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Figure 1: We render temporally coherent motion blur without any motion artifacts, even on animation sequences with complex
depth and motion relationships that are challenging for previous post-process techniques. All results are computed in about 3ms
at 1280 × 720 on a GeForce GTX480, and our filter integrates seamlessly with post-process anti-aliasing and depth of field.

Abstract
High-quality motion blur is an increasingly important and pervasive effect in interactive graphics that, even in the
context of offline rendering, is often approximated using a post process. Recent motion blur post-process filters
(e.g., [MHBO12,Sou13]) efficiently generate plausible results suitable for modern interactive rendering pipelines.
However, these approaches may produce distracting artifacts, for instance, when different motions overlap in depth
or when both large- and fine-scale features undergo motion. We address these artifacts with a more robust sampling
and filtering scheme that incurs only small additional runtime cost. We render plausible, temporally-coherent
motion blur on several complex animation sequences, all in just 3ms at a resolution 1280 × 720. Moreover, our
filter is designed to integrate seamlessly with post-process anti-aliasing and depth of field.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Motion blur is an essential effect in realistic image synthesis,
providing important motion cues and directing viewing at-
tention, and is one of the few effects that distinguishes high-
quality film production renderings from interactive graphics.
We phenomenologically model the perceptual cues of mo-
tion blurred image sequences to approximate this effect with
high quality using a simple, high-performance post-process.

We are motivated by work in offline motion blur post-
processing [Coo86, ETH∗09, LAC∗11], where many of the
initial experiments applied reconstruction filters to stochas-
tic sampling routines. Unfortunately, these approaches are
too heavyweight for modern game engines, however many
of their ideas remain useful. Conversely, adhoc approaches
(e.g., applying a Gaussian blur to moving objects) have ex-
isted in various forms for several years, however the ques-
tion of how to approach motion blur post-processing using
a well-founded methodology has only recently gained atten-

tion in the interactive rendering community. This methodol-
ogy had first found use (and success) in post-process anti-
aliasing [Lot09] and depth of field [Eng06] approaches.
We target temporally-coherent and plausible high-quality
motion blur that rivals super-sampled results, but on a
small performance budget and a simple implementation. As
such, we build upon recent post-process motion blur fil-
ters [MHBO12, Sou13] and address several of their limita-
tions in order to produce high-performance, stable, feature-
preserving and plausible motion blurred image sequences.

Contributions. Previous works rely on conservative as-
sumptions about local velocity distributions at each pixel in
order to apply plausible, yet efficient, blurs. Unfortunately,
distracting artifacts arise when these assumptions are bro-
ken; this occurs when objects nearby in image-space move
with different velocities, which is unavoidable even in sim-
ple scenes, or when objects under (relative) motion have ge-
ometric features of different scales. We eliminate these ar-

NVIDIA Technical Report NVR-2013-003, November 26, 2013
c© 2013 NVIDIA Corporation, Guertin, and Nowrouzezahrai. All rights reserved.



Jean-Philippe Guertin, Morgan McGuire, and Derek Nowrouzezahrai / A Fast and Stable Feature-Aware Motion Blur Filter

tifacts and compute stable motion blur for both simple and
complex animation configurations. Our contributions are:

• an improved, variance-driven directional sampling
scheme that handles anisotropic velocity distributions,
• a sample-weighting scheme that preserves unblurred ob-

ject details and captures fine- and large-scale blurring, and
• a more robust treatment of tile boundaries, and interaction

with post-process anti-aliasing and depth of field.

We operate on g-buffers, captured at a single time instance,
with standard rasterization. Our results are stable under an-
imation, robustly handle complex motion scenarios, and all
in about 3ms per frame (Figure 1). Since ours is an image
post-process filter, it can readily be used in an art-driven con-
text to generate non-physical and exaggerated motion blur
effects. We provide our full pseudocode in Appendix A.

2. Previous Work and Preliminairies

Given the extensive work on motion blur, we discuss recent
work most related to our approach and refer interested read-
ers to a recent survey on the topic [NSG11].

Sampling Analysis and Reconstruction. Cook’s seminal
work on distribution effects [Coo86] was the first to ap-
ply different (image) filters to reduce artifacts in the con-
text of stochastic ray-tracing and micropolygon rasteriza-
tion. More recent approaches filter noise while retaining im-
portant visual details, operating in the multi-dimensional pri-
mal [HJW∗08], wavelet [ODR09] or data-driven [SD12] do-
mains. Egan et al. [ETH∗09] specifically analyze the ef-
fects of sample placement and filtering, in the frequency
domain of object motion, and propose sheared reconstruc-
tion filters that operate on stochastically distributed spatio-
temporal samples. Lehtinen et al. [LAC∗11] use sparse sam-
ples in ray-space to reconstruct the anisotropy of the spatio-
temporal light-field at a pixel and reconstruct a filtered pixel
value for distribution effects. These latter two techniques
aim to minimize integration error given fixed sampling bud-
gets in stochastic rendering engines. We also reduce visi-
ble artifacts due to low-sampling rates, however we limit
ourselves to interactive graphics pipelines where distributed
temporal sampling is not an option and where compute bud-
gets are on the order of milliseconds, not minutes.

Stochastic Rasterization. Recent work on extending tri-
angle rasterization to support the temporal- and lens-
domains [AMMH07], balances the advantages and dis-
advantages of GPU rasterization, stochastic ray-tracing,
and modern GPU micropolygon renderers [FLB∗09]. Here,
camera-visibility and shading are evaluated at many sam-
ples in space-lens-time. Even with efficient implementations
on conventional GPU pipelines [MESL10], these approaches
remain too costly for modern interactive graphics applica-
tions. Still, Shirley et al. [SAC∗11] discuss image-space fil-
ters for plausible motion blur given spatio-temporal output

from such stochastic multi-sample renderers. We are moti-
vated by their phenomenological analysis of motion blur be-
haviour and extend their analysis to more robustly handle
complex motion scenarios (see Section 4).

Interactive Heuristics. Some approaches blur albedo tex-
tures prior to texture mapping (static) geometry [Lov05] or
extrude object geometry using shaders [TBI03], however
neither approach properly handles silhouette blurring, result-
ing in unrealistic motion blur. Max and Lerner [ML85], and
Pepper [Pep03], sort objects by depth, blur along their ve-
locities, and compose the result in the final image, but this
strategy fails when a scene invalidates the painter’s visibility
assumption. Per-pixel variants of this approach can reduce
artifacts [Ros08,RMM10], especially when image velocities
are dilated prior to sampling [Sou11, KS11], however this
can corrupt background details and important motion fea-
tures when multiple objects are present.

Motivated by recent tile-based, single blur velocity ap-
proaches [Len10, MHBO12, ZG12, Sou13] (see Section 3),
we also dilate velocities to reason about large-scale motion
behavior while sampling from the original velocity field to
reason about the spatially-varying blur we apply. However,
we additionally incorporate higher-order motion information
and feature-aware sample weighting to produce results that
are stable and robust to complex motion, effectively elim-
inating the artifacts present in the aforementioned “single-
velocity” approaches. Specifically, we robustly handle:

• interactions between many moving and static objects,
• complex temporally-varying depth relationships,
• correct blurring regardless of object size or tile-alignment,
• feature-preservation for static objects/backgrounds.

We build atop existing state-of-the-art tile-based plausible
motion blur approaches, detailed in Section 3, and present
our more robust multi-velocity extensions in Section 4.

3. Tile-Based Dominant Velocity Filtering Overview

We base our approach on recent single-velocity tech-
niques [Len10, MHBO12, ZG12, Sou13] that combine phe-
nomenological motion analysis and sampling-aware recon-
struction filters. Figure 2 outlines the operation of these ap-
proaches: first, the image is split into square r× r tiles ac-
cording to a maximum blur radius r in image-space, ensur-
ing that each pixel can at most be influenced by its (1-ring)
neighboring tiles; secondly, a single dominant neighborhood
velocity direction is determined at each tile; finally, the color
at the pixel is combined with weighted color samples along
the dominant blur direction.

We review some notable details of this approach below:

• a tile’s dominant velocity vmax (Figure 2b; green) is com-
puted in two steps: maximum per-pixel velocities are re-
tained per-tile (Figure 2a,b; green, blue), and a 1-ring
maximum of the per-tile maxima yields vmax,
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Pixel Velocities Max Tile Single Velocity
Velocities Sampling

Figure 2: Motion blur with “single-velocity” techniques.

• pixels are sampled exclusively along vmax, yielding high
cache coherence but ignoring complex motions, and
• each sample’s weight is computed using a depth-aware

metric that only considers the magnitude of velocities at
the source and sample points.

The "‘TileMax"’ pass can be computed in two passes, one
per image dimension, to greatly improve performance at the
cost of a slight increase in memory usage. Samples are jit-
tered to reduce (but not eliminate; see Section 4.5) banding,
and samples are weighted (Figure 2c) to reproduce the fol-
lowing phenomenological motion effects:

1. a distant pixel/object blurring over the shading pixel,
2. transparency at the shading pixel from its motion, and
3. the proper depth-aware combination of effects 1 and 2.

These techniques generate plausible motion blur with a
simple, high-performance post-process and have thus al-
ready been adopted in production game engines; however,
the single dominant velocity assumption, coupled with the
sample weighting scheme, results in noticeable visual arti-
facts that limit their ability to properly handle: overlapping
objects that move in different directions, tile boundaries, and
thin objects (see Figures 3, 6, 7, 11, 12 and 15).

We identify, explain, and evaluate new solutions for these
limitations. We follow the well-founded phenomenological
methodology established by single-velocity approaches and
other prior work [Len10,SAC∗11,MHBO12,ZG12,Sou13],
and our technique maintains high cache coherence and paral-
lelizable divergence-free computation for an equally simple
and high-performance implementation.

4. Stable and Robust Feature-Aware Motion Blur

We motivate our improvements by presenting artifacts in
existing (single-velocity) approaches. We demonstrate clear
improvements in visual quality with negligible additional
cost. Furthermore, our supplemental video illustrates the sta-
bility of our solution under animation and on scenes with
complex geometry, depth, velocity and texture.

4.1. Several Influential Motion Vectors.

The dominant velocity assumption breaks down when a tile
contains pixels with many different velocities, resulting in

Single Direction Ours

Figure 3: Top: an animation with complex depth and mo-
tion relationships. The camera is moving upwards and the
car is doing a sharp turn while moving up. Bottom: single-
velocity approaches (left) cannot handle these cases, result-
ing in distracting artifacts both inside and between tiles; our
filter (right) generates the correct plausible blur and is tem-
porally stable (see video).

both an incorrect blur inside a tile and blur mismatches be-
tween tiles (see Figures 3 and 6). This can occur, for exam-
ple, with rotating objects (see Figure 7), objects with fea-
tures smaller than a tile (see Figure 11), or when the view
and motion directions are (nearly) parallel (see Figure 6).

Specifically, by exploiting this assumption to reduce the
sampling domain to 1D, single-velocity approaches weight
samples along vmax according only to the magnitudes of
their velocities, and not the directions. This can result in
overblurred shading when samples (that lie along the dom-
inant direction) should otherwise not contribute to the pixel
but are still factored into the sum, especially if they are mov-
ing quickly (i.e., have large velocity magnitudes).

To reduce these artifacts we sample along a second, care-
fully chosen direction. Moreover, we split samples between
these two directions according to the variance in the neigh-
borhood’s velocities, while also weighting samples using a
locally-adaptive metric based on the deviation of sample ve-
locities from the blur direction. This scheme better resolves
complex motion details and still retains cache coherence by
sampling along (fixed) 1D domains. Section 5 details our al-
gorithm and we provide pseudocode in Appendix A.

Local Velocity Sampling. If a pixel’s velocity differs sig-
nificantly from the dominant direction, then it should also be
considered during sampling. As such, we sample along both
the pixel’s velocity and the dominant velocity directions.
This immediately improves the blur for scenes with com-
plex pixel- and neighborhood-velocity relationships (e.g.,
Figure 3), however at the cost of increased noise since we are
effectively halving the sampling rate in each 1D sub-domain.

If the pixel’s velocity is negligible, this scheme effectively
“wastes” all the integration samples placed on the second di-
rection. In these cases, we replace the pixel’s velocity with
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the velocity perpendicular to the dominant direction, sam-
pling along this new vector for half of the total samples and
in the dominant direction for the other half. This helps in sce-
narios where the dominant velocity entirely masks smaller
velocities with different directions, in the neighborhood, and
the perpendicular direction serves as a "best-guess" to maxi-
mize the probability of sampling along an otherwise ignored
important direction. Of course, if no such important (albeit
secondary) direction exists, then we are left with a similar
situation where samples placed along this perpendicular di-
rection are “wasted”.

We ultimately combine the ideas of pixel (v(p)) and
perpendicular-dominant (vmax(t)) velocities at the shading
pixel p’s tile t: we place a number (discussed below) of sam-
ples along the center direction that interpolates between v(p)
and v⊥max(t) as the pixel’s velocity diminishes past a mini-
mum user threshold γ (see Figure 4),

vc(p) = lerp
(

v(p),v⊥max(t),(‖v(p)‖−0.5)/γ

)
. (1)

Figure 4: Sampling di-
rections vmax (green), v⊥max

(yellow) and v(p) (blue).

Sampling along both vmax(t)
and vc(p) ensures that each
sample contributes usefully to
the final blur, better capturing
complex motion effects. This
approach remains robust when
the pixel’s velocity is low (or
zero, for static objects; see Fig-
ures 3 and 6).

The number of samples
we place along vc, and their
weights (both along vc and
vmax), plays an important role in the behavior and quality of
the motion blur. We address the problems of assigning sam-
ples to each direction, and weighting them, separately. We
first discuss the distribution of samples over these two di-
rections, and only later discuss a more accurate scheme for
weighting their individual contributions. Our final sampling
scheme is robust to complex scenes and stable under anima-
tion.

Tile Variance for Sample Assignment. We first ad-
dress the segmentation and assignment of samples to
vc and vmax. In cases where the dominant velocity as-
sumption holds, we should sample exclusively from vmax,

Figure 5: Variance
(green) for tiles neigh-
boring the pixel p (red).

as the standard single-velocity
approaches [Len10, MHBO12,
ZG12, Sou13] do; however, it is
rare that this assumption holds
completely and we would like
to find the ideal assignment of
samples to the two directions in
order to simultaneously capture
more complex motions while
reducing noise. This amounts

to minimizing the number of
“wasted” samples. To do so, we
propose a simple variance estimation metric.

At each tile, we first compute the angular variation be-
tween a tile’s and its neighbor’s maximum velocities as

υ(t) = 1− 1
|N | ∑

t∈N
abs [vmax(t)] · abs

[
vmax(t)

]
, (2)

where N is the (1-ring) neighborhood tile set around (and
including) t. The variance 0 ≤ υ ≤ 1 is larger when neigh-
boring tile velocities differ from vmax(t), and smaller when
they do not. As such, we can use υ(t) to determine the num-
ber of samples assigned to vc and vmax with: υ×N assigned
to vc and (1−υ)×N assigned to vmax (Figure 5).

This metric works well in practice, significantly reducing
distracting visual artifacts near complex motion while grace-
fully reverting to distributing fewer samples along vc when
the motion is simple; however, we require an extra (reduced-
resolution) render pass (and texture) to compute (and store)
υ, which is less than ideal for pipeline integration (albeit
with negligible performance impact). We observe in prac-
tice that, while the variance-based sample assignment does
improve the quality of the result, conservatively splitting our
samples evenly between vc and vmax (i.e., N/2 samples for
each) generates roughly equal quality results (see Figure 6).

We note, however, that the weighting of each sample plays
a sizeable role in both the quality of the final result and the
ability to properly and consistently reconstruct complex mo-
tion blurs. We detail our new weighting scheme and contrast
it to the scheme used in prior single-velocity approaches.

Single Direction Variance Velocity Direction

Figure 6: The lion in Sponza moving directly towards the
viewer. Bottom: single-velocity results (left), our variance-
based sample distribution (middle) conservative sample dis-
tribution (right) both with vmax and vc direction sampling.
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Single Direction Ours Without/With Blending

Figure 7: Tile edge artifacts. Bottom: single-velocity blur-
ring (left) results in disturbing tile-edge artifacts that are
reduced, in part, using multi-direction sampling (right; bot-
tom) and, in full, with stochastic vmax blending (right; top).

Feature-Aware Sample Weights. Single-velocity ap-
proaches compute weights by combining two metrics:

• depth difference between the sampled position and p, and
• the magnitude of the velocity at the sample point and at p.

This does not consider that samples can still fall on objects
that move in directions different than vmax (and even vc). We
instead additionally consider the velocity direction at sam-
ples when computing their weights. This yields a scheme
that more appropriately adapts to fine-scale motions, without
complicating the original scheme. Specifically, we will con-
sider the dot product between blurring directions and sam-
pled velocity directions. Recalling the three phenomenolog-
ical motion blur effects in Section 3, we modify the weights
corresponding to each component as follows:

1. the contribution of distant objects blurring onto p, along
the sampling direction, are (additionally) weighted by the
dot product between the sample’s velocity direction and
the sampling direction (either vmax or vc, as discussed ear-
lier); here, the total weight models the amount of color
that blurs from the distant sample onto p and, as such, can
be modulated as the velocity at the sample vs differs from
the blurring/sampling direction,

2. the transparency caused by p’s blur onto its surrounding is
(additionally) weighted by the dot product of its velocity
(actually, vc) and the dominant blur direction vmax; here,
the total weight models the visibility of the background
behind the pixel/object at p and, as such, if vc differs from
vmax, the contribution should reduce appropriately, and

3. the single-velocity approaches include a correction term
to both model the combination of the two blurring effects
above and also account for discontinuities along object

edges; we (additionally) multiply the weight for this term
by the maximum of the two dot products above; here, the
maximum is a conservative estimate that errs on the side
of slightly oversmoothing any such edges.

These simple changes (see pseudocode in Appendix A) sig-
nificantly improve quality within and between tiles, particu-
larly when many motion directions are present (Figure 6).

4.2. Tile Boundary Discontinuities.

Figure 8: Adapting per-
sample weights accord-
ing to the fine-scale ve-
locity information.

The tile-based nature of single-
velocity approaches, combined
with their exclusive dependence
on the dominant velocity, can
easily lead to distracting tile-
boundary discontinuities when
blur directions vary significantly
between tiles (see Figure 7). This
occurs when vmax differs sig-
nificantly between adjacent tiles
and, since the original approach
samples exclusively along vmax,
neighboring tiles can end up be-
ing blurred in completely different directions. Our sampling
and weighting approaches (Section 4.1) already help to re-
duce this artifact, but we continue to sample from vmax (albeit
not exclusively, and with a different weighing scheme), and
so we remain sensitive (to a lesser extent) to quick changes
in vmax (see Figures 9 and 7).

Figure 9: We jitter the vmax(t)
sample with higher probabil-
ity closer to tile borders.

To further reduce this
artifact, we stochastically
offset our lookup into the
NeighborMax maximum
neighborhood velocity
texture for pixels near a
tile edge. This effectively
trades banding for noise
in the image, around tile
boundaries, along edges
in the vmax buffer. Thus,
the probability of sampling
along the vmax of a neigh-
boring tile falls off as a
pixel’s distance to a tile border increases (Figure 9); we use
a simple linear fall-off with a controllable (but fixed; see
Section 5) slope τ.

It is important to note that, while intuitively logical, lin-
early interpolating between neighborhood velocities along
tile edges produces incorrect results. Indeed, not only is the
interpolation itself not well-defined (for instance, interpolat-
ing two antiparallel velocities requires special care), but even
more importantly, two objects blurring on one another with
different motion directions is not equivalent to blurring along
the average of their directions. Doing so causes distracting
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artifacts where the blur seems to wave and often highlights,
as opposed to mask, tile boundaries.

4.3. Preserving Thin Features.

Single-velocity filtering ignores the (jittered) mid-point sam-
ple closest to the pixel and instead explicitly weighs the color
at p by the magnitude of the p’s velocity, without consider-
ing relative depth or velocity information (as with the re-
maining samples). This was designed to retain some of a
pixel’s original color regardless of the final blur, but it is not
robust to scenes with thin features or large local depth/veloc-
ity variation. Underestimating this center weight causes thin
objects to disappear or “ghost” (see Figure 11). Furthermore,
the weight is not normalized and so its effect reduces as N
increases. These artifacts are distracting and unrealistic, and
the weight’s dependence on N makes it difficult to control.

We instead set this center weight as wp = ‖v‖−1× N/κ,
where κ is a user-parameter to bias its importance. We use
κ = 40 in all of our results (see Section 5 for all param-
eter settings). The second term in wp serves as a pseudo-
energy conservation normalization, making wp robust to
varying sampling rates N (unlike previous single-velocity ap-
proaches). Lastly, we do not omit the mid-point sample clos-
est to p, treating it just as any other sample and applying our
modified feature-aware sampling scheme (Section 4.1). As
such, we also account for relative velocity variations at the
midpoint, resulting in plausible motion blur robust to thin
features and to different sampling rates (see Figure 11).

4.4. Neighbor Blurring.

Both our approach and previous single-velocity approaches
rely on an efficient approximation of the dominant neigh-
borhood velocity vmax. We present a modification to
McGuire et al.’s [MHBO12] scheme that increases ro-
bustness by reducing superfluous blur artifacts present
when the vmax estimate deviates from its true value.
Specifically, the NeighborMax pass in [MHBO12] con-
servatively computes the maximum velocity using the
eight neighboring tiles (see Section 3 and Figure 2b),
which can potentially result in an overestimation of
the actual maximum velocity affecting the central tile.

Figure 10: Off-axis
neighbors are only used
for vmax computation if
they will blur over the
central tile.

We instead only consider a di-
agonal tile in the vmax computa-
tion if its maximum blur direc-
tion would in fact affect the cur-
rent tile. For instance, if the tile to
the top-left of the central tile has
a maximum velocity that does not
point towards the middle, it is
not considered in the vmax com-
putation (Figure 10). The reason-
ing is that slight velocity devia-
tions at on-axis tiles can result in

Single Ours Single Ours Single Ours
N = 17 N = 25 N = 45

Figure 11: Thin objects like the flagpole in Sponza ghost,
to varying degrees depending on the sampling rate, with the
single-velocity approach. Our approach resolves these de-
tails and is robust to changes in the sampling rate.

blurs that overlap the middle tile,
however larger deviations are re-
quired at the corner (off-axis) tiles.

4.5. Stochastic Noise and Post-Process Anti-Aliasing

We have discussed how to choose the direction along which
to place each sample (either vmax or vc) as well as how to
weight them (Section 4.1), however we have not discussed
where to place samples along the 1D domain. Numerical
integration approaches are sensitive to sample distribution
and, in the case of uniform samples distributed over our
1D domain, the quality of both ours and the single-velocity
techniques can be significantly influenced by this choice.
McGuire et al. [MHBO12] use equally-spaced uniform sam-
ples and jitter the pattern at each pixel using a hashed noise
texture. This jittered uniform distribution has been recently
analyzed in the context of 1D shadowing problems with lin-
ear lights [RAMN12] where it was proven to reduce variance
better than low-discrepancy and stratified sampling.

We modify this strategy for motion blur integration and
use a deterministic Halton sequence [WLH97] to jitter the
per-pixel sample sets with a larger maximum jitter value η

(in pixel units), which improves the quality of the results;
furthermore, as discussed earlier, we do not ignore the cen-
tral sample closest to p and, as such, properly take its relative
depth and local-velocity into account during weighting.

Noise Patterns and Post-Process Anti-Aliasing. The noise
patterns produced by our stochastic integration are well-
suited as input to post-processed screen-space anti-aliasing
methods, such as FXAA. Specifically, per-pixel jitter ensures
that wherever there is residual noise, it appears as a high-
frequency pattern that triggers the antialiasing luminance
edge detector (Figure 13, top right). The post-process an-
tialiasing then blurs each of these pixels (Figure 13, bottom
left), yielding a result with quality comparable to roughly
double the sampling rate (without FXAA; Figure 13, top
left). Stochastic vmax blending (Section 4.2) is compatible
with this effect.

Furthermore, it is possible to maximize the noise smooth-
ing properties of post-processed antialiasing by feeding a
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Figure 12: Our motion blur results are temporally coherent and stable even in scenes with turbulent geometric deformation.

maximum-intensity, pixel-sized checkerboard to the edge
detector’s luminance input. This causes the antialiasing filter
to detect edges on all motion blurred pixels, thus suppress-
ing residual motion blur sampling noise (Figure 13, bottom
right).

5. Implementation and Results

All our results are captured live at 1280× 720 on an In-
tel Core i5 at 3.3GHz with 16GB RAM and an NVIDIA
GTX480 with 1.5GB vRAM. We recommend that read-
ers digitally zoom-in on our (high-resolution) results to
note fine-scale details. Since our filter implementation
does not have any divergent code paths our perfor-
mance, at this resolution, was consistently 3.2ms ± 5%.
We use the same parameter settings for all our scenes:
{N,r,τ,κ,η,γ} = {25,40,1,40,0.95,1.5}. All intermedi-
ate textures, TileMax, NeighborMax [MHBO12] and
TileVariance (Section 4.1), are stored in UINT8 format
and sampled using nearest neighbor interpolation, except
for TileVariance that required a bilinear interpolant to
eliminate residual tile boundary artifacts.

We note the importance of properly quantizing and en-
coding the per-pixel velocity when using integer buffers for
storage (as is typically done in e.g. game engines). Specif-
ically, a limitation in the encoding used in McGuire et al.’s
implementation, V[x,y]= v(px,y)/2r+0.5, is that the x and y

No AA FXAA edges

FXAA FXAA with checkerboard

Figure 13: Our noise is well-suited for standard post-
process FXAA edge-detection, and we can further “hint”
FXAA using a pixel-frequency luminance checkerboard.

velocity components are clamped separately to ±r, causing
large velocities to only take on one of four possible values:
(±r,±r). Instead, we propose a clamping scheme that makes
optimal use of an integer buffer’s precision, normalizing ac-
cording to the range [−r,r] as

V[x,y]=
v(px,y)

2r ×
max(min(|v(px,y)|×E,r),0.5)

|v(px,y)|+ε
+0.5 ,

where ε = 10−5 and the exposure time E is in seconds.

We modify the continuous depth comparison function
(zCompare) used by McGuire et al. to better support depth-
aware fore- and background blurring as follows: instead of
using a hard-coded, scene-dependent depth-transition inter-
val, we use the relative depth interval

zCompare[za,zb]= min
(

max
(

0,1− (za−zb)
min(za,zb)

)
,1
)
,

where za and zb are both depth values. This relative test
has important advantages: it works on values in a scene-
independent manner, e.g. comparing objects at 10 and 20
z-units will give similar results to objects at 1000 and 2000 z-
units. This allows smooth blending between distant objects,
compensating for their reduced on-screen velocity coverage,
all while remaining robust to arbitrary scene scaling.

Motivated by Sousa’s [Sou13] endorsement of McGuire
et al.’s single-velocity implementation, which has already
been used in several game engines, all our comparisons were
conducted against an optimized version of the open source
implementation provided by McGuire et al., with both our
Halton jittering scheme and our velocity encoding. While
the variance-based υ metric for distributing samples between
vmax and vc yields slightly improved results over e.g. a 50/50
sample distribution, we observe no perceptual benefit in us-
ing υ during interactive animation; as such, we disabled this
feature in all our results (except Figure 6, middle zoom-in).

Post-Process Depth of Field. Earlier, we discussed our ap-
proach’s integration with FXAA, a commonly used post-
process in modern game engines. Another commonly used
post-process effect is depth of field (DoF); however, the
combination of DoF and motion blur post-processes is a sub-
ject of little investigation. We implemented the post-process
DoF approach of Gilham in ShaderX5 [Eng06] and briefly
discuss its interaction with our motion blur filter. Specifi-
cally, the correct order in which to apply the two filters is not
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immediately apparent. We experimented with both options
and illustrate our results in an especially difficult scene, as
far as motion and DoF complexity are concerned: three dis-
tinctly colored wheels, each undergoing different rotational
motion, at three different depths, and with the focus on the
green middle wheel (see Figure 14).

The differences are subtle and our experiments far
from comprehensive, however we note (somewhat counter-
intuitively) that applying DoF after motion blur yields fewer
visible edges in blurred regions and sharper features on in-
focus regions. Applying DoF after motion blur has the added
benefit of further blurring our noise artifacts.

6. Conclusions and Future Work

We presented a high-performance post-process motion blur
filter that is robust to scenes with complex inter-object mo-
tions and fine-scale details. We demonstrated our approach
on several such scenes with clear quality benefits, both in
images and in animation (see the supplemental video), and
at a negligible cost compared to the state-of-the-art. Our ap-
proach is temporally coherent, easy to integrate, and readily
compatible with other commonly used post-process effects.
Some interesting avenues of future work include a more in-
depth analysis of the interaction and combination of DoF and
motion blur post-processes, as well as extending our ideas to
more flexible rendering architectures, such as stochastic ras-
terization or micropolygon renderers.

DoF→MB MB→DoF DoF→MB MB→DoF

Figure 14: DoF and motion blur stress test. Top: Motion
blur alone. Bottom: Comparison of motion blur and depth
of field ordering. We note slightly better results when DoF is
applied after motion blur.
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Appendix A: Pseudocode

We include pseudocode that depends on the following helper
functions and shorthand operators: sOffset jitters a tile
lookup (but never into a diagonal tile), rnmix is a vector lin-
ear interpolation followed by normalization, norm returns a
normalized vector, b·c returns the whole component, and &
denotes bitwise and. Unless otherwise specified, we use the
notation/functions of McGuire et al. [MHBO12]. Our func-
tion returns four values: the filtered color and luminance
value to pass to an optional FXAA post-process.

function filter(p):
let j = halton(−1,1)
let vmax= NeighborMax[p/r+sOffset(p, j)]
if (‖vmax‖ ≤ 0.5)
return (color[X],luma(color[X]))

let wn = norm(vmax), vc = V[p],
↪→ wp = (−wny,wnx)

if (wp ·vc < 0) wp =−wp
let wc = rnmix(wp,norm(vc), (‖vc‖−0.5)/γ)

// Begin integration with the current point
// (center weight) p
let totalWeight= N/(κ×‖vc‖)
let result= color[p]×totalWeight

for i ∈ [0,N)
let t= mix(−1,1,(i+ j×η+1)/(N +1)) // jitter

our sample

// Compute the sample point S; split samples
between {vmax,vc}

let d= vc if i odd or vmax if i even
let T= t×‖vmax‖
let S= bt×dc+p

// Compute S’s velocity and color
let vs = V[S], colorSample= color[S]

// Fore- vs. background classification of Y
// relative to p
let f = zCompare(Z[p],Z[S])
let b = zCompare(Z[S],Z[p])

// This sample’s weight and velocity-aware factors
// (Section 4.1)
let weight= 0, wA= wc ·d, wB= norm(vs) ·d

// The three phenomenological cases
// (Sections 3 and 4.1):
// Objects moving over p, blur from p’s motion,
// and their blending
weight += f ·cone(T,1/‖vs‖)×wB
weight += b ·cone(T,1/‖vc‖)×wA
weight += cylinder(T,min(‖vs‖,‖vc‖))

↪→ ×max(wA,wB)×2

totalWeight += weight // For normalization
result += colorSample×weight

return (result/totalWeight,(px +py)&1)


