
Data-driven curvature for real-time

line drawing of dynamic scenes

Evangelos Kalogerakis, Derek Nowrouzezahrai, Patricio Simari,

James McCrae, Aaron Hertzmann, Karan Singh

University of Toronto

This paper presents a method for real-time line drawing of deforming objects. Object-space line
drawing algorithms for many types of curves, including suggestive contours, highlights, ridges

and valleys, rely on surface curvature and curvature derivatives. Unfortunately, these curvatures
and their derivatives cannot be computed in real-time for animated, deforming objects. In a
preprocessing step, our method learns the mapping from a low-dimensional set of animation
parameters (e.g., joint angles) to surface curvatures for a deforming 3D mesh. The learned model

can then accurately and efficiently predict curvatures and their derivatives, enabling real-time
object-space rendering of suggestive contours and other such curves. This represents an order-
of-magnitude speed-up over the fastest existing algorithm capable of estimating curvatures and

their derivatives accurately enough for many different types of line drawings. The learned model
can generalize to novel animation sequences, and is also very compact, typically requiring a few
megabytes of storage at run-time. We demonstrate our method for various types of animated
objects, including skeleton-based characters, cloth simulation and blend-shape facial animation,

using a variety of non-photorealistic rendering styles.

An important component of our system is the use of dimensionality reduction for differential
mesh data. We show that Independent Component Analysis (ICA) yields localized basis functions,
and gives superior generalization performance to that of Principal Component Analysis (PCA).

Categories and Subject Descriptors: I.3.3 [Picture/Image Generation]: Line and curve gen-

eration; I.3.5 [Computational Geometry and Object Modeling]: Geometric algorithms,
languages, and systems

General Terms: Algorithms, Design

Additional Key Words and Phrases: real-time curvature, real-time line drawing, real-time non-
photorealistic rendering for deforming objects, data-driven curvature, Independent Component

Analysis (ICA), Neural Network Regression

Authors’ emails: {kalo, derek, psimari, mccrae, hertzman, karan}@dgp.toronto.edu
Authors’ address: Department of Computer Science, University of Toronto, 10 King’s College
Road, Room 3302 Toronto, Ontario, Canada M5S 3G4
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 0730-0301/2009/0100-0001 $5.00

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009

kalo
Sticky Note
© ACM, (2009). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Graphics 28{1}, January 2009.

2 · Kalogerakis et al.

Fig. 1: Line drawings of deforming 3D objects, generated in real-time (24 to 80
FPS) by our system.

1. INTRODUCTION

Computer-generated 3D line drawing has been shown to produce clear and com-
pelling imagery. These algorithms are based on a variety of curves defined on 3D
surfaces, such as contours and suggestive contours [DeCarlo et al. 2003]. Some of
these curves require surface curvature and curvature derivatives to be computed
everywhere on the surface; important examples include suggestive contours, ridges,
valleys, apparent ridges, principal highlights, and highlight lines. These curves are
essential components of high-quality line drawing of smooth surfaces. For example,
drawings using both contours and suggestive contours generally look dramatically
better than with contours alone.

An important application for line drawing is interactive 3D rendering, such as in
technical illustrations, games, and other virtual reality environments. Line draw-
ings of static geometry can be rendered in real-time, because curvatures can be
precomputed [DeCarlo et al. 2004]. For dynamic geometry, curvatures must be
recomputed for each frame, and current methods for computing surface curvatures
and their derivatives are too slow to be used in real-time (even for moderate-sized
meshes). While some types of curvature-based drawings may be computed in image
space [Lee et al. 2007], image-space algorithms often suffer from visual artifacts and
lack the stylization options of their object-space counterparts.

This paper presents a fully automatic method for real-time line drawing of de-
forming objects. In a preprocessing step, a set of curvature attributes—namely,
curvature tensors and derivatives—are computed for each vertex in each frame of
a set of training meshes. The system then learns a mapping from the animation
parameters to the curvature attributes. For a skeleton-based character, the anima-
tion parameters are simply the joint angles of the skeleton. For facial animation,
the parameters are the blending weights. If no animation parameters are given
explicitly, then they are determined automatically by dimensionality reduction on
the animated surface geometry (e.g., for cloth). Then, during an interactive session,
this mapping is applied in real-time to new animation parameters for estimating

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 3

Fig. 2: Real-time renderings generated with our method (principal highlights and suggestive

contours for the horse and apparent ridges and valleys for the other figures). For the hand, we
apply textured chained-strokes for stylization.

the curvatures of the new surface, which can then be used to generate line drawings.
The system can produce animated 3D line drawings at real-time rates for meshes of
100K triangles in a single processor. With our system, it is now possible to generate
accurate and stylizable curvature-based line drawings of 3D animated surfaces in
real-time (Figures 1 and 2).

The results of our method are nearly indistinguishable from the per-triangle tensor
fitting method of Rusinkiewicz [2004], with similar temporal coherence, but require
an order-of-magnitude less computation during runtime. We apply our approach
to three types of surfaces: skeleton-based characters, cloth simulation and blend-
shape facial animation. We show the ability of our system to generalize to novel
animation sequences that are not included in the training set. We demonstrate
stroke stylization with real-time chaining (Figures 16 and 17). In addition, stroke
thickness can be determined as a function of surface curvature.

A major component of our method is the use of dimensionality reduction to man-
age high-dimensional inputs and outputs. We use Independent Component Anal-
ysis (ICA) to reduce dimensionality, instead of the more commonly-used Principal
Component Analysis (PCA). In our experiments, bases learned with ICA gener-
alize better than PCA bases because they better capture local structures in the
deformations.

2. RELATED WORK

Line drawing of 3D surfaces has been an active research area in non-photorealistic
rendering. Line renderings can include occluding contours and hatching [Elber and
Cohen 1990; Hertzmann and Zorin 2000; Markosian et al. 1997; Winkenbach and
Salesin 1996], sharp creases [Markosian et al. 1997; Gooch et al. 1999], sugges-
tive contours [DeCarlo et al. 2003; DeCarlo et al. 2004], ridges and valleys [In-

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

4 · Kalogerakis et al.

Valleys+Suggestive Valleys+ Apparent Ridges+ Suggestive Contours+
Contours Apparent Ridges Principal Highlights Principal Highlights

Fig. 3: Results generated in real-time using our method (top) compared to those
generated with explicit curvature re-calculation (bottom).

terrante et al. 1995; Ohtake et al. 2004; Thirion and Gourdon 1996], apparent
ridges [Judd et al. 2007], and principal and suggestive highlight lines [DeCarlo and
Rusinkiewicz 2007; Lee et al. 2007]. Multi-scale representations of feature lines
have also been proposed for meshes [Ni et al. 2006] and point-sampled surfaces
[Pauly et al. 2003]. Many of these curves rely on the availability of surface cur-
vature and curvature derivatives. However, even the fastest curvature estimation
algorithms (e.g., [Taubin 1995; Meyer et al. 2002; Cohen-Steiner and Morvan 2003])
suffer from degenerate cases and noisy estimates, and do not compute third-order
surface derivatives [Rusinkiewicz 2004]. Other fast methods based on focal surface
approximations [Yoshizawa et al. 2007] are also affected by degeneracies and do
not apply in parabolic regions (unless refined by slow non-linear optimization tech-
niques [Yu et al. 2007]). In general, in order to maintain robustness to noise, irreg-
ular tessellation, and also to fully compute third-order derivatives, more expensive
computations are necessary. Typically, multiple steps of curvature smoothing or
feature-preserving optimization of the curvature tensors are required [Rusinkiewicz
2004; Kalogerakis et al. 2007].

Image-processing algorithms can extract some types of feature lines and do not de-
pend on object-space estimation of differential attributes [Lee et al. 2007; Saito and
Takahashi 1990]. Lee et al. [2007] demonstrate near-interactive animations of line
drawings using GPU-based image processing operations. Image-space methods are
appealing in that they are generally simple and easy to implement. Furthermore,
Lee et al. show how level-of-detail abstraction occurs automatically in image-space
computation. However, there are a number of drawbacks as well: accuracy is lim-
ited by pixel resolution (often resulting in jagged or irregular lines), stylization
options are limited (e.g., curves cannot be textured), speed is limited by hardware
image processing performance, and careful setting of user-defined thresholds is re-

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 5

quired. As our approach operates in object space, it might be more complex to
implement. However, it provides noticeable improvements in speed, visual quality,
and stylization options.

Our work is inspired by methods for precomputing deformation and radiance trans-
fer. Example-based skinning algorithms [Lewis et al. 2000; Mohr and Gleicher
2003; Wang et al. 2007] learn mappings from skeleton parameters to 3D shapes;
our method for skeleton-based characters learns mappings to surface curvature. For
cloth simulation, our method is in the same spirit with the photorealistic rendering
algorithms of James and Fatahalian [2003] and Nowrouzezahrai et al. [2007; 2008;
2009], in which dimensionality reduction is applied to relate simulation and ani-
mation to rendering. To the best of our knowledge, this paper presents the first
data-driven method for curvature estimation.

3. OVERVIEW

Our goal is to produce line drawings of a deforming smooth surface in real-time.
For many of the curves we wish to draw—including suggestive contours, apparent
ridges, ridges, valleys, principal highlights, and suggestive highlights—curvatures
and/or their derivatives are required for each vertex. Computing these values is the
bottleneck for line drawing; the main contribution of our work is computing them
in real-time using a very compact model. Storing all the curvature and derivatives
of curvature values per frame or storing key poses and then interpolating would
require prohibitive amounts of storage (Section 8). Instead, we employ a series
of learning techniques during precomputation so that only a few megabytes of
storage are required per dataset, curvature synthesis is performed very efficiently
and accurately during runtime and generalization capabilities are offered for novel,
unseen animation sequences.

The main idea of our paper is to learn a mapping from a low-dimensional shape
representation to the set of curvature attributes. The shape is represented by a
low-dimensional state vector xt at time t: for a skeleton-based character, cosines
of joint angles of the underlying skeleton are used as x; for blend-shape animation,
the blending weights are used as x. For cloth simulation, this parameterization
is automatically determined by dimensionality reduction. The set of curvature
attributes is represented by eight values capturing the curvature and derivatives-
of-curvature at the surface vertices.

3.1 Stages

Our approach to computing line drawing has two stages: the preprocessing stage,
which is performed offline, and the runtime synthesis stage, which is performed in
real-time.

Preprocessing. In a preprocessing stage, we begin with an animation sequence,
from which we can compute a set of M training pairs {(xi,yi)}, where xi are the
parameters for a mesh and yi are a set of curvature attributes. The curvatures for
these meshes are computed with the algorithm of Rusinkiewicz [2004]. Additional

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

6 · Kalogerakis et al.

curvature smoothing and optimization steps are required in order to obtain high-
quality results [DeCarlo et al. 2003; Kalogerakis et al. 2007].

Then, we learn a mapping from the low-dimensional parameterization to surface
curvatures:

y = f(x) (1)

This mapping is very high-dimensional, and can also be highly nonlinear. Further-
more, it is crucial that the mapping can be evaluated fast enough to allow real-time
rendering. In some cases, the locality of the mapping can be exploited, e.g., that
surface curvatures will only be affected by a few nearby joints. We develop a method
that combines dimensionality reduction and regression, while also taking advantage
of locality as much as possible.

For a skeleton-based character, linear regression with a low-order polynomial model
is used. A quadratic model is used for surface curvatures and principal directions
and a cubic model is used for the derivatives of curvature. For cloth simulation,
first, a low-dimensional representation of geometry is discovered and then linear
regression is used. For facial animation, neural network regression maps from the
blending parameters to the curvature space.

Run-time rendering. During an interactive session, the parameters x are deter-
mined for each frame. The curvatures y are computed by y = f(x). Then, various
rendering options are supported. The mesh can be rendered with contours, sugges-
tive contours, and any other lines that requires curvature. Real-time chaining can
be performed to provide more stylization options, such as texturing strokes. Stroke
thickness can also be determined as a function of surface curvature.

Our method for skeleton-based surfaces is described in Section 4. Simulated cloth
surfaces are described in Section 5, followed by our method for blend-shape facial
animation in Section 6.

3.2 Curvature attributes

The surface curvature data y can be represented in different ways. For our appli-
cation, there are three primary considerations in choosing a representation. First,
we want a spatially smooth representation that exploits the local correlations in
the curvature field in order to reduce the size of the model through dimensionality
reduction (Section 3.3). Second, we want the representation to smoothly vary as a
function of animation parameters in order to achieve accurate regression and better
temporal coherence. Lastly, we want a representation that stores as few values as
possible for each vertex, in order to reduce storage costs. In order to fulfill these
goals, we represent the curvature attributes as follows:

(1) The principal curvatures k1 and k2. We use the standard definition where
k1 > k2, rather than |k1| > |k2| [Rusinkiewicz 2007], since the latter definition
introduces temporal discontinuities in the curvature field (swapping of principal
directions), which adversely affects the learning procedure.

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 7

(2) The principal direction of maximum curvature ~e1. This direction is
represented by using its first two components in a local coordinate system. This
particular representation of the curvature attributes is chosen for invariance to
rigid transformations of parts of the surface. While a 1D angular representation
(i.e., the angle in the tangent plane of each vertex) would be more compact,
this parametrization would have singularities at 2π.

The local coordinate systems are determined by first segmenting the surface
into rigid segments and then performing PCA on the vertices of each segment.
For skeleton-based characters, the segmentation is computed by applying mean-
shift clustering [Comaniciu and Meer 2002] to the skinning weights. For cloth
simulation, rigid components are found using the method of James and Twigg
[2005]. At run-time, the third component of ~e1 and the other principal direc-
tion ~e2 can be computed from this representation and the per-vertex normals.
Per-vertex normals are computed in a standard manner per-frame, i.e., as the
weighted average of incident face normals. In order to improve spatial smooth-
ness, we also adjust the principal directions to match the segment’s coordinate
system orientation. The local rigid coordinate frame is aligned to a reference
mesh edge and normal vector (which are selected to match closely the PCA
directions) for each segment. Then, in subsequent frames, we orient the princi-
pal directions to match their previous orientation in order to achieve temporal
coherence.

(3) The derivatives of curvatures. These derivatives form a 2 × 2 × 2 tensor,
which, due to symmetry, can be represented by four values.

We will learn a separate mapping (y = f(x)) from the animation parameters x to
each of the eight curvature attributes listed above.

3.3 Dimensionality reduction

The attribute vector y for a mesh is very high-dimensional. However, as there are
significant spatial correlations in the curvatures, dimensionality reduction can be
employed to significantly compress these vectors. Dimensionality reduction also
helps to denoise unstable attributes (such as principal directions near umbillic
points), since noisy data are not captured by the first few principal components,
since they correspond to larger variance in the data. Thus, noisy data are not
represented in the low-dimensional subspace.

We use ICA [Bell and Sejnowski 1997; Comon 1994; Cao et al. 2003], a linear dimen-
sionality reduction technique. Like PCA, ICA computes a linear low-dimensional
projection. While PCA has the property that it is least-squares optimal for com-
pressing the training data, this does not guarantee that it will generalize to new
shapes not included in the training data. In fact, we find that ICA does generalize
better because it prefers sparse bases, yielding localized basis functions correspond-
ing to structure in the data, such as folds, wrinkles, and other similar structures
(Figure 10). Similarly, it has been often noted in the literature that ICA applied to
image data yields localized features, e.g., [Bartlett et al. 2002; Bell and Sejnowski

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

8 · Kalogerakis et al.

Ground truth (20 ms) Our prediction (1.4 ms)

Fig. 4: Left: Typical plots of curvature and derivatives of curvature at a vertex as a function
of one joint angle, for the muscle mesh. The vertex shown is the one with highest variance in
principal curvature k1 during training. The quadratic model is more suitable than a simple linear

model, while a cubic model is more appropriate for the derivatives of curvature components. Top
right: Comparison of principal curvatures produced by the method of Rusinkiewicz [2004], as
compared to those produced by our method. Bottom right: Comparison of principal directions.
The most significant differences in principal direction estimates occur at umbilic points where the

directions are unstable. We also report the running times for Rusinkiewicz’s and our method.

1997]. In contrast, the PCA bases are global: the first components contain a mix-
ture of many distinct folds and wrinkles that are less likely to co-occur for novel
poses.

4. SKELETON-BASED DEFORMATIONS

Our method for skeleton-based curvature prediction exploits the special structure
of skinned geometry. Specifically, we note that the skeleton’s joint angle values
provide a natural parameterization, and so we will use them as the inputs x to the
regression. Furthermore, the curvature attributes we wish to predict depend only
locally on joint values. For example, the angle of an elbow affects the skin only
within its nearby support area, and not the rest of the body. This is similar to
the locality of weights used in example-based skinning algorithms (e.g., [Mohr and
Gleicher 2003; Wang et al. 2007]).

Our method for skeleton-based characters works as follows. First, we gather the
training data, and represent it as described in the next section. We predict curva-
ture as a function of joint angles, using a polynomial regression model described
in Section 4.2. For each vertex, we determine which joints have a significant in-
fluence on the curvature at the vertex by applying a statistical test (Section 4.3).
To simplify the regression, we perform dimensionality reduction on the curvature
attributes of the influenced vertices per joint (Section 4.4). Finally, we apply re-
gression to build the mapping from animation parameters to curvature (Section
4.5).

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 9

4.1 Training

We begin with a set of training poses. These poses may, for example, correspond to
a typical animated sequence for this character. Following Wang et al.’s scale/shear
regression [2007], we represent a pose x as a vector of bones, where each bone is
parameterized by the associated joint and its parent joint angles. Each joint is
represented as three Euler rotation angles with respect to the corresponding axis
of rotation in its local coordinate frame. Therefore, each bone has 6 degrees of
freedom. We represent each element of x as cos(θ/2), where θ is a joint angle. This
representation is motivated by the fact that the discrete mean curvature at an edge
depends on the cosine of half of the dihedral angle [Polthier 2002], and thus these
values were found to be better for predicting curvature.

For each training pose i, we compute the corresponding surface attributes yi. Note
that some vertices can be treated as rigid, such as vertices with neighborhoods
influenced only by one bone. We detect vertices with curvature variation less than
0.5% of the maximum curvature variation in the data. These vertices are treated as
having constant curvature and removed from the learning process. In the Mr. Fit
model (Figure 7), about 25% of the vertices are treated as rigid.

4.2 Regression model

In order to select an appropriate regression model, we first consider the case of a
character with only a single joint. As shown in Figure 4, we find that the curvature
at the vertices around a joint can be approximated very well by a quadratic function
of the joint angle, while a cubic is sufficient for derivative of curvature. We found
that higher-order models (such as B-splines) are more powerful than necessary for
articulated data, thus requiring more storage and running time for the same-quality
results while also exhibiting poorer generalization.

Hence, we will perform regression with the model

y = Vφ(x) (2)

where V is a matrix of regression weights. For surface curvatures, we use quadratic
features:

φ(x) = [1, x1, ..., xK , x2
1, ..., x

2
K]T (3)

while, for derivatives of curvature, we use cubic features:

φ(x) = [1, x1, ..., xK , x2
1, ..., x

2
K , x3

1, ..., x
3
K]T (4)

where K is the total number of joint angles. We omit the bilinear terms xixj for
i 6= j and other higher-order terms, as we have found that these lead to worse
generalization, due to overfitting.

4.3 Determining which joints influence curvature at each vertex

In general, the curvature attributes at a vertex can be affected by more than one
joint, namely, all joints with nonzero skinning weight at that vertex. Joints with

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

10 · Kalogerakis et al.

Fig. 5: Left: Typical smooth skinning weights for an elbow joint. Right: Curvature attribute
weights (wj,v) from the elbow joint as determined by our method. Note that fewer curvatures

require input from this joint; additionally, the distribution of weights is noticeably different from
the skinning weights. We observed that blending the curvatures with skinning weights between
different joints resulted in significant errors and lower runtime speed. With our weighting scheme,
the weights of the joints on the curvature of vertices were distributed more appropriately.

nonzero weights at neighboring vertices can also affect curvature. However, the
curvature can often be predicted using only a subset of these joints. In order to
reduce the model size, we determine a subset of joints to be used for regression
at each vertex. That is, we find the joints which have a significant effect on the
curvature at vertex v. For this purpose, we use a statistical test applied at each
vertex. This statistical test is performed based on prediction of mean curvature
κ = (k1 + k2)/2. The joints selected to influence each vertex based on mean
curvature will be used for all other curvature attributes.

Specifically, for each vertex, we fit the mean curvature values for each training pose
i by least-squares regression, minimizing:

EFULL =
∑

i

||κi − aT φ(x
[v]
i)||2 (5)

where x
[v]
i are the K elements (joint angles) of xi that influence vertex v (as deter-

mined by the skinning weights), φ is a quadratic feature vector (Equation 3), and
a are the regression weights. Then this regression is repeated using only individual
joints as inputs (as in Section 4.2). Regression on joint j (i.e., using the six elements

of its angles and its parent joint angles as the inputs x
[v]
i) gives another residual Ej .

An F-test [Weisberg 2003] is then applied to determine whether to keep the joint’s
influence: this test simply determines whether including a joint makes a significant
improvement to the residual. Specifically, the F statistic is:

F =
(Ej − EFULL)/(9J − 6)

EFULL/(N − 9J)
(6)

where J is the number of joints for this vertex with non-zero skinning weights and
N is the number of training poses. The corresponding joint will then be kept for
the regression for v if F is greater than the critical value for the F distribution for
p > 0.05.

This test is repeated for all joints with nonzero skinning weights at this vertex;
those that pass the test are deemed as influencing this vertex. If all the joints fail

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 11

Ground Truth 95% of variance 90% of variance zero-order
0.8MB, 1.4ms 0.5MB, 1.1ms 0.2MB, 0.01ms

Fig. 6: Ridges and Valleys for muscle dataset with respect to decreasing variance captured by
the basis. Ridges and Valleys based on ground truth curvature data is on the left. A zero-order

prediction based only on the mean of the curvature data is also depicted on the right for compar-
ison. A reasonable choice that balances the trade-off between speed and accuracy is selecting the
number of components based on 95% of the variance. The size of the model and running times
per frame are also shown.

the F-test, then the one with smallest residual Ej is kept. In practice, we observe
that two joints are sufficient for most vertices in most cases. Although it is possible
that a joint of a bone will affect the curvature at a vertex for which it has zero
skinning weight, smoothness of the skinning weights implies that the effect of the
bone is negligible. In our experiments, this statistical test typically halves the size
of the learned model and speeds up run-time curvature prediction by 150-200%.

4.4 Dimensionality reduction

Due to the large number of vertices, directly learning the mapping to all the curva-
ture attributes per vertex would require estimating and storing an impractical num-
ber of weights. Instead, we exploit the spatial coherence of the curvature attributes
and perform regression on a reduced-dimensional model, as described below. The
following process is performed eight times, once for each curvature attribute.

For each joint j, we define a vector y(j) consisting of the values of the curvature

attribute to be predicted from this joint. One such vector y
(j)
i is computed for

each pose i in the training set and contains the attribute to be predicted (e.g.,
k1). Because this vector y(j) is high-dimensional (its dimensionality is equal to the
number of vertices influenced by the joint), we apply ICA to the training data to
obtain a reduced representation:

y(j) = Wjz + ȳ (7)

All terms on the right-hand side are determined by the FastICA algorithm [Hyvärinen
1999]. We keep the first D independent bases, where D is set to the number of
the eigenvalues required to capture 95% of the variance of W . This threshold is
selected empirically to balance the trade-off between speed and accuracy (Figure
6).

4.5 Regression

We use least-squares regression to map from the animation parameters x to their
corresponding values z in the low-dimensional space of curvature attributes. Specif-

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

12 · Kalogerakis et al.

Ground Truth 100 training frames 50 training frames 25 training frames 20 training frames

Fig. 7: Suggestive contours for Mr. Fit dataset with respect to the number of training exam-
ples. Suggestive contours based on ground truth curvature data are on the left. Our system can
accurately synthesize surface curvatures using a few training examples.

Fig. 8: Left: Plot of % misclassified faces for the suggestive contour drawings for the Mr. Fit

test sequences versus number of training examples (the number of ICA components is chosen to
correspond with the 95% of the variance of the curvature data). More precisely, we compute the
percentage of mesh faces that are not identified as having or not having a suggestive contour.
Note that the test error is smoothly decreasing and is relatively small even for a small number

of training examples. The minimal amount of training data is 19 training poses for character
animation sequences since there are at most 6 DOFs and the feature vector is cubic for derivatives
of curvature. Right: Plot of % misclassified faces for ridge and valley drawings for the muscle
dataset versus the variance of the curvature data captured by our basis. The zero-order prediction

had an error of 6.25%.

ically, we solve for the weights V that minimize

M
∑

i=1

||zi − Vjφ(x
(j)
i)||2 (8)

where x(j) are the six elements of x that depend on joint j. Each joint now provides
a separate predictor of the curvature at a particular vertex v, i.e.,

ỹv,j(x) = WjVjφ(x(j)) + ȳv (9)

where the subscript v indexes rows specific to that vertex. The predictor ỹv,j(x)
can be viewed as an estimate of yv. (Note that each joint j will have its own W

and V matrices).

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 13

We create the final predictor of yv by linearly combining these predictors in a
manner similar to boosting [Bishop 2006].

y∗
v = fv(x) =

Ĵ
∑

j=1

wj,v ỹv,j(x) (10)

where Ĵ is the number of joints with nonzero influence on this vertex (as determined
in Section 4.3). One option for determining the weights w is by least-squares fitting.
However, we have obtained better results by weighting the predictors according to
their fit to the training data. Specifically, let rj =

∑

i(yi,v−ỹv,j(x))2 be the residual
of the j-th predictor. Then, we set the weight for predictor j proportional to the
sum of the residuals for all other predictors, normalized to sum to 1:

wj,v =

∑

k 6=j rk

(Ĵ − 1)
∑Ĵ

k=1 rk

(11)

where Ĵ is the number of predictors. This can be thought of as similar to the linear
blend skinning process, but averaging target curvatures rather than target poses.
We visualize our resulting weights in Figure 5.

4.6 Run-time evaluation

During run-time, given a new pose x, the curvature attributes for each vertex are
computed by applying Equation 10. Curvature prediction is visualized in Figure 4.
We also provide error analysis with respect to the number of ICA components and
number of training examples used in Figure 7. Example skeleton-based renderings
are shown in Figures 1, 2, 3, 6, 7, 17 and in the accompanying video. We also
show examples of generalization of our method to novel animation sequences in the
accompanying video.

5. CLOTH SIMULATION

To learn curvatures for cloth simulation, we begin with an animated cloth sequence
(s1, .., sM) as training data. Our goal is to be able to compute curvatures y for
a new cloth shape s. Because no low-dimensional state vector is provided for the
cloth, we apply dimensionaily reduction to the animation state to obtain one. We
will learn a mapping from this low-dimensional space derived from the current cloth
shape s (Section 5.1) to the low-dimensional space of surface curvatures (Section
5.2).

5.1 Dimensionality reduction for cloth state

We apply ICA to the 3D cloth shapes {si} to obtain animation parameters {xi}
such that s = Ax + s̄ [Bishop 2006; James and Fatahalian 2003]. For this step, we
represent the cloth state s in terms of dihedral angles. For example, we typically
find that 50 basis vectors are sufficient to represent 95% of the variation for the

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

14 · Kalogerakis et al.

Ground truth (91 ms) Our prediction (1.7 ms)

Fig. 9: Left: Typical plots of the first ICA component of curvature and derivatives of curvature
data for a cloth simulation with respect to the first ICA component of the animation state vector.
A quadratic and a cubic model are more appropriate for fitting curvatures and derivatives of

curvatures respectively. Top right: Comparison of principal curvatures produced by the method
of Rusinkiewicz [2004] and smoothed, as compared to those produced. Bottom right: Comparison
of principal directions. We also report running times for both methods.

horse cloth with 10K vertices (and thus 20K dihedral angles) providing a good
tradeoff between speed and prediction accuracy.

In addition, ICA is applied to curvature data to obtain a reduced representation as
well:

y = Wz + ȳ (12)

5.2 Regression

As for articulated characters, we use least-squares regression with quadratic fea-
tures to map from the low-dimensional animation state x to the corresponding
low-dimensional surface curvatures z. More specifically, we estimate weights V to
minimize:

M
∑

i=1

||zi − Vφ(xi)||
2 (13)

5.3 Run-time evaluation

Given a new cloth shape s, generating curvatures requires the following steps. First,
the dihedral angles are projected to the ICA subspace to obtain the low-dimensional
state. Then, the new curvatures y∗ are predicted for the vertices of the cloth as:

y∗ = f(x) = WVφ(x) + ȳ (14)

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 15

PCA base 1 PCA base 2 PCA base 5

ICA base 1 ICA base 2 ICA base 5

Fig. 10: Cloth curvature-bases found by PCA (top) and ICA (bottom). The ICA bases exhibit
much greater sparsity and locality, capturing fold and wrinkle structures. Colors correspond to
magnitude, with white for zero and red for the largest magnitude.

Ground Truth ICA 95% PCA 95% PCA 99% zero-order prediction
4.0MB,1.5ms 4.0MB,1.5ms 7.1MB,2.9ms 0.1MB,0.01ms

Fig. 11: Suggestive contours for a novel frame of cloth with respect to the basis used correspond-

ing to the given variance. From left to right: We show results for ground truth, ICA with number
of base vectors corresponding to 95% of the variance of the curvature data, PCA capturing 95%
of the variance and zero-order prediction. The sparsity and locality of ICA, as depicted in Figure
10, offers better line drawing results. Even if the number of basis is increased for PCA (99%

correspond to three times more coefficients), the result does not improve much.

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

16 · Kalogerakis et al.

Ground 500 training 250 training 175 training 100 training
Truth frames frames frames frames

Fig. 12: Apparent ridges for a novel frame of cloth with respect to the number of training

examples.

Fig. 13: Left: Plot of % misclassified faces for apparent ridges drawing for the curtain test

sequence versus number of training examples (the number of ICA components is chosen to corre-
spond the 95% of the variance of the curvature data). The minimal amount of training data is 97
training poses for character animation sequences since the dimensionality of the animation state

vector is 32 and the feature vector is cubic for derivatives of curvature (the minimal amount of
training data depends on the dimensionality of the reduced animation state vector deduced in the
first step. Typically, for keeping 95% of the animated geometry, this varies from 30 to 100 in our
examples). Right: Plot of % misclassified faces for apparent ridges drawing for the same dataset

versus variance of curvature data captured by the basis for curvature. The zero-order prediction
had error 20.58%.

Example cloth renderings using our method are shown in Figures 1, 2, 3 and in
the accompanying video. In Figure 11 and 12, we also provide error analysis as a
function of the number of independent bases and the number of training examples
used respectively. Given training data covering a range of motions, our model
can still predict the curvature when the parameters of the dynamics (e.g., an air
field or a turbulence field) controlling the cloth animation change. We show the
generalization of our method in the accompanying video.

6. BLEND-SHAPE FACIAL ANIMATION

In the case of blend-shape facial animation, we assume we are given M low-
dimensional weight vectors x, each of which can be used to generate a 3D face
shape s by blending. For each training pose, we compute the surface curvature
attributes y. Unlike with skeleton-based characters and cloth, in the case of fa-
cial animation, we did not find a simple linear relationship between the blending
parameters and the curvature attributes (Figure 14). We employ Artificial Neural
Network (ANN) regression to fit this nonlinear map.

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 17

Ground truth Our prediction
(750 ms) (23 ms)

Fig. 14: Left: Typical plots of the first ICA component of curvature and derivatives of curvature
for a face animation with respect to one of the blending parameters. In this case, a quadratic or
a cubic model cannot approximate the data well. On the other hand, non-linear regression with
ANNs is more appropriate in this case. The number of neurons is selected with cross-validation.

Middle: Comparison of principal curvatures produced by the method of Rusinkiewicz [2004] and
smoothed, as compared to those produced by our ANN. Right: Comparison of principal directions.

6.1 Neural Network Regression

As before, the learning process starts by reducing the curvature data with ICA,
y = Wz+ȳ, once for each of the eight curvature attributes. We then perform ANN
regression [Bishop 2006] to learn a nonlinear mapping from the dimensionality-
reduced shape x to the dimensionality-reduced curvature z; one such regression is
performed for each of the ICA coefficients of all the 8 curvature attributes. The
ANN for each attribute has the form:

g(x) =

L
∑

`=1

w`tanh
(

bT
` x + b0

)

+ w0 (15)

where L is the number of neurons, w` and b` are L pairs of weight vectors, and
w0 and b0 are bias terms. The weights are obtained by optimizing the following
regularized least-squares objective:

E(w, b) =
∑

i

||zi − g(xi)||
2 + λ

L
∑

`=1

(

||w`||
2 + ||b`||

2
)

(16)

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

18 · Kalogerakis et al.

Fig. 15: Left: Plot of % misclassified faces for suggestive contours for the face test sequence
versus the number of training examples (the number of ICA components is chosen to correspond

the 95% of the variance of the curvature data). Right: Plot of % misclassified faces for suggestive
contour drawings for the same dataset versus the variance of curvature data captured by the basis.
The zero-order prediction had an error of 14.85%.

where λ is a smoothing parameter and L is the number of neurons. Optimization is
performed by 5000 iterations of the BFGS algorithm with cubic line search [Nocedal
and Wright 1999]. The weights w and b are initialized by sampling from a uniform
distribution over −1/K to 1/K for the elements of w` (where K is the number
of blending parameters) and over −1/L to 1/L for b`. The smoothing parameter
λ and the number of neurons L is chosen by cross-validation [Bishop 2006] in a
preprocessing step.

6.2 Run-time evaluation

Given a new face with blending parameters x, we compute the surface curvatures
as follows:

y∗ = f(x) = Wg(x) + ȳ (17)

We show our curvature synthesis results in Figure 3 and in the accompanying video.

Plain Stylization Stroke Texturing

Fig. 16: Regular curvature-modulated stylization (left) and textured chained-strokes (right),
using apparent ridges and valleys.

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 19

Fig. 17: More textured chained-strokes for Master Pai dataset, using apparent ridges and
suggestive contours.

7. STYLIZATION

Our default rendering style entails detecting surface curves (such as contours and
suggestive contours) defined as zero-sets [DeCarlo et al. 2003; Hertzmann and Zorin
2000]. Each mesh face yields a line segment, which is rendered in OpenGL. The
curvatures generated by our method can also be used for stroke stylization: follow-
ing Goodwin et al. [2007], we make line thickness T a function of depth z and radial
curvature κr: T = clamp(c/(z(κr + ε))), where c and ε are user-defined constants,
and clamp(·) clamps the thickness to a user-defined range.

Additional stylization effects are possible by chaining curves on the surface; we
modify the method of randomized contour detection of Markosian et al. [1997] for
zero-set contours and suggestive contours. For each frame, the algorithm iterates
over every face in the mesh. When a face is detected that contains a contour or
suggestive contour (represented as a line segment), the algorithm “walks” along
the mesh, following the contour or suggestive contour until it ends or loops. This
walking is performed in two directions from the starting face. This produces a
chain of line segments (one for each face). Visibility for each point on the chain is
computed using a reference ID image, and visible portions of chains are rendered
with textured triangle strips [Northrup and Markosian 2000].

8. RESULTS

We test our method on ten datasets, including skeleton-based characters, cloth
and facial animation (Figures 1, 2 and 3 and the accompanying video). Curva-
tures computed with our method have very low error (Figure 3, 8, 13, 15). Visual
differences between our curvatures and ground truth are negligible (Figures 4, 9
and 14); differences in final line drawings are also negligible. As ground truth, we
used Rusinkiewicz’s method plus curvature smoothing when necessary [2004] and
Kalogerakis et al.’s method [2007].

As a baseline comparison, we compare with the performance of Rusinkiewicz’s
method that is efficient and can fully compute both curvatures and derivatives-
of-curvature for line drawings. Our curvature calculation at runtime is about 10
times faster than this method. However, this comparison is somewhat misleading:

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

20 · Kalogerakis et al.

in order to generate smooth and more temporally coherent line drawings for many
datasets, a few rounds of curvature and derivatives of curvature smoothing are re-
quired based on vector field diffusion [Diewald et al. 2000] (also implemented in the
trimesh2 library [Rusinkiewicz 2007]) or maximum likelihood estimates [Kalogerakis
et al. 2007]. These operations add significantly to run-time computation. Simple
mesh smoothing can be done in advance but eliminates surface detail and alters
the mesh.

Thus, our method is approximately 10 times faster than Rusinkiewicz’s method
(e.g., for smooth and regularly sampled meshes), but in most cases, it is about 20-
50 times faster than performing all the necessary smoothing or optimization steps
for high-quality smooth and temporally coherent line drawings. More specifically, in
our experiments, we smoothed the derivatives of curvature for Mr. Fit, Master Pai
and face using vector field diffusion. We smoothed the curvatures for the muscle,
draping, curtain, and flag datasets. We used Kalogerakis et al.’s method to robustly
compute the curvatures and their derivatives for the Angela, hand and horse cloth
datasets that seemed to be more noisy. We present running times for our method
versus Rusinkiewicz’s method and the total curvature re-estimation time including
the necessary curvature smoothing in Table I.

An alternative is to precompute curvatures for all frames and store them, for cases
where generalization to new frames is not necessary. However, this would be pro-
hibitively expensive; e.g., storing all curvatures for the Mr. Fit dataset (50K faces
and 2000 frames) would require about 1 Gb of storage, whereas our method requires
10.7 Mb at run-time. Nearest-neighbor interpolation of curvature values based e.g.,
on a regularly-sampled grid of examples would also need orders-of-magnitude larger
storage (at least 300 Mb) than our technique and with no generalization capabil-
ity to novel poses. Note that such interpolation requires an exponential amount

Dataset Number of Rusinkiwicz’s plus smoothing Our Model
name Vertices method (ms) /optimization Method (ms) size (MB)

Mr. Fit 20536 81 240 7.9 10.72

Master Pai 11850 29 87 3.2 5.21

Muscle 5256 20 105 1.4 0.8

Hand 9284 25 227 2.6 4.05

Angela 25462 119 930 14 26.07

Curtain 2401 16 91 1.7 4.2

Flag 3285 19 101 2.5 5.0

Horse cloth 7921 41 529 5.0 11.9

Draping cloth 3969 26 124 2.8 4.8

Face 40767 207 750 23 32.66

Table I: Running times (in sec) for curvature estimation with our method (fifth column) com-

pared to an explicit re-estimation with Rusinkiewicz’s method (third column) and explicit re-
estimation with Rusinkiewicz’s method plus the necessary curvature smoothing or Kalogerakis et
al.’s optimization technique (fourth column). Note that smooth and plausible line drawings re-

quire curvature smoothing in many cases that cannot be performed in advance. In both cases,
we exclude the vertices whose curvatures do not change significantly (less than 1% of maximum
variance). Timings are captured on a 2GHz Intel Core Duo Processor (no parallelization is used
for any of the above methods). We also report the size of our learned model (last column).

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 21

of storage with respect to the number of DOFs and would quickly result in huge
model representations when many DOFs are present.

For the case of cloth, approximately 30% of the time is spent on the projection
to the ICA basis for the cloth shape. Then, 65% of the time is spent on the ICA
re-projection of curvatures. The remainder is used for the model regression and the
re-projection of principal directions to the global coordinate system. For face and
skeleton-based characters, about 90% of the time is spent on the ICA re-projection
of curvatures and the remainder is used by the rest of the operations.

9. SUMMARY, LIMITATIONS AND FUTURE WORK

We have presented a data-driven method for real-time surface curvature compu-
tation with applications to NPR. Our method can be used to compute suggestive
contours, ridges and valleys, apparent ridges, and highlight lines for real-time NPR.
The results are nearly indistinguishable from ground truth. The method does not
introduce temporal coherence artifacts.

The major limitation of our approach is the need for training data and a preprocess-
ing step, along with storage space for the learned mappings. This is typical with
many real-time rendering applications that are based on offline precomputation
steps [Sloan et al. 2002; James and Fatahalian 2003; Nowrouzezahrai et al. 2009].
The most crucial goals in such approaches are efficiency during runtime and com-
pactness of the model, which are fully achieved by our method. The generalization
capabilities of our method to novel animation sequences also rely on the training
data; i.e., the training data should be sufficient to cover a range of motions based
on the analysis and examples we provided in the paper. If the testing data cover
completely different ranges of motion, then our method will not generalize. For
example, if an elbow joint is not active during the training sequence, our method
will not predict the curvatures around this joint for animation sequences where this
joint is active; our method will not generalize from a cloth falling onto a table to
a flag animation. This dependence on the training data is typical of data-driven
methods [James and Fatahalian 2003; Wang et al. 2007].

Curvature is a fundamental component of digital geometry processing. Hence,
we believe many previously off-line techniques—such as real-time hatching with
smoothed directions [Hertzmann and Zorin 2000], exaggerated shading [Rusinkiewicz
et al. 2006], apparent relief [Vergne et al. 2008], curvature-domain shape processing
[Eigensatz et al. 2008], and dynamic model simplification [Heckbert and Garland
1999]—can be made real-time for dynamic geometry. Our method computes all
curvature attributes independently, so, if only a subset is needed, then the compu-
tation time will decrease proportionally; e.g., if only principal directions are needed,
then the timing decreases by a factor of 4. As our technique uses primarily matrix-
vector operations, we expect that a much faster GPU implementation should be
possible. Another interesting area of research is the development of more localized
and compact bases for reducing the dimensionality of mesh curvature data.

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

22 · Kalogerakis et al.

Acknowledgements

We thank Szymon Rusinkiewicz for providing his rtsc and trimesh2 code online.
We thank Robert Wang and Joel Anderson for providing us with animation test
sequences. We thank Michael Comet for the muscle arm model. We thank Chris
Landreth for the Angela dataset and Alexis Angelidis for the Master Pai mesh. We
thank Eitan Grinspun and Rony Goldenthal for the horse and draping cloth. We
also thank the reviewers for their insightful and helpful comments which greatly
contributed to the clarity of the paper. The motion capture data used on the Fit
and Pai datasets was obtained from the CMU Motion Capture database.

This work was funded by the Alfred P. Sloan Foundation, the Canada Founda-
tion for Innovation (CFI), the Canadian Institute for Advanced Research (CIFAR),
Microsoft Research, the National Sciences and Engineering Research Council of
Canada (NSERC), the Ontario Ministry of Research and Innovation (MRI), the
Ontario Ministry of Education and Training and the Canadian Research Network
for Mathematics of Information Technology and Complex Systems (MITACS).

REFERENCES

Bartlett, M., Movellan, J., and Sejnowski, T. 2002. Face recognition by independent com-
ponent analysis. IEEE Transations on Neural Networks 13, 6, 1450–1464.

Bell, A. J. and Sejnowski, T. J. 1997. The independent components of natural scenes are edge

filters. Vision Research 37, 3327–3338.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer.

Cao, Y., Faloutsos, P., and Pighin, F. 2003. Unsupervised Learning for Speech Motion Editing.
In Proceedings of the Symposium on Computer Animation 2003. 225–231.

Cohen-Steiner, D. and Morvan, J.-M. 2003. Restricted delaunay triangulations and normal
cycle. In Proceedings of the Symposium on Computational Geometry 2003. 312–321.

Comaniciu, D. and Meer, P. 2002. Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5, 603–619.

Comon, P. 1994. Independent component analysis, a new concept? Signal Processing 36, 3,

287–314.

DeCarlo, D., Finkelstein, A., and Rusinkiewicz, S. 2004. Interactive rendering of suggestive
contours with temporal coherence. In Proceedings of the International symposium on Non-
photorealistic animation and rendering 2004. 15–24.

DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., and Santella, A. 2003. Suggestive Contours

for Conveying Shape. ACM Transactions on Graphics 22, 3, 848–855.

DeCarlo, D. and Rusinkiewicz, S. 2007. Highlight Lines for Conveying Shape. In Proceedings
of the International symposium on Non-photorealistic animation and rendering 2007. 63–70.

Diewald, U., Preusser, T., and Rumpf, M. 2000. Anisotropic diffusion in vector field visualiza-
tion on euclidean domains and surfaces. IEEE Transactions on Visualization and Computer
Graphics 6, 2, 139–149.

Eigensatz, M., Sumner, R. W., and Pauly, M. 2008. Curvature-domain shape processing.

Computer Graphics Forum (Eurographics Proceedings) 27, 2, 241–250.

Elber, G. and Cohen, E. 1990. Hidden Curve Removal for Free Form Surfaces. In SIGGRAPH
1990 Proceedings. Vol. 24. 95–104.

Gooch, B., Sloan, P.-P. J., Gooch, A., Shirley, P., and Riesenfeld, R. 1999. Interactive
Techincal Illustration. In Proceedings of the Symposium on Interactive 3D Graphics and Games

1999.

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

Data-driven curvature for real-time line drawing of dynamic scenes · 23

Goodwin, T., Vollick, I., and Hertzmann, A. 2007. Isophote Distance: A Shading Approach to

Artistic Stroke Thickness. In Proceedings of the International symposium on Non-photorealistic
animation and rendering 2007. 53–62.

Heckbert, P. S. and Garland, M. 1999. Optimal triangulation and quadric-based surface
simplification. Computational Geometry Theory and Applications 14, 49–65.

Hertzmann, A. and Zorin, D. 2000. Illustrating Smooth Surfaces. In SIGGRAPH 2000 Pro-
ceedings. 517–526.

Hyvärinen, A. 1999. Fast and Robust Fixed-Point Algorithms for Independent Component
Analysis. IEEE Transations on Neural Network 10, 3, 626–634.

Interrante, V., Fuchs, H., and Pizer, S. 1995. Enhancing Transparent Skin Surfaces with
Ridge and Valley Lines. In Proceedings of the 6th conference on Visualization 1995. 52–59.

James, D. L. and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes.
ACM Transactions on Graphics 22, 3, 879–887.

James, D. L. and Twigg, C. D. 2005. Skinning mesh animations. ACM Transactions on
Graphics 24, 3, 399–407.

Judd, T., Durand, F., and Adelson, E. 2007. Apparent Ridges for Line Drawing. ACM
Transactions on Graphics 26, 3, 19.

Kalogerakis, E., Simari, P., Nowrouzezahrai, D., and Singh, K. 2007. Robust statistical

estimation of curvature on discretized surfaces. In Proceedings of the Symposium on Geometry
Processing 2007. 13–22.

Lee, Y., Markosian, L., Lee, S., and Hughes, J. F. 2007. Line drawings via abstracted shading.
ACM Transactions on Graphics 26, 3, 18.

Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach
to shape interpolation and skeleton-driven deformation. In SIGGRAPH 2000 Proceedings.
165–172.

Markosian, L., Kowalski, M. A., Trychin, S. J., Bourdev, L. D., Goldstein, D., and Hughes,

J. F. 1997. Real-Time Nonphotorealistic Rendering. In SIGGRAPH 1997 Proceedings. 415–420.

Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2002. Discrete differential-geometry

operators for triangulated 2-manifolds. In Visualization and Mathematics III. 35–57.

Mohr, A. and Gleicher, M. 2003. Building efficient, accurate character skins from examples.
ACM Transactions on Graphics 22, 3, 562–568.

Ni, A., Jeong, K., Lee, S., and Markosian, L. 2006. Multi-scale line drawings from 3D meshes.

In Proceedings of the International Symposium on 3D Data Processing, Visualization and
Transmission 2006. 133–137.

Nocedal, J. and Wright, S. J. 1999. Numerical Optimization. Springer-Verlag.

Northrup, J. D. and Markosian, L. 2000. Artistic Silhouettes: A Hybrid Approach. In Pro-
ceedings of the International symposium on Non-photorealistic animation and rendering 2000.
31–38.

Nowrouzezahrai, D., Kalogerakis, E., and Fiume, E. 2009. Shadowing dynamic scenes with

arbitrary BRDFs. In Eurographics 2009 (To Appear).

Nowrouzezahrai, D., Kalogerakis, E., Simari, P., and Fiume, E. 2008. Shadowed relighting
of dynamic geometry with 1d BRDFs. In Eurographics 2008 Proceedings.

Nowrouzezahrai, D., Simari, P., Kalogerakis, E., Singh, K., and Fiume, E. 2007. Com-
pact and efficient generation of radiance transfer for dynamically articulated characters. In
Proceedings of the GRAPHITE 2007. 147–154.

Ohtake, Y., Belyaev, A., and Seidel, H.-P. 2004. Ridge-valley lines on meshes via implicit
surface fitting. ACM Transactions on Graphics 23, 3, 609–612.

Pauly, M., Keiser, R., and Gross, M. 2003. Multi-scale feature extraction on point-sampled
surfaces. In Eurographics 2003 Proceedings. 281–289.

Polthier, K. 2002. Polyhedral surfaces of constant mean curvature. Ph.D. thesis, TU-Berlin.

Rusinkiewicz, S. 2004. Estimating Curvatures and Their Derivatives on Triangle Meshes. In
Proceedings of the International Symposium on 3D Data Processing, Visualization and Trans-

mission 2004. 486–493.

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

24 · Kalogerakis et al.

Rusinkiewicz, S. 2007. Trimesh2 library. http://www.cs.princeton.edu/gfx/proj/trimesh2/.

Rusinkiewicz, S., Burns, M., and DeCarlo, D. 2006. Exaggerated shading for depicting shape
and detail. Proc. SIGGRAPH 25, 3, 1199–1205.

Saito, T. and Takahashi, T. 1990. Comprehensible Rendering of 3-D Shapes. In SIGGRAPH
1990 Proceedings. Vol. 24. 197–206.

Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency lighting environments. In SIGGRAPH 2002 Proceedings.
527–536.

Taubin, G. 1995. Estimating the tensor of curvature of a surface from a polyhedral approximation.
In Proceedings of the Fifth International Conference on Computer Vision 1995.

Thirion, J.-P. and Gourdon, A. 1996. The 3D marching lines algorithm. Graphical Models and
Image Processing 58, 6, 503–509.

Vergne, R., Barla, P., Granier, X., and Schlick, C. 2008. Apparent relief: a shape descriptor
for stylized shading. In Proceedings of the International symposium on Non-photorealistic

animation and rendering 2008.

Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression.

ACM Transactions on Graphics 26, 3, 73.

Weisberg, S. 2003. Applied Linear Regression, 3rd edition ed. Wiley/Interscience.

Winkenbach, G. and Salesin, D. H. 1996. Rendering Parametric Surfaces in Pen and Ink. In
SIGGRAPH 1996 Proceedings. 469–476.

Yoshizawa, S., Belyaev, A., Yokota, H., and Seidel, H.-P. 2007. Fast and faithful geometric
algorithm for detecting crest lines on meshes. In Pacific Graphics 2007 Proceedings. 231–237.

Yu, J., Yin, X., Gu, X., McMillan, L., and Gortler, S. 2007. Focal surfaces of discrete
geometry. In Proceedings of the Symposium on Geometry Processing 2007. 23–32.

Received June 2008;

ACM Transactions on Graphics, Vol. 28, No. 1, January 2009.

