method of incorporating these viscosity effects into our current framework, we may be

able to create interesting effects involving smoke and the effects of viscosity.

Viscosity is a more compelling effect when applied to liquids. Thus it follows that

another significant area of future research would be the simulation of liquids with vortex

methods. Since the usefulness of filament primitives as flow carrying elements only per-

tains to the simulation of smoke, an alternative vortex representation would be necessary
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for the simulation of liquids. Applying a similar methodology for the simulation of liq-

uids as we did for our simulation of smoke may lead to an efficient and intuitive artistic

workflow for the design of liquid animations. For example, the direct manipulation of

the liquid-air interface or indirect flow generation with control tools behaving as physical

objects in the system are interesting ideas that we will investigate. Overlapped vortex

sheets or vortex particles are a few flow primitives we will consider using.

Stepping back into the realm of smoke simulation, since our physical simulation only

takes the effects of advection into account, it would be interesting to introduce the fine

level effects of diffusion into our simulation. Perhaps a sub-simulation at the per-particle

level could introduce a finer scale detail. Our noise features are a compromise between

very-fine level detail control and absolutely no fine level detail control. Having a sepa-

rate smoke particle sub-simulation to control the fine-level details could add even more

detailed realism to our smoke simulations.

The area of object boundary handling with vortex methods still could use improve-

ment and if an efficient technique for handling collisions of our smoke particles or current

filaments with arbitrary objects or a subset of objects (such as spheres or convex objects)

would be an interesting and potentially rewarding area of research with applications that

could move into the computational fluid dynamics research community. Furthermore,

once arbitrary object boundary effects are feasible without substantial performance loss,

integration of a real-time controllable smoke simulator with existing real-time rigid body

simulators could yield fully-coupled gas-solid interactive simulations for use in gaming

and animation applications.

Lastly, in chapter 4 we introduced our novel and compact filament basis. Investi-

gating other compact and robust methods of representing filaments may lead to further

accelerations and other unforeseen benefits.
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8.2.2 Rendering Future Work

Although our system currently focuses on real-time realistic rendering as its primary

rendering solution, two additional areas of interest for future work are high-fidelity

physically-based offline rendering algorithms and artistic rendering algorithms. Need-

less to say, more sophisticated and effective rendering algorithms are also still of interest

for future research directions.

Recent advances in real-time rendering algorithms have focused on techniques that

perform precomputations and domain transformations on the standard rendering equa-

tion in hopes of reproducing complex lighting effects, such as diffuse interreflection, in

real-time. Traditionally, the computational cost of calculating these complicated global

illumination effects precluded their application in real-time rendering algorithms. Pre-

computed Radiance Transfer (PRT) techniques are evolving to potentially solve this prob-

lem. Although the initial focus of PRT techniques was on relighting static scene geometry

while addressing transport issues involved in compactly representing the view-dependent

nature of many complicated lighting effects, the research focus has shifted slightly towards

continuing to represent complicated effects without assuming a fixed scene geometry.

Ren et al. have recently described a PRT algorithm that aims to accurately capture

soft shadowing effects of dynamically moving objects on themselves and their neighbour-

ing environment [66]. As with other PRT techniques, concurrent viewing and incoming

lighting direction changes can be made without affecting the performance of their sys-

tem. This work is of particular interest for the purposes of smoke rendering. Ren et al.

approximate the objects in a dynamic scene as a hierarchical combination of spheres and

use this approximation, along with a novel log space visibility accumulation technique,

to dynamically shadow the scene in real-time. If a similar technique can be adopted to

handle attenuations amenable to a gas, such as smoke, as opposed to solid objects, then

our current ellipsoidal smoke representation can be leveraged with such a technique for

more realistic real-time rendering effects.
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Another potential area of future work in rendering is non-photorealistic rendering

algorithms for smoke. Originally, Selle et al. coupled a billboarding algorithm along with

depth buffer differencing and standard cartoon rendering techniques to allow for cell-

shaded smoke animations generated from grid-based smoke simulations [71]. Recently,

McGuire and Fein followed up with a cartoon smoke renderer with billboarding and

efficient silhouette outlining as well as a novel self-shadowing algorithm based loosely on

real-time shadow volume methods [52]. Once again we may be able to leverage our current

particle representation. Our particle representation allows us to easily extract and sort

depth information (our current rendering algorithm already performs these calculations in

real-time) and the displacement gradient tensor information may be useful when applied

to artistic and stylized smoke rendering methods.

Lastly, our system can be extended with the incorporation of an offline physically-

based volumetric rendering algorithm similar to previous works presented by Premoze

et al. in the area of light transport in participating media [63]. Ideally we can leverage

the smoke particles of our system to either simplify the domain of integration of the

volumetric rendering equation or to accelerate the calculations.

8.2.3 Future Work in Acceleration and Software Engineering

As mentioned earlier, our system is implemented as an extension to the Graphics Blue

Box software toolkit. While the benefits of this toolkit were outlined, it was designed

with generality in mind and thus contains additional and possibly unnecessary layers of

abstraction. One future area of work would be to re-write our system as a stand-alone

software package, thus eliminating any excess software abstraction. Such a re-engineering

would also allow us to couple all hardware acceleration units together, in hopes of im-

proved performance, instead of having separate hardware acceleration units. This change

makes sense because while the calculations for advecting filaments and particles are al-

most identical, in our current system, they are executed as a sequential batch of parallel
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operations on the GPU, as opposed to one parallel operation. The Graphics Blue Box

also identifies internal variables as string types, and thus a string comparison operation

is performed for each variable query. During benchmarking, it was noted that these

string comparison operations consume a significant amount of CPU processing during

execution.

Recently, a sub-area of the General Programming on Graphics Processing Units (GPGPU)

research area has focused on the implementation of data structures on GPUs. This task

is especially challenging on the current generation of GPUs since random access writes

to graphics memory are not supported and random access reads from graphics memory

are prohibitively expensive to perform on a scale necessary for standard data structure

implementations. Lefebre et al. implemented octree data structure support on GPUs

with an application for three dimensional texturing [47]. Recently, Lefohn et al. [48]

extended the work of Kniss et al. [43] with a robust and comprehensive generic data

structure library for GPUs. Extending the hardware acceleration of our system, namely

our octree acceleration, with one of the existing packages or a tailor made data structure

on GPU software package is another area of potential future work.

8.3 Final Thoughts

Our system can create cinematic quality animations of wispy smoke in a fraction of the

time current Eulerian simulators require while providing the artist with design tools and

response rates that further accelerate the complete design cycle of an animation sequence.

Test users and academic experts were impressed with the results of our system and the

simulation performance compared to standard Eulerian techniques. Hopefully with time

and exposure, our method will contribute to future techniques that balance high-quality

results with fine-tuned workflow improvements.

Other Lagrangian schemes for representing gaseous flow should be validated against
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our approach. The use of vortex methods that use different discretization primitives,

such as vortex sheets or vortex particles, provide good numerical and visual bases for

comparison with our technique. Implementing a vortex sheet simulator based on our

system is a natural extension that can be used during this comparison. The work of Park

and Kim [58] is also a good candidate for comparison since they also consider the same

speed and accuracy trade-offs as our system.

A book is never finished, it is only published. – Derick Wood
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