
Filtering Color Mapped Textures and Surfaces

Eric Heitz1,2 Derek Nowrouzezahrai2 Pierre Poulin2 Fabrice Neyret1
1INRIA-LJK (Université de Grenoble and CNRS) 2LIGUM, Dept. I.R.O., Université de Montréal

Figure 1: An anti-aliased procedural texture produced by applying a color map to noise (left), introducing structure that cannot be generated
using only the noise function. Meshes with tessellated color mapped procedural microsurface details. The color map is applied to the
microsurface heights (middle) and orientations (right) and filtered appropriately according to view-dependent masking and shading effects.

Abstract

Color map textures applied directly to surfaces, to geometric micro-
surface details, or to procedural functions (such as noise), are com-
monly used to enhance visual detail. Their simplicity and ability to
mimic a wide range of realistic appearances have led to their adop-
tion in many rendering problems. As with any textured or geomet-
ric detail, proper filtering is needed to reduce aliasing when viewed
across a range of distances, but accurate and efficient color map
filtering remains an open problem for several reasons: color maps
are complex non-linear functions, especially when mapped through
procedural noise and/or geometry-dependent functions, and the ef-
fects of perspective and masking further complicate the filtering
over a pixel’s footprint. We accurately solve this problem by com-
puting and sampling from specialized filtering distributions on-the-
fly, yielding very fast performance. We filter color map textures
applied to (macro-scale) surfaces, as well as color maps applied ac-
cording to (micro-scale) geometric details. We introduce a novel
representation of a (potentially modulated) color map’s distribution
over pixel footprints using Gaussian statistics and, in the more com-
plex case of high-resolution color mapped microsurface details, our
filtering is view- and light-dependent, and capable of correctly han-
dling masking and occlusion effects. Our results match ground truth
and our solution is well suited to real-time applications, requires
only a few lines of shader code (provided in supplemental mate-
rial), is high performance, and has a negligible memory footprint.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing; I.3.7 [Computer Graphics]: 3D Graph-
ics and Realism—Color, shading, shadowing, and texture.

Keywords: LOD, procedural texture, noise, Gaussian statistics

1 Introduction

Procedural textures are a popular approach for adding detail to 3D
objects with a long-standing history [Perlin 1985; Peachey 1985].
Modern graphics hardware allows on-the-fly evaluation of procedu-
ral texture functions with easy integration into, e.g., shader-based
pipelines, requiring little additional memory usage. Another ben-
efit of these approaches is their ability to cover a wide range of
appearance variations with small set of parameters.

As with standard textures, procedural textures require proper filter-
ing to reduce aliasing, e.g., when viewed from varying distances.
MIP-mapping [Williams 1983] is a common texture prefiltering ap-
proach, however it cannot apply to procedural textures where texels
are evaluated on-the-fly rather than stored in memory. Currently,
the only way to accurately filter arbitrary procedural textures is with
numerical integration. The cost of this solution grows not only with
the cost of evaluating the underlying procedural function but also
with the number of samples which, in turn, grows with the size of
the filter. As such, pixels with larger texture footprints require more
integration samples, incurring a non-uniform filtering cost in image
space, which is unacceptable for real-time rendering.

Lagae et al. [2010] recently solve the problem of filtering proce-
dural noise functions r(x), computing the filtered value

∫
r(x)dx

directly from properties of r’s generating process, avoiding numer-
ical integration. However, it is less common to apply noise directly
as a texture. Instead, noise and other procedural processes are often
mapped through a color map in order to obtain the final procedu-
ral texture [Musgrave 2002], which can, in turn, be applied as an
albedo map atop a surface or according to geometric properties of,
e.g., some fine-scale microsurface. For our purposes, we define a
color map C(x) as a mapping of grayscale values to colors.

Anti-aliasing color mapped procedural textures requires integrating
the color map “driven” by a procedural function:

∫
C(f(x))dx.

Since color maps are often non-linear, the naı̈ve solution of
color mapping the filtered/MIP-mapped driving function (i.e.,
C(
∫
f(x) dx)) is not valid in general. According to recent sur-

veys [Lagae et al. 2010; Bruneton and Neyret 2012], accurate and
efficient filtering of this composite function is an open problem.

We present the first method to accurately and efficiently filter color
mapped textures (Section 4). Our method is several orders of mag-
nitude faster than numerical integration, has cost independent of



footprint size and, accurately filters across all scales. Our solu-
tion is exact when f(x) is a noise function (e.g. f = r), as these
processes have Gaussian statistics [Lagae et al. 2010], and it also
approximates filtering with non-Gaussian driving functions.

High-resolution textures traditionally augment the apparent detail
of coarser underlying geometry. Given the discrepancy between
texture and geometry resolutions, filtering textures while ignor-
ing the underlying geometric variation is a suitable simplification.
However, with the onset of programmable tessellation units, GPUs
can now dynamically generate sub-pixel geometric detail on-the-
fly, eliminating the texture/geometry resolution discrepancy. Given
this, texture-level detail can now become correlated with the under-
lying geometry, and must be filtered in tandem with this geometry.

We extend our solution to two instances of joint texture-geometry
filtering (Section 5): color maps correlated to heights, and to local
orientations, of the underlying micro-detail geometry. We note that,
with joint texture-geometry filtering, the filtered result accounts for
occlusion and masking (i.e. it is both view- and light-dependent).

2 Previous Work

For an in-depth study of procedural noise usage and filtering, we
refer readers to recent surveys [Lagae et al. 2010; Bruneton and
Neyret 2012]. We instead focus on solutions to color mapped tex-
ture and geometry-correlated texture filtering. We assume that the
driving function f is either tabulated or a procedural noise (i.e.
f = r).

Filtering Color Mapped Textures: Shader-simplification [Hei-
drich et al. 1998; Olano et al. 2003; Pellacini 2005] progressively
blends evaluated shader colors with an average shader value based
on an analysis of the shader’s procedural shade tree. In some cases,
blending is applied once the maximal frequency of the procedural
shader surpasses the pixel sampling rate. While high frequencies
should ideally be filtered progressively, these methods attenuate all
frequencies of the procedural shader in parallel. This results in a
trade-off between anti-aliasing quality and features preservation.

Standard color map filtering uses mipmaps [Williams 1983;
Rhoades et al. 1992] that store average color map values over an
interval. An approximate interval is chosen, according to pixel
footprint size and color map gradient information, to sample the
mipmap. Hart et al. [1999] refine this approach, approximating
the integration domain with a 1st-order approximation of the pro-
cedural texture that is only valid for small footprint sizes. Lagae
et al. [2009] compute the spectrum of procedural noise functions,
and analytically estimate the variance lost due to filtering. These
methods are limited to box pre-filtering.

Worley [2002] uses an adaptive numerical integration scheme based
on heuristic bounds of the spectrum of the procedurally driven color
map. Better heuristics [Bergner et al. 2006] can improve this ap-
proach, however even an adaptive numerical scheme cannot scale
to the demands of interactive rendering algorithms.

We refer the reader to the independent and concurrent work of Had-
wiger et al. [2012] on using distribution representations for image
processing. We instead focus on high-performance texture and ge-
ometry filtering using specialized Gaussian representations in the
context of a real-time rendering system.

Filtering Color Mapped Surfaces: Few methods address the
problem of applying procedural color maps to surfaces according
to underlying properties such as normals, reflectance, or occlusion.

Symbol Description
P Surface elements x that project to a fixed pixel P
H Surface heights h that project to a fixed pixel P

wP (x) Filter defined over the pixel P footprint projected on P
ωi θi Light direction and its angle formed with x’s normal
ωo θo View direction and its angle formed with x’s normal
V (x, ω) Line-of-sight visibility of ray from x towards ω
Li(x, ωi) Incident radiance at x from light direction ωi
C(x; f(·)) Color map generated according to an abstract function f

(e.g. color mapped noise, height dependent color, etc.)
ρ(nx, ωo, ωi) Bi-directional reflectance distribution function

Table 1: The notation used throughout the paper.

Wu et al. [2009; 2011] use characteristic point maps to find view-
dependent correlations between procedural color maps and sur-
face structures. Their method’s memory usage and precomputation
times precludes its application to truly dynamic textures.

Heitz and Neyret [2012] analytically solve the special case where
the color map is applied to the height of a Gaussian microsurface
(Section 3). Their approach efficiently reconstructs complex view-
dependent effects, however it is restricted to only sigmoid-based
color maps and height mapping. We present a more general solution
for procedurally driven color maps (Section 4), procedurally driven
height and local-orientation correlated color maps of arbitrary form
(Section 5), and any combination of these approaches (Section 6).

3 Preliminaries and Overview

pixel

P
x

Li(x, ωi)ρ(nx, ωo, ωi)

wp(x)
V (x, ω)

nx

Figure 2: The geometry of our problem. We use Gaussian statistics
to filter color mapped textures and microsurface detail at all scales.

Figure 2 illustrates the geometry of our problem and Table 1 lists
key mathematical notation. We define the observed pixel intensity
I , reflected by an ensemble of surface elements x towards an ob-
server, according to the following local illumination model:

I=

∫
P
Li(x, ωi)C(x) ρ(nx, ωo, ωi)Vo(x)Vi(x)wP (x) dx∫

P
Vo(x)wP (x) dx

(1)

where nx is the microsurface normal at x, Vo(x) =
V (x, ωo) max(cos θo, 0), and Vi(x) = V (x, ωi) max(cos θi, 0).
We only consider a single directional light source and integration
over incident directions is required to handle more complex light-
ing.

It is clear from Equation (1) that the observed pixel intensity I de-
pends on a complex interplay between geometry, reflectance, inci-
dent lighting, and the color map. While previous approaches have
addressed the sub-problem of filtering the geometric and radiomet-
ric quantities in Equation (1), the manner in which the color map
C is filtered across the pixel footprint has only recently been con-
sidered by Heitz and Neyret [2012]. We briefly review their work



before identifying our more complete treatment of this open prob-
lem.

Existing Work on Color map Filtering: Heitz and Neyret [2012]
filter color maps applied to Gaussian microsurface heightfields
h(x), where the color map is a very specific function of the height,
C(x; f(·)) ≈ C(h(x)), detailed below.

With a microsurface height distribution ph(h), projected onto the
surface, of zero mean and variance σ2

h, ph(h) = N (0, σ2
h), Heitz

and Neyret apply an analytic expression for the visibility as

V (x, ω) =

[∫ h(x)

−∞
ph(h′) dh′

]Λ(ω)

= Ph(h(x))Λ(ω) , (2)

where Ph(h) = 1− 1
2

erfc
(
h/(
√

2σh)
)

is the cumulative distribu-
tion function of the microsurface heights and

Λ(ω) =
1√
2π

σs
cot θi

exp

(
−cot2 θi

2σ2
s

)
− 1

2
erfc

(
cot θi√

2σs

)
, (3)

where cot θi is the slope of the incident direction, and σs is the
standard deviation of the microsurface slopes in the direction ω.

If C is the combination of a base color c0 and a color c1 that is
scaled according to the microsurface height (namely, C(h) = c0 +
c1 Ph(h)), then Heitz and Neyret show (using Equation (2)) that the
view-occluded and light-masked filtered color is

C(x, ωi, ωo) =

∫
H
C(h)V (h, ωo)V (h, ωi) ph(h) dh∫
H
V (h, ωo)V (h, ωi) ph(h) dh

= c0 + c1
Λ(ωo) + Λ(ωi) + 1

Λ(ωo) + Λ(ωi) + 2
, (4)

where H is the projected height over P , and the mapping h(x) of
locations x to heights h implicitly includes the weight wP (x).

We propose several solutions which, among other things, include
Heitz and Neyret’s work as a special case. We do not impose any
constraints on the form of the color map, and we support procedu-
ral color map texture filtering as well as procedural color mapped
surface modulation based on height and local-orientation variation.
The latter two filtering solutions properly model the effects of oc-
clusion towards the eye and visibility towards the light, and we out-
line how to combine these three filtering methods together.

General Problem Statement and Overview: We consider each
term in the integrand of Equation (1) separately and, in particular,
their correlation to the height and local orientation (which is pa-
rameterized at x, and that we interchangeably call the “slope”, for
simplicity of writing) of the underlying Gaussian microsurface. We
leverage the fact that if two functions a(x) and b(x) are uncorre-
lated over the entire domain of integration, then the integral of their
product can be simplified:

∫
a b dx =

∫
a dx

∫
b dx. Our model

assumes that the Gaussian microsurface heights and slopes are un-
correlated1 [Bourlier et al. 2000]. We exploit this property to factor
and manage separately the terms in the integrand of Equation (1).

The incident radiance Li is independent of the surface and can be
integrated separately (a common assumption in filtering methods),

Li =

∫
P
Li(x, ωi)wP (x) dx

/∫
P
wP (x) dx . (5)

1Or that any correlation is sufficiently small and can be safely neglected.

The visibilities to the viewer and light, V (x, ωo) = V (h(x), ωo)
and V (x, ωi) = V (h(x), ωi), are functions of the microsur-
face height (see Equation (2)), but are, according to our as-
sumptions, uncorrelated to the microsurface slope. Similarly, the
BRDF ρ(nx, ωo, ωi) and clamped cosine terms (max(cos θo, 0)
and max(cos θi, 0)) depend on the microsurface slope, but remain
uncorrelated to the microsurface height.

The only remaining term of interest in the integrand of Equa-
tion (1) is the color map and, here, we decompose it into three
components: a term that is completely uncorrelated to the mi-
crosurface (but still potentially driven by an abstract function f ),
C(x; f(·)) = C0(f(x)); a term that depends only on the microsur-
face heights, C(h(x)) = Ch(x); and a term that depends only on
the microsurface local orientations/slopes, C(nx) = Cs(x). Fig-
ure 3 illustrates a diagrammatic example of these three terms.

C0(x) no correlation

Ch(x) correlation
with height

Cs(x) correlation
with slope

Figure 3: We decompose the color map into three components.

We reduce the general color map filtering problem to the problem of
filtering each of these three types of color maps. The remainder of
the paper is dedicated to solving Equation (1) in the context of these
three cases (Sections 4 and 5), and how to combine these solutions
to handle color maps composed of combinations of each three base
cases (Section 6). Note that filtering color maps of the form C0

corresponds to the long-standing problem of filtering procedurally
driven color mapped textures; we solve it in Section 4.

4 Filtering Color Mapped Textures

Even filtering the simplest instance of a color map function,
C(x; f(·)) = C0(f(x)), that does not depend on any microsurface
attributes, is an open problem in computer graphics. This scenario
occurs when procedurally generated textures are used to “drive”
lookups into a complex color map.

In this isolated case Equation (1) can be simplified, exploiting the
absence of correlation between the color map (and incident light)
and the remaining terms in the integrand, as

I=Li

[∫
PC0(f(x))wP dx∫

P wP dx

]
︸ ︷︷ ︸

C0

[∫
P ρ(nx)Vo(x)Vi(x)wP dx∫

P Vo(x)wP dx

]
, (6)

where C0 is the average color over the pixel footprint. We omit
parameters from the BRDF and footprint weight for conciseness.

Computing C0 or, in other words, the texture of f color mapped
through C over the pixel footprint, requires solving the following
integral at every pixel:

C0 =

∫
P
C0(f(x))wP (x) dx

/∫
P
wP (x) dx , (7)

wherewP is the filter defined over the pixel footprint projected onto
P (for which common choices are box or Gaussian filters).



The integral in Equation (7) can be interpreted as a combination of
the values contained in the color map C0 weighted by the filter wP ,
and their presence in f . As such, Equation (7) can be formulated as
an inner product (expressed with angled bracket notation):

C0 =

∫ ∞
−∞

C0(v)Df (P, v) dv = 〈C0, Df (P, ·)〉 , (8)

where Df (P, v) is the distribution of values in f over P , weighted
by wP , which we call the filtering distribution.

To efficiently compute Equation (8) we seek a representation of the
distribution Df (P, v) > 0 that will facilitate the evaluation of the
inner product. Such a representation should be scalable, meaning
that it can be computed with a memory footprint and a computa-
tional complexity independent of the size of the filter extent of wP .

4.1 Determining the Filtering Distribution

The non-negative filtering distribution Df (P, v) can be interpreted
as a normalized histogram (i.e.

∫
Df (P, x′)dx′ = 1).

The filtering distribution Df (P, v) has a dimensionality that grows
with the number of parameters that are used to describe f , and de-
pends on P , wP , and type of these parameters. For arbitrary color
maps and grayscale texture functions, the filtering distribution may
have very high dimensionality. No single representation can be
used to exactly describe all possible filtering distributions, let alone
doing so in a manner that is both memory efficient and suitable for
rapid computation of the inner product in Equation (8).

At a high level, in cases where f is a precomputed/pretabulated tex-
ture, Df may also be precomputed/pretabulated. Similarly, if f is
constructed, e.g., procedurally, then it may be possible to construct
Df from the process that generated f . We note that the choice of
the filterwP influences the form ofDf . For instance, MIP-mapping
of an unfiltered Df would correspond to having a box filter as wP .

We will briefly discuss conditions under which the filtering distribu-
tion may be exactly representable (in a reasonable amount of time
and memory), or approximated, before investigating a specific so-
lution that exploits Gaussian statistics (Section 4.2).

Exact Solutions: As mentioned above, for tabulated f (and,
specifically, C0 and f that are low dimensional), Df may be rep-
resented with only a few parameters: e.g., when f is a grayscale
function with a small number of entries v ∈ {v1, . . . , vn}. Here,
theDf histogram can be discretized and precomputed. IfC0 is also
coarsely discretized, C0 =

∑
i λiδvi , Df needs only be evaluated

at the vi samples.

This idea generalizes to the case where both C0 and Df are rep-
resented with a finite weighted combination of basis functions {a}
and {b}: C0(v) =

∑
i αiai(v) and Df (P, v) =

∑
j βjbj(v). In

this general case the inner product in Equation (8) reduces to

〈C0, Df (P, ·)〉 =
∑
i

∑
j

αi βj 〈ai, bj〉 , (9)

where the inner product of basis function pairs 〈ai, bj〉 can be
(pre)computed analytically. Exact analytic solutions may be pos-
sible depending on the choice of the basis functions; for example,
precomputed radiance transfer [Sloan et al. 2002; Ng et al. 2003]
considers the special case where the basis function sets used to rep-
resent both functions are identical (i.e. {a} = {b}) and orthonor-
mal (i.e. 〈ai, bj〉 = δij , where δij is the Kroenecker delta function).

Approximate Solutions: When f cannot be exactly expressed
in a finite basis set, but instead can be approximated, e.g., with a
Taylor expansion (see [Bruneton and Neyret 2012] for examples of
other approximations), we may be able to leverage properties of the
representation in order to efficiently approximateDf . For example,
when f is a procedural function, the processes used to generate f
may have statistical properties that can be used to define the filtering
distribution: e.g., noise functions can be defined as processes that
produce Gaussian distributions [Lagae et al. 2010]. The statistical
distribution of the process can be used as an approximate substitute
for the distribution Df of the considered instance of the process.
Note that, in this case, the distribution differs slightly from the cor-
rect distribution since the statistics of an instance never perfectly
match the statistics of the generative process. However, when the
number of considered samples increases (and as the size of the filter
wP increases), the statistics of the instance are well approximated
by the statistics of the process and converge toward it.

We will exploit these observations below in Section 4.2 in order to
devise our specific filtering solution.

4.2 Filtering Color Mapped Gaussian Distributions

We propose a solution for cases where f(x) is a procedural (e.g.
noise) function generated through a Gaussian process. A broad set
of procedural functions commonly used in graphics fall into this
category (see [Lagae et al. 2010]). We are further motivated by the
compactness of Gaussian representations – only two parameters,
mean and variance, are necessary to fully describe them – and the
fact that Gaussians accurately approximate an important class of
real-world distributions. As such, these advantages make Gaussian
distributions a good choice for a generic lightweight representation.

What’s more, the inner product of a function and a Gaussian with
mean f̄ is the convolution C0 ∗ N (0, σ2

f ) evaluated at the mean,

〈C0,N (f̄ , σ2
f )〉 =

[
C0 ∗ N (0, σ2

f )
]

(f̄) . (10)

In practice, this allows us to precompute the convolutions ofC0 and
Gaussian kernelsN (f̄ , σ2

f ) with standard deviation values in the in-
terval [0, σmax], where σmax is a user-parameter we set according to
the noise process. We store these pre-convolutions in a 2D texture
indexed by f̄ and σf . At run-time, a shader efficiently computes
the f̄ and σf over the footprint P of the procedural (e.g. noise)
function, and uses these parameters to sample C̄0 (see Figure 4).

P1

P0

f̄0

σf0

f̄1

f̄

σf

(f̄1, σf1)

(f̄0, σf0)

σf1

〈C0, Df〉

〈C0, Df〉

P0

P1

Figure 4: We prefilter the color map applied to a procedural func-
tion (e.g. noise). We sample specially constructed filtering distribu-
tions (right) using the function’s statistics over the surface patch.

Thus, the color map filtering problem is reduced to the efficient
computation of the mean and standard deviation of f within the
footprint P . For precomputed/tabulated f , we need only precom-
pute the first two moments of f , f̄ and f2, at each level of detail
in a mipmap hierarchy of the original tabulated f . We compute the
variance of f after linear texture interpolation of the first two mo-
ments, sampled from the appropriate level of detail in the mipmap
hierarchy: σ2

f = f̄2 − f̄ . Note that this method is also compatible



Naı̈ve Filtering Ground Truth Our Result

Figure 5: Filtering color mapped textures that cannot be created
using only the application of a procedural (noise) function.

with anisotropic texture filtering methods (i.e., more complex wP ).
For procedural (e.g. noise) functions f , such as Perlin noise [Per-
lin 1985], we precompute the noise standard deviation for different
levels of detail and store it in a 1D texture. More sophisticated
noise functions such as Gabor noise [2009] allow for an analytical
evaluation of the noise variance in the spectral domain.

We have detailed a method for computing C0, and thus Equa-
tion (6), under the Gaussian statistics assumption. This method
allows us, for the first time, to accurately filter a color mapped pro-
cedural function at very high framerates. Figure 5 compares our
color map filtering method to a super-sampled ground-truth simu-
lation, as well as a standard naı̈ve method of sampling the color
map with the filtered driver function f (i.e. C0(

∫
f(x)dx)).

Our filtering results closely match ground truth
and have performance roughly equivalent to the
naı̈ve MIP-mapping solution. Figure 6 illustrates
an example of explicit data with non-Gaussian
statistics. Here, we approximate the histogram of
the data (right; blue) with a Gaussian (right; red)
and the resulting simplification still yields an accurate result. Some
results also appear in Section 1 of the supplemental document.

Naı̈ve Filtering Ground Truth Our Result

Figure 6: The color map (left) is applied to our filtering method
with a Gaussian approximation (right), which still closely matches
ground truth computed with the original statistics (middle).

5 Filtering Color Mapped Surfaces

If the color is correlated to a surface attribute, then Equation (6)
is no longer a valid solution to Equation (1) and we require new
specialized solutions that depend on the type of correlation.

We will isolate and discuss solutions to two cases: first, when C(x)
is correlated to the microsurface heights (Section 5.1) and, second,
when it is correlated to the microsurface slopes (Section 5.2). Fi-
nally, we will discuss how these individual solutions, as well as the
texture filtering solution presented in Section 4, can be combined to
handle more general color maps (Section 6).

5.1 Height-correlated Color Filtering

When the color is correlated to the microsurface heights, namely
C(x; f(·)) ≈ C(h(x)) = Ch(x), then Equation (1) can be fac-
tored according to terms that depend on the height and those that

do not:

I=Li

[∫
P Ch(x)V (x, ωo)V (x, ωi)wP dx∫

P V (x, ωo)wP dx

]
︸ ︷︷ ︸

Ch

×

[∫
P ρ(nx) max(cos θi, 0) max(cos θo, 0)wP dx∫

P max(cos θo, 0)wP dx

]
︸ ︷︷ ︸

ρ

, (11)

where ρ is the filtered reflectance. We simplify the problem of solv-
ing Equation (11) – and thus, Equation (1) in this special case –
to that of solving Ch. Solving the reflectance filtering problem is
outside the scope of our work; we employ one of the simpler tech-
niques described in the recent survey [Bruneton and Neyret 2012].

Motivated by the flexibility of Gaussian statistics, which we already
leveraged in Section 4.2, we will assume that the height distribution
of our microsurface geometry is formed according to a zero-mean
Gaussian process: ph(h) = N (0, σ2

h). In Section 7 we show that
GPU tessellation shaders can be used to procedurally add microsur-
face geometry according to these same statistics.

We will now proceed to our solution to Equation (11) that extends
the ideas and techniques presented earlier in Section 4 for filtering
uncorrelated color mapped functions.

Filtering Color Mapped Gaussian Height Distributions: We
first define the averaged shadowing over the surface footprint,

V (ωo, ωi)=

∫
P
V (x, ωo)V (x, ωi)wP dx

/∫
P
V (x, ωo)wP dx ,

(12)
which we solve for analytically (in the case of Gaussian microsur-
face height distributions) by substituting each visibility term in the
integrands above with Equation (2)2:

V =

∫
H
Ph(h)Λ(ωo) Ph(h)Λ(ωi) ph(h) dh

/∫
H
Ph(h)Λ(ωo) dh

=

∫
H
Ph(h)[Λ(ωo)+Λ(ωi)] ph(h) dh

/∫
H
Ph(h)Λ(ωo) dh

=
1 + Λ(ωo)

1 + Λ(ωo) + Λ(ωi)
. (13)

Given the average visibility above, we can simplify Ch as follows:

Ch(ωo, ωi) =

∫
P Ch(x)V (x, ωo)V (x, ωi)wP dx∫

P V (x, ωo)wP dx

= V (ωo, ωi)

∫
H Ch(h)V (h, ωo)V (h, ωi) ph(h) dh∫
H V (h, ωo)V (h, ωi) ph(h) dh

= V (ωo, ωi)

∫
H
Ch(h)Dh(P, h, ωo, ωi) dh

= V (ωo, ωi) 〈Ch, Dh(P, ·, ωo, ωi)〉 , (14)

where Dh(P, ·, ωi, ωo) is a normalized distribution of heights over
P , and generalizes the filtering distribution idea introduced in Sec-
tion 4.1 for solving the uncorrelated color map filtering problem in
Equation (8). It is important to note that this new filtering distribu-
tion depends on light and view directions.

All that remains to solve Equation (11) is an accurate and compu-
tationally efficient representation of Dh, which we present below.

2Here, we additionally change the domain of integration from the pixel
footprint to the microsurface heights, all while absorbing the footprint
weighting wp into the microsurface height distribution ph(h).



θi = θo = 0

Dh(P , h, ωo, ωi)
Our Approximation

θi = θo = 90◦

Figure 7: Our analytic approximation of Dh(P, h, ωo, ωi). When
θi = θo = 0◦ (left) the distribution, and our approximation,
match microsurface height distribution. At grazing angles, θ = 90◦

(right) the distribution is still well approximated by a Gaussian.

An Efficient Height Filtering Distribution Representation:
Given Equation (14) we see that

Dh(P, h, ωo, ωi) =
V (h, ωo)V (h, ωi) ph(h)∫

H V (h′, ωo)V (h′, ωi) ph(h′) dh′
. (15)

After substituting Equation (2) (similarly to the development of
Equation (13) from Equation (12), we have:

Dh(P, h, ωo, ωi) =
Ph(h)[Λ(ωo)+Λ(ωi)] ph(h)∫

H Ph(h′)[Λ(ωo)+Λ(ωi)] ph(h′) dh′
. (16)

Note that when the microsurface is lit and observed from directly
above (i.e., head-on incidence, where θi = θo = 0◦), then
Λ(ωo) + Λ(ωi) = 0 and the height filtering distribution reduces
to the microsurface height distribution: Dh = ph. This is clear as
occlusion (of either the light and/or the view) of the heightfield mi-
crosurface only occurs at off-normal incidence, and thus the height
filtering distribution is only modulated in these circumstances.

As such, when Λ(ωo) + Λ(ωi) > 0, we observe empirically that
Dh can be approximated very closely with a single Gaussian (see
Figure 7): Dh ≈ N (µd, σd), and we fit the following non-linear
functions to these parameters, starting with the mean,

µd =

∫
H hPh(h)[Λ(ωo)+Λ(ωi)] ph(h) dh∫
H Ph(h)[Λ(ωo)+Λ(ω)] ph(h) dh

≈ αµ σh log (βµ [Λ(ωo) + Λ(ωi)] + 1.0) , (17)

and variance

σ2
d =

∫
H h

2 Ph(h)[Λ(ωo)+Λ(ωi)] ph(h) dh∫
H Ph(h)[Λ(ωo)+Λ(ωi)] ph(h) dh

=

[
σh

1.0 + ασ log (βσ (Λ(ωo) + Λ(ωi)) + 1.0)

]2

. (18)

We obtain the form of Equation (17) by empirically observing
that: µd grew proportional to σh (leading to the multiplicative σh
term); µd increased monotonically with [Λ(ωo) + Λ(ωi)] with a
derivative that decreased as [Λ(ωo) + Λ(ωi)] increased (leading to
the log(constant × [Λ(ωo) + Λ(ωi)]) term); and that µd = 0 at
[Λ(ωo) + Λ(ωi)] = 0 (leading to the 1.0 offset in the log). We fol-
lowed a similar methodology to derive the form of Equation (18).

We fit the parameters of the approximations using non-linear
optimization, obtaining: αµ = 0.39, βµ = 4.75, ασ =
0.26, and βσ = 1.13. Figure 7 compares our approximations to
the true values of µd and σd at several view/light directions.

At head-on incidence (θi = θo = 0◦) we effectively match the
expected effective height distribution, and our approximation is ac-
curate even at grazing angles. Figure 7 also illustrates the shifting

and sharpening behavior of the distribution as the view (or light)
angle increases. Properly capturing this warping and shifting of
the effective height distribution when the view and/or light config-
urations change is essential in order to properly filter the height-
mapped color map. Our representation is easy and efficient to com-
pute, requires little additional memory, and accurately captures the
behavior of the ground truth effective height distribution. Figure 8
as well as Section 2 of the supplemental document illustrates some
results.

Our representation for the effective height distribution can also eas-
ily be extended to a microsurface with noise-perturbed heights. For
example, instead of mapping the color map directly to the microsur-
face heights, we can offset the heights according to a noise function
r(x) and then sample the color map: C(h(x) + r(x)). In this case
we need only modify the mean and variance of our effective height
filtering distribution as µ̄d = µd + µr and σ̄2

d = σ2
d + σ2

r , where
µr and σr are the mean and standard deviation of the noise r(x).
We generate a Gaussian prefiltered color map hierarchy and Equa-
tions (17) and (18) will be used to sample the appropriately filtered
color map value in the hierarchy at run-time3(see Section 7).

5.2 Slope-correlated Color Filtering

When the color function depends on the slope of the surface (e.g.
C(x; f(·)) = C(nx) = Cs(x)), then we require another factor-
ization of Equation (1) that segments the integrand into terms that
depend on the local-orientation nx and terms that do not:

I =Li

[∫
P V (x, ωo)V (x, ωi)wP dx∫

P V (x, ωo)wP dx

]
︸ ︷︷ ︸

V

×

[∫
P Cs(x) ρ(nx) max(cos θo, 0) max(cos θi, 0)wP dx∫

P max(cos θo, 0)wP dx

]
.

This formulation is particularly difficult to solve due to potential
correlations between the color map and the BRDF, and so we make
an additional assumption that these two terms are uncorrelated,
leading to a simplified formulation:

I=Li × V × ρ ×
[∫
P Cs(x) max(cos θo, 0)wP dx∫
P max(cos θo, 0)wP dx

]
︸ ︷︷ ︸

Cs

, (19)

where we re-formulate the average foreshortened color Cs as

Cs(ωo)=

∫
Ωx

C(nx)Ds(P, nx, ωo) dnx=〈Cs, Ds(P, ·, ωo)〉,

(20)
where Ds(P, ·, ωo) is a normalized distribution of slopes over P .
We are following a similar methodology as in the earlier cases, and
all that is required is a robust representation for Ds. Equation (20)
is an accurate and computationally efficient representation of Ds.

An Efficient Slope Filtering Distribution Representation: The
slope distribution of a Gaussian microsurface is itself a Gaussian
with average slope s̄ = (s̄x, s̄y) and covariance Σ. Here, s̄ and Σ
are defined in the local coordinate frame of x.

We observe empirically that the slope filtering distributionDs shifts
and stretches as ωo varies, and it can be well approximated with a
single Gaussian whose parameters can be computed directly from
s̄ and Σ. Our approximation of Ds is illustrated in Figure 9 and we
include its full derivation in our supplemental document.

3In fact we sample with the standard deviation σd, not the variance σ2
d.



Texture Filtering Ground Truth Our Filtering Ours (close-up) Texture Filtering Ground Truth Our Filtering Ours (close-up)

Figure 8: View-independent texture filtering versus our surface filtering for color mapped microsurface heights (left) and slopes (right).

θ o
=

0
◦

θ o
=

9
0
◦

ps Ds Ds approximation

Figure 9: (Left to right) The distribution of slopes in P , the
ground-truth view-dependent slope filtering distribution Ds, and
our analytic approximation of Ds. Note that the view-dependence
of Ds results in shifting and stretching of the distribution at graz-
ing angles. Here we color code the directional probability density
in angular (θ,φ) coordinates.

6 Combining Techniques into Solutions

Sections 4 and 5 describe methods for filtering color maps corre-
lated to individual properties of the underlying microsurface geom-
etry. Here we investigate how to combine these individual solutions
to more general color map filtering problems.

Linear Combinations: If the user opts to represent the final color
as a linear combination of height correlated (Section 5.1), slope
correlated (Section 5.2), and color mapped textures (Section 4.2),

C = κ0 C0 + κ1 Ch + κ2 Cs ,

then we can combine our individual solutions to solve Equation (1):

I = Li ρ
[
κ0 C0 V + κ1 Ch + κ2 Cs V

]
.

Non-Linear Combinations: If instead, the user sets the output
color as a non-linear combination of our different correlated color
mappings, then the final result will be a non-linear product of the
filtering results with the appropriately filtering uncorrelated terms
(if any) included in the product. For example, if C = C0 Ch Cs
then I = Li C0 Ch Cs.

7 Implementation and Results

Our method is implemented on an Intel Core i7 2.80GHz CPU with
an Nvidia GTX 480 and we use a prefiltered color map distribution
size of 256 × 256 (only 192 KB of storage). The average per-
formance of our implementation is driven by the size of the input
mesh. We compare rendering performance on the Bears (74MB)
and Snake (1MB) scenes by comparing the FPS with and without
our filtering, as well as with and without tessellation.

Scene Tess. + Filter Filter Only No Tess. + No Filter
Bears (Fig. 8) 85 143 145

Snake (Fig. 10) 130 800 869

Most of the rendering time is spent outside of our filtering code in
the tessellation stage, and the performance difference between our
filtering strategies and the naı̈ve strategy is negligible. Our method
requires only a few lines of shader code (1 for texture filtering, 3
for height correlated filtering, and roughly 50 for orientation cor-
related filtering), where we outline the most complex orientation
correlation pseudocode in our supplemental document.

Figures 1 and 8 compare our filtering for microsurface correlated
procedural color mapping examples, to ground truth (using 32×32
jittered super-sampling) and to a roughly equal-time naı̈ve filtering
(i.e., C(

∫
f dx)) using MIP-mapping. Ground truth is computed

offline using the GPU and the 32 × 32 sampling rate was chosen
to resolve the most difficult features for far away scene elements.
Our results remain smooth across continuous scale transitions (see
accompanying video) and, at finer scales (Figures 1 and 8, far right)
we use adaptive tessellation to generate and display the microsur-
face geometry. These microsurfaces are displaced by a procedu-
ral noise function, generating Gaussian height and local-orientation
statistics.

Figure 10 illustrates a linear combination of our filtering ap-
proaches. The snake’s scaly skin pattern is stored in a MIP-mapped
displacement map whose slope statistics are approximated using a
Gaussian distribution.

Texture Filtering Ground Truth Our Filtering Ours (close-up)

Figure 10: Combining techniques: the snake’s skin blends a green
procedural texture with a red pattern according to a procedural
view-dependent function correlated to the microsurface slopes.

Our view- and light-dependent filtering clearly generates results
much closer to ground truth than the only other real-time alterna-
tive (naı̈ve color mapping of MIP-mapped distributions). This is
because we more accurately model the filtering integrand, includ-
ing the color mapping, occlusion, and visibility terms.

Figure 11 illustrates filtering results across continuous scales.

Figure 11: View-dependent filtering across continuous scales.



8 Conclusion and Future Work

We presented a high-performance and accurate color map procedu-
ral texture filtering solution. By quickly computing filtering distri-
butions of the procedural texture function over a pixel’s weighted
footprint, we are able to efficiently and accurately filter the complex
non-linear behavior of color mapped textures across all scales.

Furthermore, we extend these filtering distributions to procedural
microsurface color mapped details, properly modeling the correla-
tions between the microsurface’s color map, height, and local ori-
entation. Here, filtering is view- and light-dependent, accounting
for occlusion towards the viewer and masking towards the light.

Our method is simple to integrate into existing renderers, requiring
only a few lines of shader code, it has low memory and computation
costs, and very closely matches ground-truth results.

Future Work: Irradiance (and reflection) environment maps [Ra-
mamoorthi and Hanrahan 2001] express unshadowed diffuse (and
glossy) radiance from environment lighting as a function of sur-
face orientation (or reflection direction). Our work can be extended
and combined with these techniques to filter radiance from micro-
surfaces lit by environment lighting, modeling local occlusion and
visibility (which, in these cases, become full spherical functions).

Another avenue of future work would consider color maps corre-
lated to a joint function of microsurface heights and slopes. In this
case, a 3D filtering distribution would have to be formulated. Such
a formulation may contain structure that could be exploited, e.g.,
for simplification via factorization, accounting for the separability
of multi-dimensional Gaussian statistics.

Acknowledgements

The authors thank Jonathan Dupuy for several constructive discus-
sions and Morgan Armand for his technical help. Eric Heitz was
funded by the Explo’ra Doc exchange program in Rhône-Alpes
(France) during his stay at Montreal. Derek Nowrouzezahrai and
Pierre Poulin acknowledge financial support from NSERC.

References

BERGNER, S., MOLLER, T., WEISKOPF, D., AND MURAKI, D.
2006. A spectral analysis of function composition and its impli-
cations for sampling in direct volume visualization. IEEE Trans.
on Visualization and Computer Graphics 12, 5, 1353 –1360.

BOURLIER, C., SAILLARD, J., AND BERGINC, G. 2000. Effect of
correlation between shadowing and shadowed points on the wag-
ner and smith monostatic one-dimensional shadowing functions.
IEEE Trans. on Antennas and Propagation 48, 3, 437–446.

BRUNETON, E., AND NEYRET, F. 2012. A survey of nonlin-
ear prefiltering methods for efficient and accurate surface shad-
ing. IEEE Trans. on Visualization and Computer Graphics 18,
2, 242–260.

HADWIGER, M., SICAT, R., BEYER, J., KRÜGER, J., AND
MÖLLER, T. 2012. Sparse pdf maps for non-linear multi-
resolution image operations. ACM Trans. Graph. 31, 6, 133:1–
133:12.

HART, J. C., CARR, N., KAMEYA, M., TIBBITTS, S. A., AND
COLEMAN, T. J. 1999. Antialiased parameterized solid textur-
ing simplified for consumer-level hardware implementation. In
Proceedings of ACM SIGGRAPH / Eurographics Workshop on
Graphics Hardware, 45–53.

HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-P. 1998. Sam-
pling procedural shaders using affine arithmetic. ACM Trans.
Graph. 17, 3, 158–176.

HEITZ, E., AND NEYRET, F. 2012. Representing appearance and
pre-filtering subpixel data in sparse voxel octrees. In Proceed-
ings of ACM SIGGRAPH / Eurographics conference on High-
Performance Graphics, 125–134.

LAGAE, A., LEFEBVRE, S., DRETTAKIS, G., AND DUTRÉ, P.
2009. Procedural noise using sparse gabor convolution. In ACM
Trans. Graph. (SIGGRAPH), 54:1–10.

LAGAE, A., LEFEBVRE, S., COOK, R., DEROSE, T., DRET-
TAKIS, G., EBERT, D., LEWIS, J., PERLIN, K., AND
ZWICKER, M. 2010. A survey of procedural noise functions.
Computer Graphics Forum 29, 8, 2579–2600.

MUSGRAVE, F. K. 2002. Fractal solid textures: Some examples.
In Texturing and Modeling: A Procedural Approach. Morgan
Kaufmann, ch. 15, 447–487.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. Triple
product wavelet integrals for all-frequency relighting. ACM
Trans. Graph. (SIGGRAPH) 23, 3, 477–487.

OLANO, M., KUEHNE, B., AND SIMMONS, M. 2003. Auto-
matic shader level of detail. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
7–14.

PEACHEY, D. R. 1985. Solid texturing of complex surfaces. In
Proceedings of ACM SIGGRAPH ’85, 279–286.

PELLACINI, F. 2005. User-configurable automatic shader simplifi-
cation. ACM Trans. Graph. (SIGGRAPH) 24, 3, 445–452.

PERLIN, K. 1985. An image synthesizer. In Proceedings of ACM
SIGGRAPH ’85, 287–296.

RAMAMOORTHI, R., AND HANRAHAN, P. 2001. An efficient
representation for irradiance environment maps. In Proceedings
of ACM SIGGRAPH ’01, 497–500.

RHOADES, J., TURK, G., BELL, A., STATE, A., NEUMANN, U.,
AND VARSHNEY, A. 1992. Real-time procedural textures. In
Proceedings of ACM Symposium on Interactive 3D Graphics,
95–100.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph. (SIG-
GRAPH) 21, 3, 527–536.

WILLIAMS, L. 1983. Pyramidal parametrics. In Proceedings of
ACM SIGGRAPH ’83, 1–11.

WORLEY, S. 2002. Advanced antialiasing. In Texturing and Mod-
eling: A Procedural Approach. Morgan Kaufmann, ch. 5, 157–
176.

WU, H., DORSEY, J., AND RUSHMEIER, H. 2009. Characteristic
point maps. Computer Graphics Forum (EUROGRAPHICS) 28,
4, 1227–1236.

WU, H., DORSEY, J., AND RUSHMEIER, H. 2011. Physically-
based interactive bi-scale material design. ACM Trans. Graph.
(SIGGRAPH Asia) 30, 6, 145:1–145:10.


