
Learning Hatching for Pen-and-Ink Illustration of Surfaces

EVANGELOS KALOGERAKIS

University of Toronto and Stanford University

and

DEREK NOWROUZEZAHRAI

University of Toronto, Disney Research Zurich, and University of Montreal

and

SIMON BRESLAV

University of Toronto and Autodesk Research

and

AARON HERTZMANN

University of Toronto

This paper presents an algorithm for learning hatching styles from line
drawings. An artist draws a single hatching illustration of a 3D object. Their
strokes are analyzed to extract the following per-pixel properties: hatching
level (hatching, cross-hatching, or no strokes), stroke orientation, spacing,
intensity, length, and thickness. A mapping is learned from input geometric,
contextual and shading features of the 3D object to these hatching proper-
ties, using classification, regression, and clustering techniques. Then, a new
illustration can be generated in the artist’s style, as follows. First, given a
new view of a 3D object, the learned mapping is applied to synthesize tar-
get stroke properties for each pixel. A new illustration is then generated by
synthesizing hatching strokes according to the target properties.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Line and curve generation; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—Geometric al-
gorithms, languages, and systems; I.2.6 [Artificial Intelligence]: Learn-
ing—Parameter learning

We thank Seok-Hyung Bae, Patrick Coleman, Vikramaditya Dasgupta,
Mark Hazen, Thomas Hendry, and Olga Vesselova for creating the hatched
drawings. We thank Olga Veksler for the graph cut code and Robert
Kalnins, Philip Davidson, and David Bourguignon for the jot code. We
thank Aim@Shape, VAKHUN, and Cyberware repositories as well as Xi-
aobai Chen, Aleksey Golovinskiy, Thomas Funkhouser, Andrea Tagliasac-
chi and Richard Zhang for the 3D models used in this paper. This project
was funded by NSERC, CIFAR, CFI, the Ontario MRI, and KAUST Global
Collaborative Research.
{kalo, derek, breslav, hertzman}@dgp.toronto.edu
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/11-ARTXXX $10.00
DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

General Terms: Algorithms

Additional Key Words and Phrases: learning surface hatching, data-driven
hatching, hatching by example, illustrations by example, learning orienta-
tion fields

ACM Reference Format:

Kalogerakis E., Nowrouzezahrai D., Breslav S., Hertzmann A. 2010. Learn-
ing Hatching for Pen-and-Ink Illustration of Surfaces ACM Trans. Graph.
VV, N, Article XXX (Month YYYY), 18 pages.
DOI = 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Non-photorealistic rendering algorithms can create effective illus-
trations and appealing artistic imagery. To date, these algorithms
are designed using insight and intuition. Designing new styles re-
mains extremely challenging: there are many types of imagery that
we do not know how to describe algorithmically. Algorithm design
is not a suitable interface for an artist or designer. In contrast, an
example-based approach can decrease the artist’s workload, when
it captures his style from his provided examples.

This paper presents a method for learning hatching for pen-and-ink
illustration of surfaces. Given a single illustration of a 3D object,
drawn by an artist, the algorithm learns a model of the artist’s hatch-
ing style, and can apply this style to rendering new views or new
objects. Hatching and cross-hatching illustrations use many finely-
placed strokes to convey tone, shading, texture, and other quali-
ties. Rather than trying to model individual strokes, we focus on
hatching properties across an illustration: hatching level (hatching,
cross-hatching, or no hatching), stroke orientation, spacing, inten-
sity, length, and thickness. Whereas the strokes themselves may be
loosely and randomly placed, hatching properties are more stable
and predictable. Learning is based on piecewise-smooth mappings
from geometric, contextual, and shading features to these hatching
properties.

To generate a drawing for a novel view and/or object, a Lambertian-
shaded rendering of the view is first generated, along with the se-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Sentenced
Text Box
© ACM, (2011). This is the author's version of the work (preprint, not final version). It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version will be published in ACM Transactions on Graphics 31{1}, 2011.

2 • E. Kalogerakis et al.

(a) Artist’s illustration
(b) Smoothed curvature directions

[Hertzmann and Zorin 2000]
(c) Smoothed PCA axis directions

(d) Smoothed image gradient
directions

(e) Our algorithm,
without segmentation

(f) Our algorithm,
full version

(g) Results on new views and new objects.

Fig. 1: Data-driven line art illustrations generated with our algorithm, and comparisons with alternative approaches. (a) Artist’s illus-
tration of a screwdriver. (b) Illustration produced by the algorithm of Hertzmann and Zorin [2000]. Manual thresholding of �N · �V is used to
match the tone of the hand-drawn illustration and globally-smoothed principal curvature directions are used for the stroke orientations. (c)
Illustration produced with the same algorithm, but using local PCA axes for stroke orientations before smoothing. (d) Illustration produced
with the same algorithm, but using the gradient of image intensity for stroke orientations. (e) Illustration whose properties are learned by our
algorithm for the screwdriver, but without using segmentation (i.e., orientations are learned by fitting a single model to the whole drawing
and no contextual features are used for learning the stroke properties). (f) Illustration learned by applying all steps of our algorithm. This
result more faithfully matches the style of the input than the other approaches. (g) Results on new views and new objects.

lected per-pixel features. The learned mappings are applied, in or-
der to compute the desired per-pixel hatching properties. A stroke
placement algorithm then places hatching strokes to match these
target properties. We demonstrate results where the algorithm gen-
eralizes to different views of the training shape and/or different
shapes.

Our work focuses on learning hatching properties; we use existing
techniques to render feature curves, such as contours, and an ex-
isting stroke synthesis procedure. We do not learn properties like
randomness, waviness, pentimenti, or stroke texture. Each style is
learned from a single example, without performing analysis across
a broader corpus of examples. Nonetheless, our method is still able
to successfully reproduce many aspects of a specific hatching style
even with a single training drawing.

2. RELATED WORK

Previous work has explored various formulas for hatching prop-
erties. Saito and Takahashi [1990] introduced hatching based on
isoparametric and planar curves. Winkenbach and Salesin [1994;
1996] identify many principles of hand-drawn illustration, and de-
scribe methods for rendering polyhedral and smooth objects. Many
other analytic formulas for hatching directions have been proposed,
including principal curvature directions [Elber 1998; Hertzmann
and Zorin 2000; Praun et al. 2001; Kim et al. 2008], isophotes [Kim
et al. 2010], shading gradients [Singh and Schaefer 2010], para-
metric curves [Elber 1998] and user-defined direction fields (e.g.,
[Palacios and Zhang 2007]). Stroke tone and density are normally
proportional to depth, shading, or texture, or else based on user-
defined prioritized stroke textures [Praun et al. 2001; Winkenbach

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 3

and Salesin 1994; 1996]. In these methods, each hatching property
is computed by a hand-picked function of a single feature of shape,
shading, or texture (e.g., proportional to depth or curvature). As a
result, it is very hard for such approaches to capture the variations
evident in artistic hatching styles (Figure 1). We propose the first
method to learn hatching of 3D objects from examples.

There have been a few previous methods for transferring proper-
ties of artistic rendering by example. Hamel and Strothotte [1999]
transfer user-tuned rendering parameters from one 3D object to an-
other. Hertzmann et al. [2001] transfer drawing and painting styles
by example using non-parametric synthesis, given image data as
input. This method maps directly from the input to stroke pixels. In
general, the precise locations of strokes may be highly random—
and thus hard to learn—and non-parametric pixel synthesis can
make strokes become broken or blurred. Mertens et al. [2006] trans-
fer spatially-varying textures from source to target geometry using
non-parametric synthesis. Jodoin et al. [2002] model relative lo-
cations of strokes, but not conditioned on a target image or ob-
ject. Kim et al. [2009] employ texture similarity metrics to trans-
fer stipple features between images. In contrast to the above tech-
niques, our method maps to hatching properties, such as desired
tone. Hence, although our method models a narrower range of artis-
tic styles, it can model these styles much more accurately.

A few 2D methods have also been proposed for transferring styles
of individual curves [Freeman et al. 2003; Hertzmann et al. 2002;
Kalnins et al. 2002] or stroke patterns [Barla et al. 2006], problems
which are complementary to ours; such methods could be useful
for the rendering step of our method.

A few previous methods use maching learning techniques to ex-
tract feature curves, such as contours and silhouettes. Lum and Ma
[2005] use neural networks and Support Vector Machines to iden-
tify which subset of feature curves match a user sketch on a given
drawing. Cole et al. [2008] fit regression models of feature curve
locations to a large training set of hand-drawn images. These meth-
ods focus on learning locations of feature curves, whereas we focus
on hatching. Hatching exhibits substantially greater complexity and
randomness than feature curves, since hatches form a network of
overlapping curves of varying orientation, thickness, density, and
cross-hatching level. Hatching also exhibits significant variation in
artistic style.

3. OVERVIEW

Our approach has two main phases. First, we analyze a hand-drawn
pen-and-ink illustration of a 3D object, and learn a model of the
artist’s style that maps from input features of the 3D object to target
hatching properties. This model can then be applied to synthesize
renderings of new views and new 3D objects. Below we present an
overview of the output hatching properties and input features. Then
we summarize the steps of our method.

Hatching properties. Our goal is to model the way artists draw
hatching strokes in line drawings of 3D objects. The actual place-
ments of individual strokes exhibit much variation and apparent
randomness, and so attempting to accurately predict individual
strokes would be very difficult. However, we observe that the in-
dividual strokes themselves are less important than the overall ap-
pearance that they create together. Indeed, art instruction texts often
focus on achieving particular qualities such as tone or shading (e.g.,
[Guptill 1997]). Hence, similar to previous work [Winkenbach and

Salesin 1994; Hertzmann and Zorin 2000], we model the render-
ing process in terms of a set of intermediate hatching properties
related to tone and orientation. Each pixel containing a stroke in a
given illustration is labeled with the following properties:

• Hatching level (h ∈ {0, 1, 2}) indicates whether a region con-
tains no hatching, single hatching, or cross-hatching.

• Orientation (φ1 ∈ [0...π]) is the stroke direction in image
space, with 180-degree symmetry.

• Cross-hatching orientation (φ2 ∈ [0..π]) is the cross-hatch
direction, when present. Hatches and cross-hatches are not
constrained to be perpendicular.

• Thickness (t ∈ �+) is the stroke width.
• Intensity (I ∈ [0..1]) is how light or dark the stroke is.
• Spacing (d ∈ �+) is the distance between parallel strokes.
• Length (l ∈ �+) is the length of the stroke.

The decomposition of an illustration into hatching properties is il-
lustrated in Figure 2 (top). In the analysis process, these properties
are estimated from hand-drawn images, and models are learned.
During synthesis, the learned model generates these properties as
targets for stroke synthesis.

Modeling artists’ orientation fields presents special challenges. Pre-
vious work has used local geometric rules for determining stroke
orientations, such as curvature [Hertzmann and Zorin 2000] or gra-
dient of shading intensity [Singh and Schaefer 2010]. We find that,
in many hand-drawn illustrations, no local geometric rule can ex-
plain all stroke orientations. For example, in Figure 3, the strokes
on the cylindrical part of the screwdriver’s shaft can be explained as
following the gradient of the shaded rendering, whereas the strokes
on the flat end of the handle can be explained by the gradient of
ambient occlusion ∇a. Hence, we segment the drawing into re-
gions with distinct rules for stroke orientation. We represent this
segmentation by an additional per-pixel variable:

• Segment label (c ∈ C) is a discrete assignment of the pixel to
one of a fixed set of possible segment labels C.

Each set of pixels with a given label will use a single rule to com-
pute stroke orientations. For example, pixels with label c1 might
use principal curvature orientations, and those with c2 might use a
linear combination of isophote directions and local PCA axes. Our
algorithm also uses the labels to create contextual features (Sec-
tion 5.2), which are also taken into account for computing the rest
of the hatching properties. For example, pixels with label c1 may
have thicker strokes.

Features. For a given 3D object and view, we define a set of fea-
tures containing geometric, shading, and contextual information for
each pixel, as described in Appendices B and C. There are two
types of features: “scalar” features x (Appendix B) and “orienta-
tion” features θ (Appendix C). The features include many object-
space and image-space properties which may be relevant for hatch-
ing, including features that have been used by previous authors for
feature curve extraction, shading, and surface part labeling. The
features are also computed at multiple scales, in order to capture
varying surface and image detail. These features are inputs to the
learning algorithm, which map from features to hatching proper-
ties.

Data acquisition and preprocessing. The first step of our pro-
cess is to gather training data and to preprocess it into features and
hatching properties. The training data is based on a single drawing

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • E. Kalogerakis et al.

Synthesis for novel
object and view

Synthesis for input
object and view

Analysis for input
object and view

Learning

Artist’s illustration

Input horse

Input cow

Data-driven illustration

Data-driven illustration

Extracted Thickness Extracted Spacing Extracted
Hatching Level

Extracted Intensity Extracted Length Extracted Orientations

Synthesized Thickness Synthesized Spacing Learned
Hatching Level

Synthesized Intensity Synthesized Length Synthesized Orientations

Synthesized Thickness Synthesized Spacing
Synthesized

Hatching Level

Synthesized Intensity Synthesized Length Synthesized Orientations

no hatching

no hatching

no hatching

hatching

hatching

hatching

cross-hatching

cross-hatching

cross-hatching

Fig. 2: Extraction of hatching properties from a drawing, and synthesis for new drawings. Top: The algorithm decomposes a given artist’s
illustration into a set of hatching properties: stroke thickness, spacing, hatching level, intensity, length, orientations. A mapping from input
geometry is learned for each of these properties. Middle: Synthesis of the hatching properties for the input object and view. Our algorithm
automatically separates and learns the hatching (blue-colored field) and cross-hatching fields (green-colored fields). Bottom: Synthesis of
the hatching properties for a novel object and view.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 5

of a 3D model. An artist first chooses an image from our collec-
tion of rendered images of 3D objects. The images are rendered
with Lambertian reflectance, distant point lighting, and spherical
harmonic self-occlusion [Sloan et al. 2002]. Then, the artist creates
a line illustration, either by tracing over the illustration on paper
with a light table, or in a software drawing package with a tablet. If
the illustration is drawn on paper, we scan the illustration and align
it to the rendering automatically by matching borders with brute
force search. The artist is asked not to draw silhouette and feature
curves, or to draw them only in pencil, so that they can be erased.
The hatching properties (h, φ, t, I, d, l) for each pixel are estimated
by the preprocessing procedure described in Appendix A.

Learning. The training data is comprised of a single illustration
with features x,θ and hatching properties given for each pixel.
The algorithm learns mappings from features to hatching properties
(Section 5). The segmentation c and orientation properties φ are the
most challenging to learn, because neither the segmentation c nor
the orientation rules are immediately evident in the data; this repre-
sents a form of “chicken-and-egg” problem. We address this using
a learning and clustering algorithm based on Mixtures-of-Experts
(Section 5.1).

Once the input pixels are classified, a pixel classifier is learned us-
ing Conditional Random Fields with unary terms based on Joint-
Boost (Section 5.2). Finally, each real-valued property is learned
using boosting for regression (Section 5.3). We use boosting tech-
niques for classification and regression since we do not know in
advance which input features are the most important for different
styles. Boosting can handle a large number of features, can select
the most relevant features, and has a fast sequential learning algo-
rithm.

Synthesis. A hatching style is transferred to a target novel view
and/or object by first computing the features for each pixel, and
then applying the learned mappings to compute the above hatch-
ing properties. A streamline synthesis algorithm [Hertzmann and
Zorin 2000] then places hatching strokes to match the synthesized
properties. Examples of this process are shown in Figure 2.

4. SYNTHESIS ALGORITHM

The algorithm for computing a pen-and-ink illustration of a view
of a 3D object is as follows. For each pixel of the target image,
the features x and θ are first computed (Appendices B and C). The
segment label and hatching level are each computed as a function
of the scalar features x, using image segmentation and recognition
techniques. Given these segments, orientation fields for the target
image are computed by interpolation of the orientation features θ.
Then, the remaining hatching properties are computed by learning
functions of the scalar features. Finally, a streamline synthesis algo-
rithm [Hertzmann and Zorin 2000] renders strokes to match these
synthesized properties. A streamline is terminated when it crosses
an occlusion boundary, or the length grows past the value of the
per-pixel target stroke length l, or violates the target stroke spacing
d.

We now describe these steps in more detail. In Section 5, we will
describe how the algorithm’s parameters are learned.

4.1 Segmentation and labeling

For a given view of a 3D model, the algorithm first segments the im-
age into regions with different orientation rules and levels of hatch-
ing. More precisely, given the feature set x for each pixel, the al-
gorithm computes the per-pixel segment labels c ∈ C and hatching
level h ∈ {0, 1, 2}. There are a few important considerations when
choosing an appropriate segmentation and labeling algorithm. First,
we do not know in advance which features in x are important, and
so we must use a method that can perform feature selection. Sec-
ond, neighboring labels are highly correlated, and performing clas-
sification on each pixel independently yields noisy results (Figure
3). Hence, we use a Conditional Random Field (CRF) recognition
algorithm, with JointBoost unary terms [Kalogerakis et al. 2010;
Shotton et al. 2009; Torralba et al. 2007]. One such model is learned
for segment labels c, and a second for hatching level h. Learning
these models is described in Section 5.2.

The CRF objective function includes unary terms that assess the
consistency of pixels with labels, and pairwise terms that assess
the consistency between labels of neighboring pixels. Inferring seg-
ment labels based on the CRF model corresponds to minimizing the
following objective function:

E(c) =
∑
i

E1(ci;xi) +
∑
i,j

E2(ci, cj ;xi,xj) (1)

where E1 is the unary term defined for each pixel i, E2 is the pair-
wise term defined for each pair of neighboring pixels {i, j}, where
j ∈ N(i) and N(i) is defined using the 8-neighborhood of pixel i.

The unary term evaluates a JointBoost classifier that, given the fea-
ture set xi for pixel i, determines the probability P (ci|xi) for each
possible label ci. The unary term is then:

E1(ci;x) = − logP (ci|xi). (2)

The mapping from features to probabilities P (ci|xi) is learned
from the training data using the JointBoost algorithm [Torralba
et al. 2007].

The pairwise energy term scores the compatibility of adjacent pixel
labels ci and cj , given their features xi and xj . Let ei be a binary
random variable representing if the pixel i belongs to a boundary of
hatching region or not. We define a binary JointBoost classifier that
outputs the probability of boundaries of hatching regions P (e|x)
and compute the pairwise term as:

E2(ci, cj ;xi,xj) = −�·I(ci, cj)·(log((P (ei|xi)+P (ej |xj)))+μ)
(3)

where �, μ are the model parameters and I(ci, cj) is an indicator
function that is 1 when ci �= cj and 0 when ci = cj . The parameter
� controls the importance of the pairwise term while μ contributes
to eliminating tiny segments and smoothing boundaries.

Similarly, inferring hatching levels based on the CRF model corre-
sponds to minimizing the following objective function:

E(h) =
∑
i

E1(hi;xi) +
∑
i,j

E2(hi, hj ;xi,xj) (4)

As above, the unary term evaluates another JointBoost classifier
that, given the feature set xi for pixel i, determines the probability
P (hi|xi) for each hatching level h ∈ {0, 1, 2}. The pairwise term
is also defined as:

E2(hi, hj ;xi,xj) = −�·I(hi, hj)·(log((P (ei|xi)+P (ej |xj)))+μ)
(5)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • E. Kalogerakis et al.

(a) Estimated clusters using
our mixture-of-experts model

(b) Learned labeling
with Joint Boosting

(c) Learned labeling
with Joint Boosting+CRF

(d) Synthesized labeling
for another object

�f1 = ∇a2
�f2 = .54(�kmax,1) + .46(�r⊥)

�f1 = .73(∇I3) + .27(�r)

�f2 = .69(�kmax,2) + .31(∇I⊥,3)

�f1 = .59(�eb,3) + .41(∇(�L · �N)3)
�f2 = .63(�ea,3) + .37(∇(�L · �N)⊥,3)

�f1 = .88(∇a3) + .12(∇(�L · �N)3)

�f2 = .45(�kmax,2) + .31(∇a⊥,3) + .24(�ea,3)

�f1 = .77(�eb,3) + .23(∇I3)
�f2 = �v

Fig. 3: Clustering orientations. The algorithm clusters stroke orientations according to different orientation rules. Each cluster specifies
rules for hatching (�f1) and cross-hatching (�f2) directions. Cluster labels are color-coded in the figure, with rules shown below. The cluster
labels and the orientation rules are estimated simultaneously during learning. (a) Inferred cluster labels for an artist’s illustration of a
screwdriver. (b) Output of the labeling step using the most likely labels returned by the Joint Boosting classifier alone. (c) Output of the
labeling step using our full CRF model. (d) Synthesis of part labels for a novel object. Rules: In the legend, we show the corresponding
orientation functions for each region. In all cases, the learned models use one to three features. Subscripts {1, 2, 3} indicates the scale used
to compute the field. The ⊥ operator rotates the field by 90 degrees in image-space. The orientation features used here are: maximum and
minimum principal curvature directions (�kmax, �kmin), PCA directions corresponding to first and second largest eigenvalue (�ea, �eb), fields
aligned with ridges and valleys respectively (�r, �v), Lambertian image gradient (∇I), gradient of ambient occlusion (∇a), and gradient of
�L · �N (∇(�L · �N)). Features that arise as 3D vectors are projected to the image plane. See Appendix C for details.

with the same values for the parameters of �, μ as above.

The most probable labeling is the one that minimizes the CRF
objective function E(c) and E(h), given their learned parame-
ters. The CRFs are optimized using alpha-expansion graph-cuts
[Boykov et al. 2001]. Details of learning the JointBoost classifiers
and �, μ are given in Section 5.2.

4.2 Computing orientations

Once the per-pixel segment labels c and hatching levels h are com-
puted, the per-pixel orientations φ1 and φ2 are computed. The num-
ber of orientations to be synthesized is determined by h. When
h = 0 (no hatching), no orientations are produced. When h = 1
(single hatching), only φ1 is computed and, when h = 2 (cross-
hatching), φ2 is also computed.

Orientations are computed by regression on a subset of the orien-
tation features θ for each pixel. Each cluster c may use a different
subset of features. The features used by a segment are indexed by
a vector σ, i.e., the features’ indices are σ(1), σ(2), ..., σ(k). Each
orientation feature represents an orientation field in image space,
such as the image projection of principal curvature directions. In
order to respect 2-symmetries in orientation, a single orientation θ
is transformed to a vector as

v = [cos(2θ), sin(2θ)]T (6)

The output orientation function is expressed as a weighted sum of
selected orientation features.

f(θ;w) =
∑
k

wσ(k)vσ(k) (7)

where σ(k) represents the index to the k-th orientation feature in
the subset of selected orientation features, vσ(k) is its vector rep-
resentation, and w is a vector of weight parameters. There is an
orientation function f(θ;wc,1) for each label c ∈ C and, if the
class contains cross-hatching regions, it has an additional orienta-
tion function f(θ;wc,2) for determining the cross-hatching direc-
tions. The resulting vector is computed to an image-space angle as
φ = atan2(y, x)/2.

The weights w and feature selection σ are learned by the gradient-
based boosting for regression algorithm of Zemel and Pitassi
[2001]. The learning of the parameters and the feature selection
is described in Section 5.1.

4.3 Computing real-valued properties

The remaining hatching properties are real-valued quantities. Let y
be a feature to be synthesized on a pixel with feature set x. We use
multiplicative models of the form:

y =
∏
k

(akxσ(k) + bk)
αk (8)

where xσ(k) is the index to the k-th scalar feature from x. The use
of a multiplicative model is inspired by Goodwin et al. [2007], who
propose a model for stroke thickness that can be approximated by a
product of radial curvature and inverse depth. The model is learned
in the logarithmic domain, which reduces the problem to learning
the weighted sum:

log(y) =
∑
k

αk log(akxσ(k) + bk) (9)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 7

Learning the parameters αk, ak, bk, σ(k) is again performed using
gradient-based boosting [Zemel and Pitassi 2001], as described in
Section 5.3.

5. LEARNING

We now describe how to learn the parameters of the functions used
in the synthesis algorithm described in the previous section.

5.1 Learning segmentation and orientation functions

In our model, the hatching orientation for a single-hatching pixel
is computed by first assigning the pixel to a cluster c, and then
applying the orientation function f(θ;wc) for that cluster. If we
knew the clustering in advance, then it would be straightforward to
learn the parameters wc for each pixel. However, neither the clus-
ter labels nor the parameters wc are present in the training data.
In order to solve this problem, we develop a technique inspired by
Expectation-Maximization for Mixtures-of-Experts [Jordan and Ja-
cobs 1994], but specialized to handle the particular issues of hatch-
ing.

The input to this step is a set of pixels from the source illustration
with their corresponding orientation feature set θi, training orien-
tations φi, and training hatching levels hi. Pixels containing inter-
sections of strokes or no strokes are not used. Each cluster c may
contain either single-hatching or cross-hatching. Single-hatch clus-
ters have a single orientation function (Equation 7), with unknown
parameters wc1. Clusters with cross-hatches have two subclusters,
each with an orientation function with unknown parameters wc1

and wc2. The two orientation functions are not constrained to pro-
duce directions orthogonal to each other. Every source pixel must
belong to one of the top-level clusters, and every pixel belonging to
a cross-hatching cluster must belong to one of its subclusters.

For each training pixel i, we define a labeling probability γic indi-
cating the probability that pixel i lies in top-level cluster c, such that∑

c
γic = 1. Also, for each top-level cluster, we define a subclus-

ter probability βicj , where j ∈ {1, 2}, such that βic1 + βic2 = 1.
The probability βicj measures how likely the stroke orientation
at pixel i corresponds to a hatching or cross-hatching direction.
Single-hatching clusters have βic2 = 0. The probability that pixel
i belongs to the subcluster indexed by {c, j} is γicβicj .

The labeling probabilities are modeled based on a mixture-of-
Gaussians distribution [Bishop 2006]:

γic =
πc exp(−ric/2s)∑
c
πc exp(−ric/2s) (10)

βicj =
πcj exp(−ricj/2sc)

πc1 exp(−ric1/2sc) + πc2 exp(−ric2/2sc) (11)

where πc, πcj are the mixture coefficients, s, sc are the variances
of the corresponding Gaussians, ricj is the residual for pixel i with
respect to the orientation function j in cluster c, and ric is defined
as follows:

ric = min
j∈{1,2}

||ui − f(θi;wcj)||2 (12)

where ui = [cos(2φi), sin(2φi)]
T .

The process begins with an initial set of labels γ, β, and w, and then
alternates between updating two steps: the model update step where
the orientation functions, the mixture coefficients and variances are

updated, and the label update step where the labeling probabilities
are updated.

Model update. Given the labeling, orientation functions for each
cluster are updated by minimizing the boosting error function, de-
scribed in Appendix D, using the initial per-pixel weights αi =
γicβicj .

In order to avoid overfitting, a set of holdout-validation pixels are
kept for each cluster. This set is found by selecting rectangles
of random size and marking their containing pixels as holdout-
validation pixels. Our algorithm stops when 25% of the cluster pix-
els are marked as holdout-validation pixels. The holdout-validation
pixels are not considered for fitting the weight vector wcj . At each
boosting iteration, our algorithm measures the holdout-validation
error measured on these pixels. It terminates the boosting iterations
when the holdout-validation error reaches a minimum. This helps
avoid overfitting the training orientation data.

During this step, we also update the mixture coefficients and vari-
ances of the Gaussians in the mixture model, so that the data like-
lihood is maximized in this step [Bishop 2006]:

πc =
∑
i

γic/N, s =
∑
ic

γicric/N (13)

πcj =
∑
i

βicj/N, sc =
∑
ij

βicjricj/N (14)

where N is the total number of pixels with training orientations.

Label update. Given the estimated orientation functions from the
above step, the algorithm computes the residual for each model and
each orientation function. Median filtering is applied to the residu-
als, in order to enforce spatial smoothness: ric is replaced with the
value of the median of r∗c in the local image neighborhood of pixel
i (with radius equal to the local spacing Si). Then the pixel labeling
probabilities are updated according to Equations 10 and 11.

Initialization. The clustering is initialized using a constrained
mean-shift clustering process with a flat kernel, similar to con-
strained K-means [Wagstaff et al. 2001]. The constraints arise from
a region-growing strategy to enforce spatial continuity of the initial
clusters. Each cluster grows by considering randomly-selected seed
pixels in their neighborhood and adding them only if the difference
between their orientation angle and the cluster’s current mean ori-
entation is below a threshold. In the case of cross-hatching clusters,
the minimum difference between the two mean orientations is used.
The threshold is automatically selected once during pre-processing
by taking the median of each pixel’s local neighborhood orienta-
tion angle differences. The process is repeated for new pixels and
the cluster’s mean orientation(s) are updated at each iteration. Clus-
ters composed of more than 10% cross-hatch pixels are marked
as cross-hatching clusters; the rest are marked as single-hatching
clusters. The initial assignment of pixels to clusters gives a binary-
valued initialization for γ. For cross-hatch pixels, if more than half
the pixels in the cluster are assigned to orientation function wk2,
our algorithm swaps wk1 and wk2. This ensures that the first hatch-
ing direction will correspond to the dominant orientation. This aids
in maintaining orientation field consistency between neighboring
regions.

An example of the resulting clustering for an artist’s illustration of
screwdriver is shown in Figure 3 (a). We also include the functions

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • E. Kalogerakis et al.

Least-squares Decision Tree
Gaussian

Bayes
Nearest

Neighbors

SVM
Logistic

Regression JointBoost JointBoost
and CRF

no hatching hatching cross-hatching

Fig. 4: Comparisons of various classifiers for learning the hatching level.
The training data is the extracted hatching level on the horse of Figure 2 and
feature set x. Left to right: least-squares for classification, decision tree
(Matlab’s implementation based on Gini’s diversity index splitting crite-
rion), Gaussian Naive Bayes, Nearest Neighbors, Support Vector Machine,
Logistic Regression, Joint Boosting, Joint Boosting and Conditional Ran-
dom Field (full version of our algorithm). The regularization parameters
of SVMs, Gaussian Bayes, Logistic Regression are estimated by hold-out
validation with the same procedure as in our algorithm.

Linear
Regression

Ridge
Regression Lasso

Gradient-based
boosting

Fig. 5: Comparisons of the generalization performance of various tech-
niques for regression for the stroke spacing. The same training data are
provided to the techniques based on the extracted spacing on the horse of
Figure 2 and feature set x. Left to right: Linear regression (least-squares
without regularization), ridge regression, Lasso, gradient-based boosting.
Fitting a model on such very high-dimensional space without any sparsity
prior yields very poor generalization performance. Gradient-based boost-
ing gives more reasonable results than ridge regression or Lasso, especially
on the legs of the cow, where the predicted spacing values seem to be more
consistent with the training values on the legs of the horse (see Figure 2).
The regularization parameters of Ridge Regression and Lasso are estimated
by hold-out validation with the same procedure as in our algorithm.

learned for the hatching and cross-hatching orientation fields used
in each resulting cluster.

5.2 Learning labeling with CRFs

Once the training labels are estimated, we learn a procedure to
transfer them to new views and objects. Here we describe the pro-
cedure to learn the Conditional Random Field model of Equation
1 for assigning segment labels to pixels as well as the Conditional
Random Field of Equation 4 for assigning hatching levels to pixels.

Learning to segment and label. Our goal here is to learn the
parameters of the CRF energy terms (Equation 1). The input is the
scalar feature set x̃i for each stroke pixel i (described in Appendix
B) and their associated labels ci, as extracted in the previous step.
Following [Tu 2008; Shotton et al. 2008; Kalogerakis et al. 2010],

the parameters of the unary term are learned by running a cascade
of JointBoost classifiers. The cascade is used to obtain contextual
features which capture information about the relative distribution
of cluster labels around each pixel. The cascade of classifiers is
trained as follows.

The method begins with an initial JointBoost classifier using an
initial feature set x̃, containing the geometric and shading features,
described in Appendix B. The classifier is applied to produce the
probability P (ci|x̃i) for each possible label ci given the feature set
x̃i of each pixel i. These probabilities are then binned in order to
produce contextual features. In particular, for each pixel, the algo-
rithm computes a histogram of these probabilities as a function of
geodesic distances from it:

pci =
∑

j:db≤dist(i,j)<db+1

P (cj)/Nb (15)

where the histogram bin b contains all pixels j with geodesic dis-
tance range [db, db+1] from pixel i, and Nb is the total number of
pixels in the histogram bin b. The geodesic distances are computed
on the mesh and projected to image space. 4 bins are used, cho-
sen in logarithmic space. The bin values pci are normalized to sum
to 1 per pixel. The total number of bins are 4|C|. The values of
these bins are used as contextual features, which are concatenated
into x̃i to form a new scalar feature set xi. Then, a second Joint-
Boost classifier is learned, using the new feature set x as input and
outputting updated probabilities P (ci|xi). These are used in turn
to update the contextual features. The next classifier uses the con-
textual features generated by the previous one, and so on. Each
JointBoost classifier is initialized with uniform weights and termi-
nates when the holdout-validation error reaches to a minimum. The
holdout-validation error is measured on pixels that are contained in
random rectangles on the drawing, selected as above. The cascade
terminates when the holdout-validation error of a JointBoost clas-
sifier is increased with respect to the holdout-validation error of the
previous one. The unary term is defined based on the probabilities
returned by the latter classifier.

To learn the pairwise term of Equation 3, the algorithm needs to
estimate the probability of boundaries of hatching regions P (e|x),
which also serve as evidence for label boundaries. First, we observe
that segment boundaries are likely to occur at particular parts of an
image; for example, pixels separate by an occluding and suggestive
contour are much less likely to be in the same segment as two pixels
that are adjacent on the surface. For this reason, we define a binary
JointBoost classifier, which maps to probabilities of boundaries of
hatching regions for each pixel, given the subset of its features x
computed from the feature curves of the mesh (see Appendix B).
In this binary case, JointBoost reduces to an earlier algorithm called
GentleBoost [Friedman et al. 2000]. The training data for this pair-
wise classifier are supplied by the marked boundaries of hatching
regions of the source illustration (see Appendix A); pixels that are
marked as boundaries have e = 1, otherwise e = 0. The classi-
fier is initialized with more weight give to the pixels that contain
boundaries of hatching level regions, since the training data con-
tains many more non-boundary pixels. More specifically, ifNB are
the total number of boundary pixels, and NNB is the number of
non-boundary pixels, then the weight is NNB/NB for boundary
pixels and 1 for the rest. The boosting iterations terminate when the
hold-out validation error measured on validation pixels (selected as
above) is minimum.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 9

Artist’s illustration
Our rendering for

input view & object

Fig. 6: Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a horse. Rendering of the
model with our learned style. Renderings of new views and new objects.

Finally, the parameters � and μ are optimized by maximizing the
following energy term:

ES =
∑

i:ci �=cj ,j∈N(i)

P (ei|x) (16)

where N(i) is the 8-neighborhood of pixel i, and ci, cj are the la-
bels for each pair of neighboring pixels i, j inferred using the CRF
model of Equation 1 based on the learned parameters of its unary
and pairwise classifier and using different values for �, μ. This op-
timization attempts to “push” the segment label boundaries to be
aligned with pixels that have higher probability to be boundaries.
The energy is maximized using Matlab’s implementation of Pre-
conditioned Conjugate Gradient with numerically-estimated gradi-
ents.

Learning to generate hatching levels. The next step is to learn
the hatching levels h ∈ {0, 1, 2}. The input here is the hatching
level hi per pixel contained inside the rendered area (as extracted
during the pre-processing step (Appendix A) together with their
full feature set xi (including the contextual features as extracted
above).

Our goal is to compute the parameters of the second CRF model
used for inferring the hatching levels (Equation 4). Our algorithm
first uses a JointBoost classifier that maps from the feature set x
to the training hatching levels h. The classifier is initialized with

uniform weights and terminates the boosting rounds when the hold-
out validation error is minimized (the hold-out validation pixels are
selected as above). The classifier outputs the probability P (hi|xi),
which is used in the unary term of the CRF model. Finally, our
algorithm uses the same pairwise term parameters trained with the
CRF model of the segment labels to rectify the boundaries of the
hatching levels.

Examples comparing our learned hatching algorithm to several al-
ternatives are shown in Figure 4.

5.3 Learning real-valued stroke properties

Thickness, intensity, length, and spacing are all positive, real-
valued quantities, and so the same learning procedure is used for
each one in turn. The input to the algorithm are the values of the
corresponding stroke properties, as extracted in the preprocessing
step (Section A) and the full feature set xi per pixel.

The multiplicative model of Equation 8 is used to map the features
to the stroke properties. The model is learned in the log-domain, so
that it can be learned as a linear sum of log functions. The model
is learned with gradient-based boosting for regression (Appendix
D). The weights for the training pixels are initialized as uniform.
As above, the boosting iterations stop when the holdout-validation
measured on randomly selected validation pixels is minimum.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • E. Kalogerakis et al.

Artist’s illustration
Our rendering for

input view & object

Fig. 7: Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a horse with a different
style than 6. Rendering of the model with our learned style. Renderings of new views and new objects.

Examples comparing our method to several alternatives are shown
in Figure 5.

6. RESULTS

The figures throughout our paper show synthesized line drawings
of novel objects and views with our learning technique (Figures 1,
6, 7, 8, 9, 10, 11, 12, 13, 14). As can be seen in the examples, our
method captures several aspects of the artist’s drawing style, bet-
ter than alternative previous approaches (Figure 1). Our algorithm
adapts to different styles of drawing and successfully synthesizes
them for different objects and views. For example, Figures 6 and 7
show different styles of illustrations for the same horse, applied to
new views and objects. Figure 14 shows more examples of synthe-
sis with various styles and objects.

However, subtleties are sometimes lost. For example, in Figure 12,
the face is depicted with finer-scale detail than the clothing, which
cannot be captured in our model. In Figure 13, our method loses
variation in the character of the lines, and depiction of important
details such as the eye. One reason for this is that the stroke place-
ment algorithm attempts to match the target hatching properties,
but does not optimize to match a target tone. These variations may
also depend on types of parts (e.g., eyes versus torsos), and could
be addressed given part labels [Kalogerakis et al. 2010]. Figure 11

exhibits randomness in stroke spacing and width that is not mod-
eled by our technique.

Selected features. We show the frequency of orientation features
selected by gradient-based boosting and averaged over all our nine
drawings in Figure 15. Fields aligned with principal curvature di-
rections as well as local principal axes (corresponding to candi-
date local planar symmetry axes) play very important roles for syn-
thesizing the hatching orientations. Fields aligned with suggestive
contours, ridges and valleys are also significant for determining ori-
entations. Fields based on shading attributes have moderate influ-
ence.

We show the frequency of scalar features averaged selected by
boosting and averaged over all our nine drawings in Figure 16
for learning the hatching level, thickness, spacing, intensity, length,
and segment label. Shape descriptor features (based on PCA, shape
contexts, shape diameter, average geodesic distance, distance from
medial surface, contextual features) seem to have large influence
on all the hatching properties. This means that the choice of tone is
probably influenced by the type of shape part the artist draws. The
segment label is mostly determined by the shape descriptor fea-
tures, which is consistent with the previous work on shape segmen-
tation and labeling [Kalogerakis et al. 2010]. The hatching level
is mostly influenced by image intensity, �V · �N , �L · �N . The stroke
thickness is mostly affected by shape descriptor features, curvature,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 11

Artist’s illustration
Our rendering for

input view & object

Fig. 8: Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a rocker arm. Rendering of
the model with our learned style. Renderings of new views and new objects.

Artist’s illustration
Our rendering for

input view & object

Fig. 9: Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a pitcher. Rendering of the
model with our learned style. Renderings of new views and new objects.

�L · �N , gradient of image intensity, the location of feature lines, and,
finally, depth. Spacing is mostly influenced by shape descriptor fea-
tures, curvature, derivatives of curvature, �L · �N , and �V · �N . The in-
tensity is influenced by shape descriptor features, image intensity,
�V · �N , �L · �N , depth, and the location of feature lines. The length
is mostly determined by shape descriptor features, curvature, radial
curvature, �L · �N , image intensity and its gradient, and location of
feature lines (mostly suggestive contours).

However, it is important to note that different features are learned
for different input illustrations. For example, in Figure 11, the light
directions mostly determine the orientations, which is not the case
for the rest of the drawings. We include histograms of the frequency
of orientation and scalar features used for each of the drawing in the
supplementary material.

Computation time. In each case, learning a style from a source
illustration takes 5 to 10 hours on a laptop with Intel i7 proces-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • E. Kalogerakis et al.

Artist’s illustration
Our rendering for

input view & object

Fig. 10: Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a Venus statue. Rendering
of the model with our learned style. Renderings of new views and new objects.

Artist’s illustration
Our rendering for

input view & object

Fig. 11: Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a bunny using a particular
style; hatching orientations are mostly aligned with point light directions. Rendering of the model with our learned style. Renderings of new
views and new objects.

sor. Most of the time is consumed by the orientation and clustering
step (Section 5.1) (about 50% of the time for the horse), which is
implemented in Matlab. Learning segment labels and hatching lev-
els (Section 5.2) represents about 25% of the training time (imple-
mented in C++) and learning stroke properties (Section 5.3) takes
about 10% of the training time (implemented in Matlab). The rest
of the time is consumed for extracting the features (implemented
in C++) and training hatching properties (implemented in Matlab).
We note that our implementation is currently far from optimal,
hence, running times could be improved. Once the model of the
style is learned, it can be applied to different novel data. Given the
predicted hatching and cross-hatching orientations, hatching level,
thickness, intensity, spacing and stroke length at each pixel, our
algorithm traces streamlines over the image to generate the final
pen-and-ink illustration. Synthesis takes 30 to 60 minutes. Most of
the time (about 60%) is consumed here for extracting the features.
The implementation for feature extraction and tracing streamlines
are also far from optimal.

7. SUMMARY AND FUTURE WORK

Ours is the first method to generate predictive models for synthe-
sizing detailed line illustrations from examples. We model line il-
lustrations with a machine learning approach using a set of fea-
tures suspected to play a role in the human artistic process. The
complexity of man-made illustrations is very difficult to reproduce;
however, we believe our work takes a step towards replicating cer-
tain key aspects of the human artistic process. Our algorithm gen-
eralizes to novel views as well as objects of similar morphological
class.

There are many aspects of hatching styles that we do not capture,
including: stroke textures, stroke tapering, randomness in strokes
(such as wavy or jittered lines), cross-hatching with more than
two hatching directions, style of individual strokes, and continu-
ous transitions in hatching level. Interactive edits to the hatching
properties could be used to improve our results [Salisbury et al.
1994].

Since we learn from a single training drawing, the generalization
capabilities of our method to novel views and objects are limited.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 13

Artist’s illustration
Our rendering for

input view & object

Fig. 12: Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a statue. Rendering of the
model with our learned style. Renderings of new views and new objects.

Artist’s illustration
Our rendering for

input view & object

Fig. 13: Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a cow. Rendering of the
model with our learned style. Renderings of new views and new objects.

For example, if the relevant features differ significantly between
the test views and objects, then our method will not generalize to
them. Our method relies on holdout validation using randomly se-
lected regions to avoid overfitting; this ignores the hatching infor-
mation existing in these regions that might be valuable. Re-training
the model is sometimes useful to improve results, since these re-
gions are selected randomly. Learning from a broader corpus of
examples could help with these issues, although this would require
drawings where the hatching properties change consistently across

different object and views. In addition, if none of the features or a
combination of them can be mapped to a hatching property, then
our method will also fail.

Finding what and how other features are relevant to artists’ pen-
and-ink illustrations is an open problem. Our method does not rep-
resent the dependence of style on part labels (e.g., eyes versus tor-
sos), as previously done for painterly rendering of images [Zeng
et al. 2009]. Given such labels, it could be possible to generalize
the algorithm to take this information into account.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • E. Kalogerakis et al.

Artists’
illustrations

S
yn

th
es

is
 fo

r n
ov

el
 o

bj
ec

ts

Fig. 14: Data-driven line art illustrations generated with our algorithm based on the learned styles from the artists’ drawings in Figures 1,
6, 7, 10, 13.

0.0 0.10 0.20 0.30

�kmax,�kmin

�ea, �eb

∇(�L× �N)

∇(�V × �N)

�s

�v

�r

∇a
∇I

∇(�L · �N)

∇(�V · �N)

�E

�L

Fig. 15: Frequency of the first three orientation features selected by
gradient-based boosting for learning the hatching orientation fields. The
frequency is averaged over all our nine training drawings (Figures 1, 6,
7, 8, 9, 10, 11, 12, 13). The contribution of each feature is also weighted
by the total segment area where it is used. The orientation features are
grouped based on their type: principal curvature directions (�kmax,�kmin),
local principal axes directions (�ea, �eb), ∇(�L× �N), ∇(�V × �N), directions
aligned with suggestive contours (�s), valleys (�v), ridges (�r), gradient of am-
bient occlusion (∇a), gradient of image intensity (∇I), gradient of (�L · �N),
gradient of (�V · �N), vector irradiance (�E), projected light direction (�L).

The quality of our results depend on how well the hatching proper-
ties were extracted from the training drawing during the prepro-
cessing step. This step gives only coarse estimates, and depend

on various thresholds. This preprocessing cannot handle highly-
stylized strokes such as wavy lines or highly-textured strokes.

Example-based stroke synthesis [Freeman et al. 2003; Hertzmann
et al. 2002; Kalnins et al. 2002] may be combined with our ap-
proach to generate styles with similar stroke texture. An optimiza-
tion technique [Turk and Banks 1996] might be used to place
streamlines appropriately in order to match a target tone. Our
method focuses only on hatching, and renders feature curves sepa-
rately. Learning the feature curves is an interesting future direction.
Another direction for future work is hatching for animated scenes,
possibly based on a data-driven model similar to [Kalogerakis et al.
2009]. Finally, we believe that aspects of our approach may be ap-
plicable to other applications in geometry processing and artistic
rendering, especially for vector field design.

REFERENCES

ARVO, J. 1995. Applications of irradiance tensors to the simulation of non-
lambertian phenomena. In Proc. SIGGRAPH. 335–342.

BARLA, P., BRESLAV, S., THOLLOT, J., SILLION, F., AND MARKOSIAN,
L. 2006. Stroke pattern analysis and synthesis. Comput. Graph. Fo-
rum 25, 3.

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape Matching and
Object Recognition Using Shape Contexts. IEEE Trans. Pattern Anal.
Mach. Intell. 24, 4.

BISHOP, C. M. 2006. Pattern Recognition and Machine Learning.
Springer-Verlag.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast Approximate
Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach.
Intell. 23, 11.

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S.,
FINKELSTEIN, A., FUNKHOUSER, T., AND RUSINKIEWICZ, S. 2008.
Where Do People Draw Lines? ACM Trans. Graph. 27, 3.

DECARLO, D. AND RUSINKIEWICZ, S. 2007. Highlight lines for convey-
ing shape. In NPAR.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 15

0.0 0.10 0.20 0.30

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

�V · �N

�L · �N

|∇I|
|∇(�V · �N)|
|∇(�L · �N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

�V · �N

�L · �N

|∇I|
|∇(�V · �N)|
|∇(�L · �N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

�V · �N

�L · �N

|∇I|
|∇(�V · �N)|
|∇(�L · �N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

Top features used for hatching level Top features used for thickness Top features used for spacing

0.0 0.05 0.10 0.15 0.20 0.25

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

�V · �N

�L · �N

|∇I|
|∇(�V · �N)|
|∇(�L · �N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

�V · �N

�L · �N

|∇I|
|∇(�V · �N)|
|∇(�L · �N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

0.0 0.10 0.20 0.30 0.40

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

�V · �N

�L · �N

|∇I|
|∇(�V · �N)|
|∇(�L · �N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

Top features used for intensity Top features used for length Top features used for segment label

Fig. 16: Frequency of the first three scalar features selected by the boosting techniques used in our algorithm for learning the scalar hatching
properties. The frequency is averaged over all nine training drawings. The scalar features are grouped based on their type: Curvature (Curv.),
Derivatives of Curvature (D. Curv.), Radial Curvature (Rad. Curv.),Derivative of Radial Curvature (D. Rad. Curv.), Torsion, features based
on PCA analysis on local shape neighborhoods, features based Shape Context histograms [Belongie et al. 2002], features based on geodesic
distance descriptor [Hilaga et al. 2001], shape diameter function features [Shapira et al. 2010], distance from medial surface features [Liu
et al. 2009], depth, ambient occlusion, image intensity (I), �V · �N , �L · �N , gradient magnitudes of the last three, strength of suggestive contours,
strength of apparent ridges, strength of ridges and values, contextual label features.

ELBER, G. 1998. Line Art Illustrations of Parametric and Implicit Forms.
IEEE TVCG 4, 1, 71–81.

FREEMAN, W. T., TENENBAUM, J., AND PASZTOR, E. 2003. Learning
style translation for the lines of a drawing. ACM Trans. Graph. 22, 1,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

16 • E. Kalogerakis et al.

33–46.

FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 2000. Additive Logistic
Regression: a Statistical View of Boosting. The Annals of Statistics 38, 2.

GOODWIN, T., VOLLICK, I., AND HERTZMANN, A. 2007. Isophote Dis-
tance: A Shading Approach to Artistic Stroke Thickness. In Proc. NPAR.
53–62.

GUPTILL, A. L. 1997. Rendering in Pen and Ink. Watson-Guptill, edited
by Susan E. Meyer.

HAMEL, J. AND STROTHOTTE, T. 1999. Capturing and Re-Using Ren-
dition Styles for Non-Photorealistic Rendering. Computer Graphics Fo-
rum 18, 3, 173–182.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B., AND

SALESIN, D. H. 2001. Image Analogies. Proc. SIGGRAPH.

HERTZMANN, A., OLIVER, N., CURLESS, B., AND SEITZ, S. M. 2002.
Curve Analogies. In Proc. EGWR.

HERTZMANN, A. AND ZORIN, D. 2000. Illustrating smooth surfaces. In
Proc. SIGGRAPH. 517–526.

HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L. 2001.
Topology Matching for Fully Automatic Similarity Estimation of 3d
Shapes. In SIGGRAPH.

JODOIN, P.-M., EPSTEIN, E., GRANGER-PICHÉ, M., AND OSTRO-
MOUKHOV, V. 2002. Hatching by Example: a Statistical Approach. In
Proc. NPAR. 29–36.

JORDAN, M. I. AND JACOBS, R. A. 1994. Hierarchical Mixtures of Ex-
perts and the EM Algorithm. Neural Computation 6, 181–214.

JUDD, T., DURAND, F., AND ADELSON, E. 2007. Apparent ridges for line
drawing. ACM Trans. Graph. 26, 3.

KALNINS, R., MARKOSIAN, L., MEIER, B., KOWALSKI, M., LEE, J.,
DAVIDSON, P., WEBB, M., HUGHES, J., AND FINKELSTEIN, A. 2002.
WYSIWYG NPR: drawing strokes directly on 3D models. In Proc. SIG-
GRAPH. 755–762.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010. Learning 3d
mesh segmentation and labeling. ACM Trans. Graph. 29, 3.

KALOGERAKIS, E., NOWROUZEZAHRAI, D., SIMARI, P., MCCRAE, J.,
HERTZMANN, A., AND SINGH, K. 2009. Data-driven curvature for real-
time line drawing of dynamic scenes. ACM Trans. Graphics 28, 1.

KIM, S., MACIEJEWSKI, R., ISENBERG, T., ANDREWS, W. M., CHEN,
W., SOUSA, M. C., AND EBERT, D. S. 2009. Stippling by Example. In
NPAR.

KIM, S., WOO, I., MACIEJEWSKI, R., , AND EBERT., D. S. 2010. Auto-
mated Hedcut Illustration using Isophotes. In Proc. Smart Graphics.

KIM, Y., YU, J., YU, X., AND LEE, S. 2008. Line-art Illustration of Dy-
namic and Specular Surfaces. ACM Trans. Graphics.

LIU, R. F., ZHANG, H., SHAMIR, A., AND COHEN-OR, D. 2009. A Part-
Aware Surface Metric for Shape Analysis. Computer Graphics Forum,
(Eurographics 2009) 28, 2.

LUM, E. B. AND MA, K.-L. 2005. Expressive line selection by example.
The Visual Computer 21, 8, 811–820.

MERTENS, T., KAUTZ, J., CHEN, J., BEKAERT, P., AND DURAND., F.
2006. Texture Transfer Using Geometry Correlation. In EGSR.

PALACIOS, J. AND ZHANG, E. 2007. Rotational Symmetry Field Design
on Surfaces. ACM Trans. Graph..

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001. Real-
Time Hatching. In Proc. SIGGRAPH.

RUSINKIEWICZ, S. AND DECARLO, D. 2007. rtsc library.
http://www.cs.princeton.edu/gfx/proj/sugcon/.

SAITO, T. AND TAKAHASHI, T. 1990. Comprehensible Rendering of 3-D
Shapes. In Proc. SIGGRAPH. 197–206.

SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND SALESIN, D. H.
1994. Interactive pen-and-ink illustration. In SIGGRAPH. 101–108.

SHAPIRA, L., SHALOM, S., SHAMIR, A., ZHANG, R. H., AND COHEN-
OR, D. 2010. Contextual Part Analogies in 3D Objects. International
Journal of Computer Vision.

SHOTTON, J., JOHNSON, M., AND CIPOLLA, R. 2008. Semantic Texton
Forests for Image Categorization and Segmentation. In Proc. CVPR.

SHOTTON, J., WINN, J., ROTHER, C., AND CRIMINISI, A. 2009. Tex-
tonBoost for Image Understanding: Multi-Class Object Recognition and
Segmentation by Jointly Modeling Texture, Layout, and Context. Int. J.
Comput. Vision 81, 1.

SIMARI, P., KALOGERAKIS, E., AND SINGH, K. 2006. Folding Meshes:
Hierarchical Mesh Segmentation Based on Planar Symmetry. In SGP.

SINGH, M. AND SCHAEFER, S. 2010. Suggestive Hatching. In Proc.
Computational Aesthetics.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments. In Proc. SIGGRAPH. 527–536.

TORRALBA, A., MURPHY, K. P., AND FREEMAN, W. T. 2007. Sharing
Visual Features for Multiclass and Multiview Object Detection. IEEE
Trans. Pattern Anal. Mach. Intell. 29, 5.

TU, Z. 2008. Auto-context and its Application to High-level Vision Tasks.
In Proc. CVPR.

TURK, G. AND BANKS, D. 1996. Image-guided streamline placement. In
SIGGRAPH.

WAGSTAFF, K., CARDIE, C., ROGERS, S., AND SCHRÖDL, S. 2001. Con-
strained k-means clustering with background knowledge. In ICML.

WINKENBACH, G. AND SALESIN, D. 1994. Computer-generated pen-and-
ink illustration. In Proc. SIGGRAPH. 91–100.

WINKENBACH, G. AND SALESIN, D. 1996. Rendering parametric surfaces
in pen and ink. In Proc. SIGGRAPH. 469–476.

ZEMEL, R. AND PITASSI, T. 2001. A gradient-based boosting algorithm
for regression problems. In Neural Information Processing Systems.

ZENG, K., ZHAO, M., XIONG, C., AND ZHU, S.-C. 2009. From image
parsing to painterly rendering. ACM Trans. Graph. 29.

APPENDIX

A. IMAGE PREPROCESSING

Given an input illustration drawn by an artist, we apply the follow-
ing steps to determine the hatching properties for each stroke pixel.
First, we scan the illustration and align it to the rendering automat-
ically by matching borders with brute force search. The following
steps are sufficiently accurate to provide training data for our algo-
rithms.

Intensity: The intensity Ii is set to the grayscale intensity of the
pixel i of the drawing. It is normalized within the range [0, 1].
Thickness: Thinning is first applied to identify a single-pixel-wide
skeleton for the drawing. Then, from each skeletal pixel, a Breadth-
First Search (BFS) is performed to find the nearest pixel in the
source image with intensity less than half of the start pixel. The
distance to this pixel is the stroke thickness.
Orientation: The structure tensor of the local image neighborhood
is computed at the scale of the previously-computed thickness of
the stroke. The dominant orientation in this neighborhood is given
by the eigenvector corresponding to the smallest eigenvalue of the
structure tensor. Intersection points are also detected, so that they
can be omitted from orientation learning. Our algorithm marks as
intersection points those points detected by a Harris corner detec-
tor in both the original drawing and the skeleton image. Finally, in

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 17

order to remove spurious intersection points, pairs of intersection
points are found with distance less than the local stroke thickness,
and their centroid is marked as an intersection instead.
Spacing: For each skeletal pixel, a circular region is grown around
the pixel. At each radius, the connected components of the region
are computed. If at least 3 pixels in the region are not connected to
the center pixel, with orientation within π/6 of the center pixel’s
orientation, then the process halts. The spacing at the center pixel
is set to the final radius.
Length: A BFS is executed on the skeletal pixels to count the num-
ber of pixels per stroke. In order to follow a single stroke (exclud-
ing pixels from overlapping cross-hatching strokes), at each BFS
expansion, pixels are considered inside the current neighborhood
with similar orientation (at most π/12 angular difference from the
current pixel’s orientation).
Hatching Level: For each stroke pixel, an ellipsoidal mask is cre-
ated with its semi-minor axis aligned to the extracted orientation,
and major radius equal to its spacing. All pixels belonging to any
of these masks are given label Hi = 1. For each intersection pixel,
a circular mask is also created around it with radius equal to its
spacing. All connected components are computed from the union
of these masks. If any connected component contains more than 4
intersection pixels, the pixels of the component are assigned with
label Hi = 2. Two horizontal and vertical strokes give rise to a
minimum cross-hatching region (with 4 intersections).
Hatching region boundaries: Pixels are marked as boundaries if
they belong to boundaries of the hatching regions or if they are
endpoints of the skeleton of the drawing.

We perform a final smoothing step (with a Gaussian kernel of width
equal to the median of the spacing values) to denoise the properties.

B. SCALAR FEATURES

There are 1204 scalar features (x̃ ∈ �760) for learning the scalar
properties of the drawing. The first 90 are mean curvature, Gaus-
sian curvature, maximum and minimum principal curvatures by
sign and absolute value, derivatives of curvature, radial curvature
and its derivative, view-dependent minimum and maximum curva-
tures [Judd et al. 2007], geodesic torsion in the projected viewing
direction [DeCarlo and Rusinkiewicz 2007]. These are measured
in three scales (1%, 2%, 5% relative to the median of all-pairs
geodesic distances in the mesh) for each vertex. We also include
their absolute values, since some hatching properties may be insen-
sitive to sign. The above features are first computed in object-space
and then, projected to image-space.

The next 110 features are based on local shape descriptors, also
used in [Kalogerakis et al. 2010] for labeling parts. We com-
pute the singular values s1, s2, s3 of the covariance of vertices
inside patches of various geodesic radii (5%, 10%, 20%) around
each vertex, and also add the following features for each patch:
s1/(s1 + s2 + s3), s2/(s1 + s2 + s3), s3/(s1 + s2 + s3), (s1 +
s2)/(s1+s2+s3), (s1+s3)/(s1+s2+s3), (s2+s3)/(s1+s2+s3),
s1/s2, s1/s3, s2/s3, s1/s2+s1/s3, s1/s2+s2/s3, s1/s3+s2/s3,
yielding 45 features total. We also include 24 features based on the
Shape Diameter Function (SDF) [Shapira et al. 2010] and distance
from medial surface [Liu et al. 2009]. The SDF features are com-
puted using cones of angles 60, 90, and 120 per vertex. For each
cone, we get the weighted average of the samples and their loga-
rithmized versions with different normalizing parameters α = 1,
α = 2, α = 4. For each of the cones above, we also compute the
distance of medial surface from each vertex. We measure the di-

ameter of the maximal inscribed sphere touching each vertex. The
corresponding medial surface point will be roughly its center. Then
we send rays from this point uniformly sampled on a Gaussian
sphere, gather the intersection points and measure the ray lengths.
As with the shape diameter features, we use the weighted aver-
age of the samples, we normalize and logarithmize them with the
same above normalizing parameters. In addition, we use the aver-
age, squared mean, 10th, 20th, ..., 90th percentile of the geodesic
distances of each vertex to all the other mesh vertices, yielding 11
features. Finally, we use 30 shape context features [Belongie et al.
2002], based on the implementation of [Kalogerakis et al. 2010].
All the above features are first computed in object-space per vertex
and then, projected to image-space.

The next 53 features are based on functions of the rendered 3D ob-
ject in image space. We use maximum and minimum image cur-
vature, image intensity, and image gradient magnitude features,
computed with derivative-of-Gaussian kernels with σ = 1, 2, 3, 5,
yielding 16 features. The next 12 features are based on shading un-
der different models: �V · �N , �L · �N (both clamped at zero), ambient
occlusion, where �V , �L, and �N are the view, light, and normal vec-
tors at a point. These are also smoothed with Gaussian kernels of
σ = 1, 2, 3, 5. We also include the corresponding gradient magni-
tude, the maximum and minimum curvature of �V · �N and �L · �N
features, yielding 24 more features. We finally include the depth
value for each pixel.

We finally include the per pixel intensity of occluding and sugges-
tive contours, ridges, valleys and apparent ridges extracted by the
rtsc software package [Rusinkiewicz and DeCarlo 2007]. We use 4
different thresholds for extracting each feature line (the rtsc thresh-
olds are chosen from the logarithmic space [0.001, 0.1] for sugges-
tive contours and valleys and [0.01, 0.1] for ridges and apparent
ridges). We also produce dilated versions of these features lines by
convolving their image with Gaussian kernels with σ = 5, 10, 20,
yielding in total 48 features.

Finally, we also include all the above 301 features with their pow-
ers of 2 (quadratic features), −1 (inverse features), −2 (inverse
quadratic features), yielding 1204 features in total. For the inverse
features, we prevent divisions by zero, by truncating near-zero val-
ues to 1e−6 (or −1e−6 if they are negative). Using these transfor-
mations on the features yielded slightly better results for our pre-
dictions.

C. ORIENTATION FEATURES

There are 70 orientation features (θ) for learning the hatching and
cross-hatching orientations. Each orientation feature is a direction
in image-space; orientation features that begin as 3D vectors are
projected to 2D. The first six features are based on surface princi-
pal curvature directions computed at 3 scales as above. Then, the
next six features are based on surface local PCA axes projected on
the tangent plane of each vertex corresponding to the two larger
singular values of the covariance of multi-scale surfaces patches
computed as above. Note that the local PCA axes correspond to
candidate local planar symmetry axes [Simari et al. 2006]. The next
features are: �L × �N and �V × �N . The above orientation fields are
undefined at some points (near umbilic points for curvature direc-
tions, near planar and spherical patches for the PCA axes, and near
�L · �N = 0 and �V · �N = 0 for the rest). Hence, we use globally-
smoothed direction based on the technique of [Hertzmann and

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

18 • E. Kalogerakis et al.

Zorin 2000]. Next, we include �L, and vector irradiance �E [Arvo
1995]. The next 3 features are vector fields aligned with the oc-
cluding and suggestive contours (given the view direction), ridges
and valleys of the mesh. The next 16 features are image-space gra-
dients of the following scalar features: ∇(�V · �N), ∇(�L· �N), ambient
occlusion and image intensity ∇I computed at 4 scales as above.
The remaining orientation features are the directions of the first 35
features rotated by 90 degrees in the image-space.

D. BOOSTING FOR REGRESSION

The stroke orientations as well as the thickness, intensity, length
and spacing are learned with the gradient-based boosting technique
of Zemel and Pitassi [2001]. Given input features x, the gradient-
based boosting technique aims at learning an additive model of the
following form to approximate a target property:

τ(x) =
∑
k

rkψσ(k)(x) (17)

where ψσ(k) is a function on the k-th selected feature with index
σ(k) and rk is its corresponding weight. For stroke orientations, the
functions are simply single orientation features:ψσ(k)(v) = vσ(k).
Hence, in this case, the above equation represents a weighted com-
bination (i.e., interpolation) of the orientation features, as expressed
in Equation 7 with rk = wσ(k). For the thickness, spacing, in-
tensity and length, we use functions of the form: ψσ(k)(x) =
log(akxσ(k) + bk), so that the selected feature is scaled and trans-
lated properly to match the target stroke property, as expressed in
Equation 9 with rk = ασ(k).

Given N training pairs {xi, ti}, i = {1, 2, ..., N}, where ti are
exemplar values of the target property, the gradient-based boosting
algorithm attempts to minimize the average error of the models of
the single features with respect to the weight vector r:

L(r) =
1

N

N∑
i=1

(
K∏

k=1

rk
−0.5

)
exp

(
K∑

k=1

rk · (ti − ψk(xi))
2

)
(18)

This objective function is minimized iteratively by updating a set
of weights {ωi} on the training samples {xi, ti}. The weights are
initialized to be uniform i.e. ωi = 1/N , unless there is a prior
confidence on each sample. In this case, the weights can be initial-
ized accordingly as in Section 5.1. Then, our algorithm initiates the
boosting iterations that have the following steps:

• for each feature f in x, the following function is minimized:

Lf =

N∑
i=1

ωi(r
−0.5
k exp (rk(ti − ψf (xi)))

2) (19)

with respect to rk as well as the parameters of ak, bk in the
case of learning stroke properties. The parameter rk is opti-
mized using Matlab’s active-set algorithm including the con-
straint that rk ∈ (0, 1] (with initial estimate set to 0.5). For the
first boosting iteration k = 1, rk = 1 is used always. For stroke
properties, our algorithm alternates between optimizing for the
parameters ak, bk with Matlab’s BFGS implemenation, keep-
ing rk constant and optimizing for the parameter rk, keeping
the rest constant, until convergence or until 10 iterations are
completed.

• the feature f is selected that yields the lowest value for Lf ,
hence σ(k) = argmin

f

Lf .

• the weights on the training pairs are updated as follows:

ωi = ωi · r−0.5
k exp (rk · (ti − ψσ(k)(xi))

2 (20)

• The ωi = ωi/
∑

i
ωi are normalized so that they sum to 1.

• the hold-out validation error is measured: if it is increased, the
loop is terminated and the selected feature of the current itera-
tion are disregarded.

Finally, the weights rk = rk/
∑

k
rk are normalized so that they

sum to 1.

Received October 2010; accepted Month XXXX

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

