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ABSTRACT

Integrating animated virtual objects with their surroundings for
high-quality augmented reality requires both geometric and radio-
metric consistency. We focus on the latter of these problems and
present an approach that captures and factorizes external lighting in
a manner that allows for realistic relighting of both animated and
static virtual objects. Our factorization facilitates a combination of
hard and soft shadows, with high-performance, in a manner that is
consistent with the surrounding scene lighting.

Index Terms: H.5.1 [Multimedia Information Systems]: Artifi-
cial, augmented, and virtual realities—; I.3.7 [Three-Dimensional
Graphics and Realism]: Color, shading, shadowing, and texture—

1 INTRODUCTION

Shadows provide important perceptual cues about the shape and rel-
ative depth of objects in a scene, as well as the surrounding lighting.
Incorporating realistic shadows in a manner that is consistent with
a scene’s lighting is an important problem in augmented reality.

We address the problem of shadowing animated virtual charac-
ters, as well as static objects, in augmented reality with lighting
captured from the real-world. Typically, real-world illumination
causes both hard and soft shadows, the latter due to light reflecting
off surrounding objects as well as emission from broad area lights,
and the former due to smaller light sources such as the sun.

We factorize light in a well-founded manner, allowing hard and
soft shadows to be consistently computed in real-time with a combi-
nation of shadow-mapping and basis-space relighting approaches.

After a brief summary of previous work (Section 2), we overview
basic concepts and notation (Section 3), discuss geometry and light
calibration (Sections 4 and 5), detail our light factorization (Sec-
tion 6) and shading/shadowing models (Section 7), and discuss con-
clusions and future work (Section 9). Sections 5 and 7 focus on the
mathematical derivations of our factorization and shading models;
however, despite an involved exposition, our run-time implemen-
tation is quite straightforward and readers not interested in these
details can skip ahead to Section 8 for implementation details.

2 PREVIOUS WORK

The seminal work by Sloan et al. [10] on precomputed radiance
transfer proposed a technique for compactly storing precomputed
reflectance and shadowing functions, for static scenes, in a manner
that allows for high-performance relighting under novel illumina-
tion at run-time. In follow-up work, Sloan et al. use a different
representation for similar reflectance/shadowing functions that al-
lowed for approximate shading of deformable objects [11]. Ren et
al. [6] extend this line of PRT work to fully dynamic scenes, al-
lowing for soft shadows to be computed on animating geometry
from dynamic environmental lighting in real-time. We combine
ideas from several of these approaches and elaborate on technical
specifics in more detail in Sections 3, 5 and 7.

Debevec and Malik [1] pioneered the area of image-based light-
ing, detailing an approach for capturing environmental lighting

Figure 1: Hard and soft shadowing using our light factorization.

from the real-world and using this to shade virtual objects. More
advanced lighting capture techniques exist, combining knowledge
of the surrounding geometry with more detailing directional cap-
ture (e.g., from omni-directional cameras) [7], however we build
on the simplicity and efficiency of Debevec and Malik’s approach.

In augmented reality, work on shading virtual objects can be
roughly divided into three groups: traditional computer graphics
models, discretized lighting models, and basis-space relighting.
The first set of work simply applies simple point/directional light-
ing models to compute shading (and possibly shadows) from virtual
object onto the real scene. With such simple models, the shading
of real and virtual objects is inconsistent, causing an unacceptable
perceptual gap. Discretized lighting models use more advanced ra-
diosity and instant-radiosity based approaches [5] to compute real-
istic shading on the virtual objects (at a higher performance cost);
however, integrating these techniques in a manner that is consis-
tent with the shading of the real-world objects is an open problem.
Thus, the increased realism of the virtual object shading is still
overshadowed by the discrepancy between virtual and real shad-
ing. Basis-space relighting approaches capture lighting from the
real-world and use it to light a virtual object [3]. By construction,
the shading on the virtual object will be consistent (to varying de-
grees) with the real-world shading. However, the coupling of shad-
ing between virtual and real objects is a difficult radiometric prob-
lem where even slight errors can cause objects to appear to “float”
or stand-out from the real-world objects. We address a core compo-
nent of this problem, computing consistent shading/shadowing on
virtual objects and onto perceptually important regions of the real-
world. Furthermore, we support animated objects, whereas prior
basis-space approaches only handle static geometry.

3 OVERVIEW AND NOTATION

We adopt our mathematical notation from the real-time rendering
literature: italics for scalars and 3D points/vectors (e.g., ω), bold-
face for column vectors and vector-valued functions (e.g., y), and
sans serif for matrices/tensors (e.g., M).

3.1 Spherical Harmonics
Many light transport signals, such as the incident radiance at a
point, are naturally expressed as spherical functions. The spherical
harmonic (SH) basis is the spherical analogue of the Fourier basis
and can be used to compactly represent such functions. We summa-
rize some key SH properties (that we will exploit during shading)



below, and leave rendering-specific properties to Section 7.
Definition. The SH basis functions are defined as follows:

ym
l (ω) = Km
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√
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2 Pm
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P0
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where ω = (θ ,φ) = (x,y,z) are directions on the sphere S2, Pm
l are

associated Legendre polynomials, Km
l is a normalization constant,

l is a band index, and−l ≤m≤ l indexes basis functions in band-l.
Basis functions in band-l are degree l polynomials in (x,y,z). SH
is an orthonormal basis, satisfying

∫
S2 ym

l (ω) ym′
l′ (ω)dω = δlm,l′m′ ,

where the Kroenecker delta δx,y is 1 iff x = y.
Projections and Reconstruction. A spherical function f (ω)
can be projected onto the SH basis, yielding a coefficient vector

f =
∫

S2
f (ω) y(ω) dω , and: f (ω)≈ f̃ (ω) =

n2

∑
i=0

fi yi(ω) , (2)

where y is a vector of SH basis functions, the order n of the SH
expansion denotes a reconstruction up to band l = n− 1 with n2

basis coefficients, and we use a single indexing scheme for the basis
coefficients/functions where i = l(l +1)+m.
Zonal Harmonics. The m = 0 subset of SH, called the zonal
harmonics (ZH), exhibit circular symmetry about the z-axis and can
be efficiently rotated to align along an arbitrary axis ωa. Given
an order-n ZH coefficient vector, z, with only n elements (at the
m = 0 projection coefficients), we can compute the SH coefficients
corresponding to this function rotated from z to ωa as in [11]

gm
l =

√
4π/(2l +1) zl ym

l (ωa) . (3)

In Section 7, we exploit this fast rotation expression for efficient
rendering with a variety of different surface BRDF models.
SH Products. Given functions f and g, with SH coefficient vec-
tors f and g, the SH projection of the product h = f ×g is

hi =
∫

S2
h(ω) yi(ω) dω ≈

∫
S2

[
∑

j
f jy j(ω)

][
∑
k

gkyk(ω)

]
yi(ω) dω

= ∑
jk

f j gk

∫
S2

y j(ω) yk(ω) yi(ω) dω = ∑
jk

f j gk Γi jk , (4)

where Γ is the SH triple-product tensor. Computing these general
products is expensive, despite Γ’s sparsity, but by fixing one of the
functions in the product, a specialized product matrix can be used:[

Mf
]

i j
= ∑

k
fkΓi jk such that h = Mf ·g. (5)

In Section 7, we discuss these specialized product matrices in the
context of shading.

3.2 Placement
An essential component of any reliable AR system is the compu-
tation of a consistent coordinate frame relative to the camera. Two
common approaches are marker-based and markerless tracking.

Marker-based approaches compute a coordinate frame that re-
mains consistent and stable under significant camera motion. Mark-
erless based tracking instead relies on computer vision algorithms
to establish this coordinate frame, and these techniques can suf-
fer from instabilities, especially during camera (and scene) motion.
The strength of markerless tracking lies in its generality: no mark-
ers are required whereas, for marker-based tracing, if a marker is
(even partially) occluded, unexpected results may be computed.

Our work focusses on consistent lighting and shading given a
pre-calibrated AR coordinate frame, and so we instead build on pre-
vious tracking techniques as described in Section 4.

4 GEOMETRIC CALIBRATION

We combine marker-based and markerless approaches to obtain ro-
bust correspondence, even under a freely moving camera.

We place a marker on the planar surface we wish to place our
virtual objects on, detect the position and orientation of the marker
using the ARToolKitPlus library [12], and find a mapping between
this coordinate frame and the coordinate frame computed with the
PTAM markerless tracking library [4].

To do so, PTAM computes a homography from correspond-
ing feature points of the two captured images (from similar
viewpoints). The dominant plane of
the feature points is placed at the
z = 0 plane, forming our initial co-
ordinate frame. The ARToolKitPlus
has a coordinate system centered on
the marker (see inset) and, given the
two images, can compute the positions
(p1, p2) and rotations (R1,R2) relative
to the marker. PTAM can similarly compute positions (p̂1, p̂2) and
rotations (R̂1, R̂2) with respect to its coordinate frame.

In a global coordinate frame (R1,R2) and (R̂1, R̂2) specify the
same set of rotations, and so the rotation that maps from ARToolK-
itPlus’ frame to PTAM’s frame is R = R̂−1

1 ·R1 = R̂−1
2 ·R2.

All that remains is to determine the relative scale and translation
between the two frames. First we compute the intersection point
o of two rays with origins (p̂1, p̂2) and directions (d̂1, d̂2) = (R ·
(−p1),R · (−p2)). These rays are not only guaranteed to intersect,
but will do so at the origin of the marker (relative to the PTAM
frame). The parametric intersection distance and relative scale are

t =
(d̂1)x

[
(p̂2)y− (p̂1)y

]
− (d̂1)y [(p̂2)x− (p̂1)x]

(d̂1)y (d̂2)x− (d̂1)x (d̂2)y
and s =

t ‖d̂2‖
‖p2‖

.

5 REAL-WORLD LIGHTING

In order to shade virtual characters, and static geometry, in a man-
ner that is consistent with the real-world, it is important to capture
and apply the lighting from the surrounding environment to these
virtual elements. We combine the two most common virtual light-
ing models in mixed reality, traditional point/directional lights and
environmental light probes, in a novel manner.

Point and directional lights are a convenient for lighting virtual
objects, supporting many surface shading (BRDF) and shadowing
models. However, these lights rarely match lighting distributions
present in real-world scenes, even with many such lights as in e.g.
instant radiosity based approaches [5]. Moreover, the hard shad-
ows that result from using these approaches can appear unrealistic,
especially when viewed next to the soft shadows of real objects.

On the other hand, environmental light probes can be used to
shade virtual objects with lighting from the real scene, increasing
the likelihood of consistent appearance between real and virtual ob-
jects (see Figure 2). One drawback is that, while shadow functions
can be precomputed for static virtual objects, it is difficult to effi-
ciently compute soft shadows (from the environmental light) from
virtual objects onto the real world and animated virtual objects.

We first discuss two techniques for capturing real-world lighting
(Section 5.1), followed by a factorization of the this lighting (Sec-
tion 6) that allows us to both shade and shadow virtual objects in a
manner that is consistent with the real scene (Section 7).

5.1 Capturing Environmental Lighting
In Section 7 we show how to compute the shade at a point x in
the direction towards the eye ωo, Lout(x,ωo). This requires (among
other things) the incident lighting distribution at x, Lin(x,ω). In our
work, we assume that the spatial variation of lighting in the scene
can be aggregated into the directional distribution, represented as



Figure 2: Consistent lighting between virtual and real objects.

an environment map of incident light, so that Lin(x,ω) = Lenv(ω).
We now outline the two approaches we use to capture Lenv.

Mirror Ball Capture. We place a mirror sphere at a known po-
sition relative to a marker and use the ARToolkitPlus marker-based
feature tracking library [12] to detect the camera position relative
to the sphere. We require a parameterization of the the sphere
image we capture in order to project it into SH (see below). If
we normalize the image coordinates of the (cropped) sphere image
to (u,v) = [−1,1]× [−1,1], we can map spherical coordinates as
ωuv = (θ ,φ) = (arctan(v/u),π

√
u2 + v2). Furthermore, when dis-

cretizing Equation 2, we compute

f≈∑
u,v

f (ωuv) y(ωuv) dωuv , (6)

where dωuv = (2π/w)2 sinc(θ) uses the width w in pixels of the
(square) cropped mirror sphere image [1].

Free Roaming Capture. In the case where using a marker-
based system is not feasible, we can capture an approximation of
the environment lighting using the PTAM library [4].

We capture images of the surrounding environment and, for each
image, place a virtual omnidirectional camera at the mean distance
of all feature points computed by PTAM for that image. The im-
age is then projected to the 6 faces of a virtual cube (placed in a
canonical orientation upon system initialization).

We similarly require a discrete projected solid angle measure
when computing Equation 6 using this cube map parameterization.
With the normalizaed image coordinates (u,v) on a cube’s face and
the width w in pixels for a side of the cube, we have (as in [8])

t = 1+u2 + v2 and dωuv =
[
4 t−(3/2)

]
/w2 . (7)

In Section 8 we discuss how we implement high-performance
capture and discretized SH projection completely on the GPU.

6 LIGHTING FACTORIZATION

We propose a two-term factorization of the environmental lighting
into a directional term Ld(ω) and a residual global lighting Lg(ω),
and we will enforce that Lenv(ω) = Ld(ω)+Lg(ω).

Given the SH projection coefficients for each color channel of
Lenv, {L[r],L[g],L[b]}, our factorization seeks to compute a domi-
nant light direction/color, treat it as a separate incident lighting sig-
nal, and leave a residual lighting signal which corresponds to non-
dominant lighting (e.g., from broad area light sources and smooth
indirect light bouncing off of surrounding surfaces).

Dominant Light Direction. Starting with the simpler case of
monochromatic incident light L(ω) (with SH coefficients L), the
linear (l = 1) SH coefficients are scaled linear monomials in y, z and
x respectively, and thus encode the 1st -moment vector direction (ig-
noring coordinate permutations and scale factors) of the spherical
function they represent (in this case, the monochromatic light):

~d =
∫

S2

[
ωx,ωy,ωz

]T ·L(ω) dω , (8)

where (ωx,ωy,ωz) are the Cartesian coordinates of ω . In this case,
~d is the principal light vector and, from Equations 1 and 8, we can
solve for the normalized principal light direction in terms of L as

(−L3,−L1,L2) =

[
3

∑
i=1

(Li)
2

]− 1
2

(−L3,−L1,L2) , (9)

where we use SH single indexing here for compactness. While we
could use more complex approaches (e.g., [8]) for the trichromatic
lighting case, we instead choose a simpler, more efficient technique:
we convert trichromatic lighting coefficients into monochromatic
coefficients using the standard color-to-grayscale conversion. Thus,
the dominant light direction can be extracted from Lenv as

ωd =

 −L[r]
3 −L[g]

3 −L[b]
3

−L[r]
1 −L[g]

1 −L[b]
1

L[r]
2 L[g]

2 L[b]
2

 ·
 0.3

0.59
0.11

 . (10)

Dominant Light Color. Given the dominant lighting direction
ωd , we now determine the dominant light color in this direction.

To determine this color, we place a planar reflector perpendicular
to a unit intensity SH directional light at ωd , and compute its albedo
so that it reflects unit radiance.

Given a planar diffuse reflector with a normal ωd , the SH coef-
ficients of a directional light at ωd that yields unit outgoing radi-
ance on the plane are αym

l (ωd), where α = 16π/17 for order-3 and
order-4 SH, and 32π/31 for order-5 and order-6 SH1 [8]. Similar
scaling factors can be derived for non-diffuse reflectance, but we
have found that using this factor yields plausible results, regardless
of the underlying surface BRDF used at run-time (see Section 7).

We can now analytically solve for the color as

c[·] =

[
1

∑
m=−1

α ym
1 (ωd) L[·]

2+m

]
/

[
1

∑
m=−1

(α ym
1 (ωd))

2

]
. (11)

Final Factorization. Given ωd and RGB color (c[r],c[g],c[b]),
the directional term of our factorization and its SH projection are

Ld(ω) = c[·] δ (ωd) and L[·]
d = α c[·] ym

l (ωd) . (12)

The global term and its SH projection are

Lg(ω) = Lenv(ω)−Ld(ω) and L[·]
g = L[·]−L[·]

d . (13)

Note that the factorization is “perfect”, in the sense that the envi-
ronmental light can be perfectly reconstructed from the directional
and global terms (both in the primal and SH spaces; see Figure 3).
In Section 7, we use this factorization to combine several shad-
ing/shadowing models, resulting in realistic shading with hard and
soft shadows that is consistent with shading on real-world objects.

1The α values are shared across two orders because the SH projection
of the clamped cosine kernel vanishes for all even bands above l = 2.
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Figure 3: Factorization into directional and global lighting terms.

7 SHADING WITH FACTORIZED REAL-WORLD LIGHTING

Direct lighting at a point x towards the eye from the environment is

Lout(x,ωo) =
∫

S2
Lenv(ω) V (x,ω) f+(x,ωo,ω) dω (14)

where V (x,ω) is the binary visibility function that is 1 for di-
rections that are not occluded by geometry, and 0 otherwise, and
f+(x,ωo,ω) = f (x,ωo,ω) (nx ·ω) is a combination of the view-
evaluated BRDF f (x,ωo,ω) and a cosine foreshortening term.

There are several challenges to accurately solving Equation 14.
Firstly, we must integrate over all lighting directions. Secondly,
during integration, we need to evaluate the binary visibility function
which, in the most general case, requires tracing rays through the
scene for each lighting direction (and at each x).

Previous work has either approximated Lenv (or, more generally,
Lin) with many point lights, or assumed static geometry where V
can be precomputed and stored at a discrete set of x’s. In the first
case, a point light approximation allows for visibility to be com-
puted using e.g. shadow maps, however many such point lights
may be required and the cost of computing and shading with many
shadow maps quickly becomes the bottleneck of these approaches.
In the latter case, if static scene geometry is assumed, SH based
shading approaches (which we will discuss below) can be used to
quickly integrate over the many lighting directions (without explic-
itly discretizing them into e.g. individual point lights) and, along
with precomputed visibility data, can compute soft shadows that
respond to the dynamic lighting environment. Unfortunately, these
approaches cannot handle animating or deforming geometry, since
the visibility changes at run-time in these instances.

We instead exploit our factorization, using a combination of ap-
proaches to solve the two problems of light integration and dynamic
visibility computation. Substituting Equation 13 into 14 yields

Lout(x,ωo) =
∫

S2
Ld(ω) V (x,ω) f+(x,ωo,ω) dω +∫

S2
Lg(ω) V (x,ω) f+(x,ωo,ω) dω

= Ld
out(x,ωo)+Lg

out(x,ωo) (15)

and we will discuss solutions to each of these terms independently.

7.1 Efficient Computation of Ld
out

Substituting Equation 12 into the definition of Ld
out yields

Ld
out(x,ωo) =

∫
S2

c[·] δ (ωd) V (x,ω) f+(x,ωo,ω) dω

= c[·] V (x,ωd) f+(x,ωo,ωd) . (16)

Model f+(x,ωo,ω) ZH coefficients zl
Lambertian (nx ·ω) [0.282,0.326,0.158,0]

Phong (ωr ·ω)s
[

0.282(s+2)
s+1 ,0.489, 0.631s(s+2)

s2+4s+3 ,
0.746(s−1)

(s+4)

]
Mirror δ (ω = ωr) [0.282,0.489,0.631,0.746]

ωr is the reflection of ωo about nx and s is the Phong exponent.

Table 1: Analytic form of the BRDFs we use and their ZH coefficients.

In this form, integration over light directions is replaced by a single
evaluation and visibility can be computed using shadow maps. The
BRDF models we use when evaluating f+ (as well as their ZH
representations; see Section 7.2) are summarized in Table 1.

Although Equation 16 requires a simple application of shadowed
point lighting, the parameters of this model are carefully derived in
our factorization to maintain consistency with the global shading
term, which we evaluate without explicitly sampling any lighting
directions (Section 7.2). The combination of Ld

out and Lg
out, and the

manner in which Ld and Lg are derived and applied, which makes
the use of point lighting acceptable for our solution.

7.2 Efficient Computation of Lg
out

Unlike Ld
out in Equation 16, Lg

out cannot reduce into a single sam-
pling operation since Lg is composed of lighting from all directions.
Sampling and evaluating the three terms in the integrand, for all di-
rections at run-time, is not feasible. We exploit the smoothness of
Lg and perform this computation efficiently in the SH domain.

As discussed earlier, the two main challenges when computing
Equation 14 are integration over all light directions and evaluation
of the visibility function (at all directions and all x). The expression
below for Ld

out also exhibits these problems,

Lg
out(x,ωo) =

∫
S2

Lg(ω)V (x,ω) f+(x,ωo,ω)dω , (17)

and we will first discuss the integration problem (assuming we have
a solution to the visibility problem), and then discuss several ap-
proaches we employ for solving the visibility problem2.

Integration with SH. As we readily have the SH projection of
Lg, Lg (from Section 5.1), suppose we can express V and f+ with
SH projections V and f, then the most general solution to Equa-
tion 17 using SH involves summing over the triple-product tensor,

Lg
out ≈

∫
S2

[
∑

i

[
Lg
]

i yi(ω)

][
∑

j
V jy j(ω)

][
∑
k

fkyk(ω)

]
dω

= ∑
i jk

[
Lg
]

i V j fk Γi jk , (18)

which is a computationally expensive procedure, particularly when
executed at every x. Alternatively, in the case where one of the three
terms in the integrand is known beforehand, we can precompute the
SH product matrix of this function to accelerate the computation.
For example, we could precompute a product matrix for Lg as[

MLg

]
i j
= ∑

k

[
Lg
]

k Γi jk such that Lg
out ≈∑

i

[
MLg · f

]
i

Vi . (19)

Equation 19 avoids the per-point evaluation of the triple-product
tensor in Equation 18, offloading this computation to a one-time
(per lighting update) evaluation of the triple-product when com-
puting MLg ; the run-time now involves a simpler matrix-vector
product following by a dot-product. Note that we construct the

2We drop the [·] superscript for color channel indexing, and assume that
all equations are applied to each color channel independently.



product matrix for the lighting, instead of the BRDF, since light-
ing will change at most once per-frame whereas the view-evaluated
BRDF(s) changes at least once per frame (and potentially once per
point if we do not assume a distant viewer model).

We can further simplify run-time evaluation if two of the three
integrand terms are known apriori. For example, in the case of static
geometry and diffuse reflection, the product T (x,ω) = V (x,ω)×
f+(x,ω) can be projected into SH during precomputation, yielding
the following run-time computation3

[Tx]i =
∫

S2
T (x,ω)yi(ω)dω such that Lg

out ≈∑
i
[Tx]i

[
Lg
]

i , (20)

which corresponds to the standard PRT double product [10] and can
be easily derived using the orthonormality property of SH.

One detail we have not discussed is how to compute the SH pro-
jection of the view-evaluated BRDF. We currently support the three
common BRDF models in Table 1. Each of these BRDFs are cir-
cularly symmetric about an axis: the Lambertian clamped cosine is
symmetric about the normal nx, and the Phong and Mirror BRDFs
are symmetric about the reflection vector ωr. At run-time, the SH
coefficients of the BRDFs is computed using Equation 3 and the
order-4 ZH coefficients listed in Table 1.

We note that, in the case of perfect mirror reflection, instead of
inducing a blur on the (very sharp) mirror reflection “lobe”, we ex-
ploit the fact that we have captured Lenv(ω) and can readily sample
Lg(ω). In this case, we sample the SH-projected visibility when
reconstructing the global lighting shade as

Lg
out ≈ Lg(ωr) ∑

i
Vi yi(ωr) . (21)

Figure 4 illustrates the different BRDF components for an object
shaded with only the global lighting.

Diffuse Glossy Mirror
Figure 4: Shading, including soft shadows, from global/ambient light
(directional light omitted) due to each BRDF component (> 70 FPS).

While we have discussed shadowing for directional lighting, we
have so far assumed that the SH projection of binary visibility at x,
V, was readily available for use in shadowing the global lighting.
Below we discuss the different ways we compute V.

SH Visibility. We discuss different shadowing models for global
lighting, depending on the type of virtual object we are shading.

For static objects, we use either standard PRT (Equation 20) for
diffuse objects or precomputed SH visibility product matrices and
Equation 19 (replacing MLg with a product matrix for visibility).

For animating or deformable objects, we segment shadowing
into two components: cast shadows from the object onto the en-
vironment, and self shadows from the object onto itself.

For cast shadows, we are motivated by previous work on spher-
ical blocker approximations [6]. We fit a small number (10 to 20)
of spheres to our animating geometry (e.g., in its rest pose for artic-
ulated characters) and skin their positions during animation. Shad-
owing is due to the spherical proxy geometry, as opposed to the
actual underlying geometry. The use of spherical blocker approx-
imation is justified in two ways. Firstly, since the global lighting

3Note that f+(x,ωo,ω) = f+(x,ω) in the case of diffuse reflectance.

component is a smooth spherical function, equivalent to large and
broad area light sources, fine scale geometry details will be lost in
the smooth shadows that are produced by these types of area lights.
Secondly, SH visibility can be efficiently computed using sphere
blockers, as we will now discuss.

Considering only a single sphere blocker, the visibility function
due to that blocker is a circularly symmetric function, and so if we
align the vector from x to the center of the blocker with the z axis,
the single sphere visibility is defined as in [6],

Vs(ω) =

{
0, if arccos(ω · z)≤ arcsin( r

d )
1, otherwise , (22)

and has ZH coefficients

Vs =
∫

S2
Vs(ω) y(ω)dω

=

[
1.772

(
1+
√

1−R
)
,−1.535R,−1.982R

√
1−R,

0.586R
(
−4d2 +5r2

)
d2

]
, (23)

where R = (r/d)2. If we approximate our animated object with
a single sphere, applying Equation 3 to Equation 23 will yield V,
which can be used in Equation 19 to compute the final shade. How-
ever, it is rarely the case that a single blocker sphere is sufficient.
In the case of multiple spheres, SH products of the visibility from
individual spheres must be taken to compute the total visibility V.
Instead of computing SH visibility for a sphere at a time and apply-
ing Equation 4 (which requires expensive summation of Γ, for each
sphere), we compute an analytic product matrix for a single sphere
blocker oriented about an arbitrary axis by combining Equations 23,
3 and 5.

In the case of only a few blocker spheres (e.g., if we only model
cast shadows from the feet of a character onto the ground, using two
spheres), applying the precomputed sphere blocking product matrix
to Lg (or f) and shading with Equation 19 is an efficient solution.
However, as we increase the number of spherical blockers (and
thus, the number of product matrix multiplications), performance
degrades rapidly. In this case, we accelerate this SH multi-product
by performing computation in the logarithmic SH domain [6].

The technique of Ren et al. [6] computes the SH projection of
log(Vs(ω)) (which, in the canonical orientation, is still a ZH) and
tabulates these coefficients as a function of (r/d). Rotated log
SH coefficients are computed for each sphere blocker, using Equa-
tion 3, and summed together yielding a net log SH visibility vec-
tor, Vlog. We use the tabulated values provided by Ren et al. and
directly apply the “optimal linear” SH exponentiation operator to
convert the net log SH visibility to the final SH visibility vector as

V≈ exp

([
Vlog

]
0√

4π

) (
a ‖V̂log‖ 1+b ‖V̂log‖ V̂log

)
, (24)

where V̂log is Vlog with its DC term set to 0, and 1=(
√

4π,0, . . . ,0)
is the SH projection of the constant function one(ω) = 1.

For self-shadows, Ren et al. [6] propose “sphere replacement
rules” for handling shade points that lie on the surface of the mesh
(potentially within the volume of several blocker spheres), however
we use a simpler solution that yields suitable results.

We precompute and store the DC projection of visibility, which
is related to ambient occlusion, at vertices of the dynamic object.
At run-time, we need only scale the unshadowed lighting by this
occlusion factor. This is equivalent to using Equation 19 with only
V0 6= 0; in the case of triple product integration, if one of the terms
has only a non-zero DC component, this is equivalent to scaling
the double product integration by the DC component of the third
(DC-only) term in integrand [8]. Unshadowed light is computed by
rotating the appropriate ZH vector from Table 1 using Equation 3,
and then computing the double product integral (as in Equation 20)



of Lg with these rotated BRDF coefficients. Figure 5 illustrates the
contribution of the different shadowing components we use.

Unshadowed Cast Shadows Self-Shadows

Direct Shadow Sphere Proxies Final Image
(with both shadows)

Figure 5: Top row: smooth cast shadows (middle) and self-shadows
(right) due to global lighting give subtle depth and lighting cues com-
pared to no global shadows (left). Bottom row: compositing the fi-
nal shading with directional shadows (left), visualizing the blocker
spheres with directional and cast shadows (middle), and the final
composited image (right). Images rendered at > 70 FPS.

8 IMPLEMENTATION AND PERFORMANCE

We benchmark our system on an Intel Core2 Duo 2.8 GHz Laptop
with an NVidia Quadro FX 770M GPU. We use the PlayStation Eye
camera for capture, supporting 640×480 capture.

Our end-to-end algorithm performs following computations:
– At initialization, compute geometric calibration (Section 4),
– Capture lighting from mirror sphere or free roaming (Section 5),
– Compute SH projection of Lenv (see details below; Equation 6),
– Compute Ld and Lg using lighting factorization (Section 6),

– Compute Ld
out (see details below; Section 7.1 and Equation 16),

– Compute Lg
out (Section 7.2), and

– Composite direct and global shading components.
We compute the SH projection of the captured lighting by pre-

computing y(ωuv) dωuv values in a texture and use graphics hard-
ware to quickly multiply this precomputed texture with the captured
lighting image, Lenv(ωuv). Depending on the spherical parameteri-
zation (sphere vs. cube), we use the appropriate definition of dωuv
as well as the appropriate texture image layout (i.e., six textures are
required for the cube map case). The summation in Equation 6 is
computed with a multi-pass sum on the GPU. Table 2 summarizes
the performance breakdown of this component of our algorithm.

Mirror Sphere Capture and Projection
Find Markers LDR to HDR SH Project Total

4 ms 0.6 ms 1.7 ms 6.3 ms
Free Roaming Capture and Projection

Find Homography LDR to HDR Map to Cube SH Project Total
2 ms 0.8 ms 1.1 ms 1.8 ms 5.7 ms

Table 2: Performance breakdown for capturing and projecting real-
world illumination into SH using our two capture methods.

When computing Ld
out with Equation 16, we use a 1024× 1024

24-bit shadow map, and 4× 4 percentage-closer filtering [2]. All
shading computations are performed on the GPU using GLSL
shaders with lighting coefficients computed every frame, which al-
lows for dynamic lighting response.

All of our results run at higher than 70 FPS, including all geo-
metric calibration, lighting and shading computations.

9 CONCLUSIONS AND FUTURE WORK

We presented a technique to factor environmental light emitting
from, and bouncing off, the real-world. Our factorization is de-
signed to directly support both hard and soft shadowing techniques.
Using basis-space relighting techniques and GPU acceleration, we
can efficiently compute shadows from both static and animated vir-
tual objects. The manner in which we factor and combine different
illumination contributions is novel, and generates more consistent
shading than previously possible (e.g., with only the individual ap-
plication of any one of the techniques we incorporate).

Traditional cast shadows in AR are sharp and colored in a man-
ner that does not respond to the surrounding lighting, whereas our
hard shadows are shaded based on dynamic environmental ambi-
ent light. Moreover, soft shadows due to residual global lighting
add physically-based smooth shading, increasing perceptual con-
sistency in a manner similar to diffuse interreflection.

Our factorization roughly identifies a direct lighting and “in-
telligent” bounced lighting terms, however we still apply direct-
illumination integration to these components, ignoring the effects
of indirect light bounces from the virtual objects onto the real-world
geometry. In the future we plan on incorporating such effects by,
for example, modeling light bouncing off of the sphere proxies [9].
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