Practical Shading of Height Fields and Meshes using Spherical Harmonics Exponentiation

Aude Giraud
Derek Nowrouzezahrai

Université de Montréal
Goals & Motivation

[SN08] [RWS*06;SGNS07]
Goals & Motivation

[RWS*06;SGNS07] Our results
Contributions

• unifying SH exponentiation on HFs and meshes
 • dynamic geometry and HF visibility (no precomputation)
 • diffuse and glossy BRDFs in log SH
Contributions

- unifying SH exponentiation on HFs and meshes
 - dynamic geometry and HF visibility (no precomputation)
 - diffuse and glossy BRDFs in log SH
Contributions

• unifying SH exponentiation on HFs and meshes
 • dynamic geometry and HF visibility (no precomputation)
 • diffuse and glossy BRDFs in log SH

• real-time performance and simple implementation
• limitation: only soft direct illumination
• applications:
 – landscape rendering (flight simulators, mapping/navigation)
 – interactive gaming
Accumulating Log-SH Visibility

Given spherical log-SH visibility for
Accumulating Log-SH Visibility

Given spherical log-SH visibility for

\[\{ v^0_{\log}, v^1_{\log}, \cdots, v^{B-1}_{\log} \} \]
Accumulating Log-SH Visibility

Given spherical log-SH visibility for

\[\{ \mathbf{v}^0_{\log}, \mathbf{v}^1_{\log}, \ldots, \mathbf{v}^{B-1}_{\log} \} \]

dynamic blocker “meshes”

dynamic height field geometry

\[\mathbf{v}_{HF}^{\log} \]
Accumulating Log-SH Visibility

Given spherical log-SH visibility for \(\{ v_0^{\log}, v_1^{\log}, \ldots, v_{B-1}^{\log} \} \)

- dynamic blocker “meshes”
- dynamic height field geometry

\[\mathbf{V}_{\log}^{\text{HF}} \]

- the **total** log-SH visibility vector is \(\mathbf{V}_{\log} = \mathbf{v}_{\log}^{\text{HF}} + \sum_{b=0}^{B-1} \mathbf{v}_{\log}^b \)
SH Exponentiation [RWS*06]
SH Exponentiation [RWS*06]

- Given any log-SH coefficient vector f_{log}, we use SH exponentiation to compute the (primal-domain) SH coefficients f'.
SH Exponentiation [RWS*06]

• Given any log-SH coefficient vector f_{\log}, we use SH exponentiation to compute the (primal-domain) SH coefficients f

• We use the HYBrid SH exponentiation method [RWS*06]

• A series expansion of the exponential, projected into SH
SH Exponentiation [RWS*06]

- Given any log-SH coefficient vector f_{\log}, we use SH exponentiation to compute the (primal-domain) SH coefficients f.

- We use the HYBrid SH exponentiation method [RWS*06]
- A series expansion of the exponential, projected into SH

- Improved numerical stability with:
 - DC isolation
 - optimal linear-order approximation
 - SH scaling & squaring product accumulation

$$f = \exp (f_{\log}) \approx 1 + f_{\log} + \frac{f_{\log}^2}{2} + \frac{f_{\log}^3}{3!} + \cdots$$
Summary of Main Ideas

1. compute *HF self-visibility* (in *log-SH space*)
 - create multi-resolution height *pyramids*
 - sample from pyramid levels
 - pre-filter data
 - compose visibility *analytically* in log-space

2. compute *HF cast-visibility* (onto meshes)

3. compute *mesh cast-visibility* (onto HF) and *self-visibility*

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading
HF Definitions and Notation \[\text{SN08}\]

Need to find maximum blocking angle ω_{max} along direction φ.
Calculating the Max Blocking Angle
Calculating the Max Blocking Angle

[SN08]
Calculating the Max Blocking Angle
Calculating the Max Blocking Angle
Calculating the Max Blocking Angle

[SN08]
Brute Force Sampling [SN08]
Brute Force Sampling [SN08]

Problem: *aliasing* – need *many* samples in \(t \).
Brute Force Sampling [SN08]

Problem: aliasing – need many samples in t.
Solution: prefilter data, apply multi-scale sampling.
Multi-Resolution Height Sampling [SN08]

\[f_i \]
height pyramid level \(i \)

\[\tau_i = 2^{f(i)} \]
sampling distance for level \(i \)
Multi-Resolution Height Sampling [SN08]

\[f_i \]
\[\tau_i = 2^{f(i)} \]

height pyramid level \(i \)

sampling distance for level \(i \)
Multi-Resolution Height Sampling [SN08]

$$f_i$$
height pyramid level i

$$\tau_i = 2^f(i)$$
sampling distance for level i

Sample coarser levels further from x.

$$f_i$$
$$f_{i-1}$$
$$f_{i-2}$$
$$f_{i-3}$$

τ_i, τ_{i-1}, τ_{i-2}, τ_{i-3}
Elevation Visibility

- starting with binary visibility for an elevation slice:

\[v(\omega; \sigma) = \begin{cases}
0, & \text{if } \omega \leq \sigma \\
1, & \text{otherwise.}
\end{cases} \]
Elevation Visibility

• starting with binary visibility for an elevation slice:

\[v(\omega; \sigma) = \begin{cases}
0, & \text{if } \omega \leq \sigma \\
1, & \text{otherwise.}
\end{cases} \]

• we can express the log-visibility for the slice as

\[v_{\log}(\omega; \sigma) = \begin{cases}
\log \epsilon, & \text{if } \omega \leq \sigma \\
0, & \text{otherwise.}
\end{cases} \]
\(v_{\log}(\omega; \sigma) = \begin{cases} \log \epsilon, & \text{if } \omega \leq \sigma \\ 0, & \text{otherwise} \end{cases} \)

and represent it analytically in the **Normalized Legendre Polynomial (NLP)** basis:

\[
\mathbf{V}_{\log}(\sigma) = \int_{\pi/2-\sigma}^{\pi} (\log \epsilon) \hat{P}(\cos \theta) \sin \theta d\theta
\]
\[v_{\log}(\omega; \sigma) = \begin{cases}
\log \epsilon, & \text{if } \omega \leq \sigma \\
0, & \text{otherwise.}
\end{cases} \]

and represent it analytically in the **Normalized Legendre Polynomial (NLP)** basis:

\[
v_{\log}(\sigma) = \int_{\pi/2-\sigma}^{\pi} (\log \epsilon) \hat{P}(\cos \theta) \sin \theta d\theta
\]

\[= \log \epsilon \times \left[\frac{\sin \sigma + 1}{\sqrt{2}}, \frac{-3 \cos^2 \sigma}{2\sqrt{6}}, \frac{-5 \sin \sigma \cos^2 \sigma}{2\sqrt{10}}, \frac{7 \cos^2 \sigma (-4 + 5 \cos^2 \sigma)}{8\sqrt{14}} \right] \]
Accumulating HF Visibility

• in the primal domain: can **sum** SH visibility for each slice
Accumulating HF Visibility

- in the primal domain: can sum SH visibility for each slice
- initialize the total visibility to 0 (fully occluded)
- add in visible portions per slice

\[
\begin{align*}
\text{Initialize total log-visibility to 1 (full visibility)} \\
\text{Multiply in the occluded portions} \\
\text{Do this by summing the log-visibility}
\end{align*}
\]
Accumulating HF Visibility

• in the primal domain: can sum SH visibility for each slice

• initialize the total visibility to 0 (fully occluded)

• add in visible portions per slice

• but, in the log domain: sums correspond to products

• how do we accumulate products of visibility?
• but, in the log domain: **sums** correspond to **products**
• how do we accumulate products of visibility?

• begin by initializing total *log-visibility* to 1 (**full visibility**)
• **multiply** in the **occluded** portions
• do this by **summing** the log-visibility
• begin by initializing total log-visibility to 1 (full visibility)
• multiply in the occluded portions
 • do this by summing the log-visibility

but, in the log domain: sums correspond to products
how do we accumulate products of visibility?
Visibility Slice Interpolation [NS09]

- already computed log-ZH azimuthal visibility, per-direction
Visibility Slice Interpolation [NS09]

- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal \textit{log-SH elevation} coefficients together to form \textit{full log-SH spherical visibility}
Visibility Slice Interpolation \textbf{[NS09]}

- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal \textbf{log-SH elevation} coefficients together to form \textbf{full log-SH spherical visibility}
Visibility Slice Interpolation [NS09]

- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal log-SH elevation coefficients together to form full log-SH spherical visibility
• requires 1 precomputed interpolation + projection matrix

\[\mathbf{v}_{\text{wedge}}^{\log} = \mathbf{M}_{\text{lin}} \begin{bmatrix} \mathbf{v}_{\log}(\sigma_0) \\ \mathbf{v}_{\log}(\sigma_1) \end{bmatrix} \]

• rotate and sum across each wedge’s \(\mathbf{v}_{\text{wedge}}^{\log} \) to form final log-SH vector \(\mathbf{v}_{\log}^{\text{HF}} \)
Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)
 - repeat multi-resolution marching
 - offset the height field queries

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading
Need to find ω_{max} on mesh shading point along each direction φ.
Height Field Cast Visibility onto Meshes

Need to find ω_{max} on mesh shading point along each direction φ

- Assume an infinite plane for the HF base elevation
 - minimum blocking angle can’t go negative
Calculating the Max Blocking Angle
Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility
 - extend traditional SH exponentiation approach [RWS*06;SGNS07]
 - decompose dynamic mesh blockers into spheres
 - compute & accumulate log-SH visibility for spherical blockers
 - on the mesh shading points
 - repeat over the HF shading points
 - intelligently cull the sphere set during accumulation
 - reduces numerical accumulation error

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading
Spherical Blockers [RWS*06]

- approximate dynamic meshes with a set of spheres
 - precomputed once
 - skinned dynamically during animation/deformation
Spherical Blockers [RWS*06]

- approximate dynamic meshes with a set of spheres
 - precomputed once
 - skinned dynamically during animation/deformation
Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients *analytically*
- begin with a canonical alignment:

$$\theta_b = \arcsin\left(\frac{r}{d}\right)$$
Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients *analytically*
- begin with a canonical alignment:

\[\theta_b = \arcsin \left(\frac{r}{d} \right) \]

\[\int_{\theta=0}^{\theta_b} \int_{\phi=0}^{2\pi} (\log \epsilon) \ y_l^0 (\theta, \phi) \ \sin \theta \ d\theta d\phi \]
Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients \textit{analytically}
- begin with a canonical alignment:

$$\theta_b = \arcsin \left(\frac{r}{d} \right)$$

$$\int_{\theta=0}^{\theta_b} \int_{\phi=0}^{2\pi} \left(\log \epsilon \right) y^0_l (\theta, \phi) \sin \theta \ d\theta d\phi$$

- solve analytically (we use order-4 SH, so 4 ZH coefficients)

$$v^\log_l = \log \epsilon \times \left[-\sqrt{\pi}(-1 + \cos \theta_b), \frac{\sqrt{3}\pi}{2} \sin^2 \theta_b, \right. \right.$$

$$\left. \frac{\sqrt{5}\pi}{2} \cos \theta_b \sin^2 \theta_b, \frac{\sqrt{7}\pi}{16} (3 + 5 \cos(2\theta_b)) \sin^2 \theta_b \right]$$
\[\int_{\theta=0} \int_{\phi=0} (\log \epsilon) y^0_l (\theta, \phi) \sin \theta \, d\theta \, d\phi \]

- solve analytically (we use order-4 SH, so 4 ZH coefficients)

\[v^\text{log}_l = \log \epsilon \times \left[-\sqrt{\pi}(-1 + \cos \theta_b), \frac{\sqrt{3\pi}}{2} \sin^2 \theta_b, \frac{\sqrt{5\pi}}{2} \cos \theta_b \sin^2 \theta_b, \frac{\sqrt{7\pi}}{16} (3 + 5 \cos(2\theta_b)) \sin^2 \theta_b \right] \]

- align to shading frame with ZH rotation [*SLS05*]

\[v^\text{log}_{l,m} = \sqrt{\frac{4\pi}{2l+1}} v^\text{log}_l y^m_l (\omega_d) \]
Spherical Blocker Self- & Cast- Shadows
Spherical Blocker Self- & Cast- Shadows

• accumulate spherical blocker occlusion for both:
Spherical Blocker Self- & Cast- Shadows

- accumulate spherical blocker occlusion for both:
 - dynamic object *self-occlusion*
Spherical Blocker Self- & Cast- Shadows

- accumulate spherical blocker occlusion for both:
 - dynamic object *self-occlusion*

- and dynamic object *cast-occlusion* onto the HF
Ratio Attenuation
Ratio Attenuation

- SH exponentiation suffers from accumulation error when there are many overlapping blocker spheres
Ratio Attenuation

• SH exponentiation suffers from accumulation error when there are many overlapping blocker spheres.

• We reduce accumulation error by:
 • weighting log-SH visibility by blocker solid angle, and
 • only accumulating blockers in upper shading hemisphere.
Summary of Main Ideas

1. computeHF self-visibility (in log-SH space)
2. computeHF cast-visibility (onto meshes)
3. compute mesh cast-visibility (onto HF) and self-visibility
4. accumulate total spherical visibility
 - combine per-slice HF (log) visibility to form full spherical visibility [NS09]
 - accumulate dynamic mesh blocker log-visibility and HF log-visibility
 - perform SH exponentiation
5. compute log-SH BRDF and perform final shading
Accumulate Log-SH Visibility

Given spherical log-SH visibility for

\{ \mathbf{v}_0^\log, \mathbf{v}_1^\log, \cdots, \mathbf{v}_{B-1}^\log \}

dynamic blocker “meshes”

\{ \mathbf{v}_0^\log, \mathbf{v}_1^\log, \cdots, \mathbf{v}_{B-1}^\log \}

dynamic height field geometry

\begin{align*}
\mathbf{v}_0^\log &= \mathbf{v}_0^{\log_0} + \sum_{b=0}^{B-1} \mathbf{v}_0^{\log_b} \\
\mathbf{v}_1^\log &= \mathbf{v}_1^{\log_1} + \sum_{b=0}^{B-1} \mathbf{v}_1^{\log_b} \\
&\vdots \\
\mathbf{v}_{B-1}^\log &= \mathbf{v}_{B-1}^{\log_{B-1}} + \sum_{b=0}^{B-1} \mathbf{v}_{B-1}^{\log_b}
\end{align*}

• the total log-SH visibility vector is

\begin{align*}
\mathbf{V}_0^\log &= \mathbf{v}_0^{\log_0} + \sum_{b=0}^{B-1} \mathbf{v}_0^{\log_b} \\
\mathbf{V}_1^\log &= \mathbf{v}_1^{\log_1} + \sum_{b=0}^{B-1} \mathbf{v}_1^{\log_b} \\
&\vdots \\
\mathbf{V}_{B-1}^\log &= \mathbf{v}_{B-1}^{\log_{B-1}} + \sum_{b=0}^{B-1} \mathbf{v}_{B-1}^{\log_b}
\end{align*}
Given spherical log-SH visibility for \(\{v_0^{\log}, v_1^{\log}, \ldots, v_{B-1}^{\log}\} \) dynamic blocker “meshes”

- the **total** log-SH visibility vector is \(V^{\log} = v_{\log}^{HF} + \sum_{b=0}^{B-1} v_{\log}^b \)

\[
V = \exp (V^{\log}) \approx 1 + V^{\log} + \frac{V_{\log}^2}{2} + \frac{V_{\log}^3}{3!} + \cdots
\]
Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading
 - simplify triple-product shading to double-product shading
 - formulate view-evaluated BRDF in log-SH space
 - accumulate BRDF with multi-product visibility
Traditional Triple Product SH Shading

\[V = \exp (V_{\text{log}}) \] spherical SH visibility
Traditional Triple Product SH Shading

\[V = \exp(V_{\text{log}}) \] spherical SH visibility

\[f_r(\omega_o) \] view-evaluated BRDF
Traditional Triple Product SH Shading

\[V = \exp(V_{\log}) \] \hspace{1cm} \text{spherical SH visibility}

\[f_r(\omega_o) \] \hspace{1cm} \text{view-evaluated BRDF}

\[L_e \] \hspace{1cm} \text{lighting environment}
\[L_e \text{ lighting environment} \]

- final shading traditionally ([RWS*06;SGNS07]) computed with triple-product SH integration:

\[
L_o(\omega_o) = \sum_{ijk} [L_e]_i [V]_j [f_r(\omega_o)]_k \Gamma_{ijk}
\]

where

\[
\Gamma_{ijk} = \int_{S^2} y_i(\omega) y_j(\omega) y_k(\omega) \, d\omega
\]

are the SH tripling coefficients, a sparse order-3 tensor.

- Triple product shading computation is still costly!
Log-BRDF Shading

- We already use log-space to perform a multi-product

\[V = \exp(V_{\log}) \approx \prod_{b=0}^{B-1} V_b \]
Log-BRDF Shading

• We already use log-space to perform a multi-product

\[V = \exp(V_{\text{log}}) \approx \prod_{b=0}^{B-1} V_b \]

• Triple-product shading composes the BRDF-weighted visibility (transfer) in the primal domain with a product

\[T = f_r(\omega_o) \times \prod_{b=0}^{B-1} V_b \]
Log-BRDF Shading

- We already use log-space to perform a multi-product
 \[V = \exp(V_{\log}) \approx \prod_{b=0}^{B-1} V_b \]

- Triple-product shading composes the BRDF-weighted visibility \textit{(transfer)} in the primal domain with a product
 \[T = f_r(\omega_o) \times \prod_{b=0}^{B-1} V_b \]

- **Idea**: use log-space to compose transfer with a \textbf{sum}
• Idea: use log-space to compose transfer with a sum

$$T = \exp \left([f_r(\omega_o)]_{\log} + V_{\log} \right) \approx f_r(\omega_o) \times \prod_{b=0}^{B-1} V_b$$
- **Idea**: use log-space to compose transfer with a sum

\[
T = \exp \left([f_r(\omega_o)]_{\log} + V_{\log} \right) \approx f_r(\omega_o) \times \prod_{b=0}^{B-1} V_b
\]

SH transfer
• **Idea**: use log-space to compose transfer with a sum

\[
T = \exp \left(\left[f_r(\omega_o) \right]_{\log} + V_{\log} \right) \approx f_r(\omega_o) \times \prod_{b=0}^{B-1} V_b
\]
• **Idea**: use log-space to compose transfer with a sum

\[
T = \exp \left(\left[f_r(\omega_o) \right]_{\log} + V_{\log} \right) \approx f_r(\omega_o) \times \prod_{b=0}^{B-1} V_b
\]

• Now shading requires a cheap *double-product* SH integral!

• but how do we compute the *log-BRDF* SH coefficients?
Log-BRDF SH Coefficients

- We compute the log-\mathbf{ZH} BRDF coefficients \textit{numerically} for:
 - diffuse BRDFs,
 - and Phong BRDFs

\[f_r(\theta) = \frac{\alpha + 1}{2\pi} \max(\cos^{\alpha} \theta, 0) \]
Log-BRDF SH Coefficients

- We compute the log-ZH BRDF coefficients \textit{numerically} for:
 - diffuse BRDFs,
 - and Phong BRDFs

\[
f_r(\theta) = \frac{\alpha + 1}{2\pi} \max(\cos^\alpha \theta, 0)
\]
Log-BRDF SH Coefficients

- We compute the log-\textbf{ZH} BRDF coefficients \textit{numerically} for:
 - diffuse BRDFs,
 - and Phong BRDFs

- Canonical-frame ZH log-BRDF coefficients are then:

\[
f_r(\theta) = \frac{\alpha+1}{2\pi} \max(\cos^\alpha \theta, 0)
\]

- Need to treat hemispherical clamping carefully!
\[f_r(\theta) = \frac{\alpha+1}{2\pi} \max(\cos^\alpha \theta, 0) \]

- Need to treat hemispherical clamping carefully!

- Canonical-frame ZH log-BRDF coefficients are then:

\[
\begin{align*}
 f_{l,0}^{\log} &= \int_{H^2+} \log \left(\frac{\alpha+1}{2\pi} \max(\cos^\alpha \omega_\theta, \epsilon) \right) y_l^0(\omega) \, d\omega + \\
 &\quad \int_{H^2-} (\log \epsilon) \, y_l^0(\omega) \, d\omega
\end{align*}
\]
\[f_r(\theta) = \frac{\alpha+1}{2\pi} \max(\cos^\alpha \theta, 0) \]

- Need to treat hemispherical clamping carefully!

- Canonical-frame ZH log-BRDF coefficients are then:

\[
\begin{align*}
 f_{l,0}^{1\log} &= \int_{H^2^+} \log \left(\frac{\alpha+1}{2\pi} \max(\cos^\alpha \omega_\theta, \epsilon) \right) y_i^0(\omega) \, d\omega + \\
 &\int_{H^2^-} (\log \epsilon) \ y_i^0(\omega) \, d\omega
\end{align*}
\]

- We compute & tabulate order-4 ZH coefficients numerically
Log-BRDF Error

- In a worse case lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile.
Log-BRDF Error

- In a **worse case** lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile
Log-BRDF Error

- In a worse case lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile
Results
Results

- Hybrid image/object-space renderer
 - spherical blockers splatted onto screen [SGNS07]
 - multi-resolution HF ray-marching in HF object-space
 - rendered at 960 x 540 with (avg.) pixel coverage of 83%.
Results

- Hybrid image/object-space renderer
- spherical blockers splatted onto screen [SGNS07]
- multi-resolution HF ray-marching in HF object-space
- rendered at 960 x 540 with (avg.) pixel coverage of 83%.

<table>
<thead>
<tr>
<th>Wrecking Ball</th>
<th>Whale in Ocean</th>
<th>Cone Man</th>
</tr>
</thead>
<tbody>
<tr>
<td>402 blockers + HF</td>
<td>50 blockers + HF</td>
<td>25 blockers + HF</td>
</tr>
<tr>
<td>15Hz (GTX 480)</td>
<td>10 Hz (GTX 480)</td>
<td>68 Hz (GTX 480)</td>
</tr>
</tbody>
</table>
Results

- Hybrid image/object-space renderer
 - spherical blockers splatted onto screen [SGNS07]
 - multi-resolution HF ray-marching in HF object-space
 - rendered at 960 x 540 with (avg.) pixel coverage of 83%.

<table>
<thead>
<tr>
<th>Wrecking Ball</th>
<th>Whale in Ocean</th>
<th>Cone Man</th>
</tr>
</thead>
<tbody>
<tr>
<td>402 blockers + HF</td>
<td>50 blockers + HF</td>
<td>25 blockers + HF</td>
</tr>
<tr>
<td>15Hz (GTX 480)</td>
<td>10 Hz (GTX 480)</td>
<td>68 Hz (GTX 480)</td>
</tr>
</tbody>
</table>
Results

- Hybrid image/object-space renderer
- spherical blockers splatted onto screen [SGNS07]
- multi-resolution HF ray-marching in HF object-space
- rendered at 960 x 540 with (avg.) pixel coverage of 83%.

<table>
<thead>
<tr>
<th>Wrecking Ball</th>
<th>Whale in Ocean</th>
<th>Cone Man</th>
</tr>
</thead>
<tbody>
<tr>
<td>402 blockers + HF</td>
<td>50 blockers + HF</td>
<td>25 blockers + HF</td>
</tr>
<tr>
<td>15Hz (GTX 480)</td>
<td>10 Hz (GTX 480)</td>
<td>68 Hz (GTX 480)</td>
</tr>
</tbody>
</table>
Conclusions
Conclusions

• Combine *soft shadowing* from environment lighting for scenes with *dynamic blockers* and *dynamic HF*s
Conclusions

- Combine *soft shadowing* from environment lighting for scenes with *dynamic blockers* and *dynamic HFs*

- Extend multi-resolution marching to non-HF objects
 - offset marching and infinite plane assumption
Conclusions

• Combine *soft shadowing* from environment lighting for scenes with *dynamic blockers* and *dynamic HF*s

• Extend multi-resolution marching to non-HF objects
 • offset marching and infinite plane assumption

• Novel log-SH visibility composition for HF slices
 • analytic Legendre polynomial coefficients for log-visibility elevation functions
Conclusions

- Combine *soft shadowing* from environment lighting for scenes with *dynamic blockers* and *dynamic HFs*

- Extend multi-resolution marching to non-HF objects
 - offset marching and infinite plane assumption

- Novel log-SH visibility composition for HF slices
 - analytic Legendre polynomial coefficients for log-visibility elevation functions

- Propose Log-SH BRDF formulation to reduce triple-product shading to double-product shading
Future Work
Future Work

• infinite plane assumption when marching non-HF elements
 – leverage negative blocking angle formulation of [NS09]
Future Work

• infinite plane assumption when marching non-HF elements
 – leverage negative blocking angle formulation of [NS09]

• analytic log-BRDF formulation with better hemi-clamping
Future Work

- Infinite plane assumption when marching non-HF elements
 - Leverage negative blocking angle formulation of [NS09]

- Analytic log-BRDF formulation with better hemi-clamping

- Indirect lighting accumulation in log-SH space
Future Work

• infinite plane assumption when marching non-HF elements
 – leverage negative blocking angle formulation of [NS09]

• analytic log-BRDF formulation with better hemi-clamping

• indirect lighting accumulation in log-SH space

• generalize geometry
 – local height field displacements
 – tiled height field representations
 – non-spherical blockers
We acknowledge the helpful suggestions of the anonymous reviewers.

Thanks! Any questions?