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Abstract
We present a real-time method for rendering global illumination effects from large area and environmental lights
on dynamic height fields. In contrast to previous work, our method handles inter-reflections (indirect lighting)
and non-diffuse surfaces. To reduce sampling, we construct one multi-resolution pyramid for height variation
to compute direct shadows, and another pyramid for each indirect bounce of incident radiance to compute inter-
reflections. The basic principle is to sample the points blocking direct light, or shedding indirect light, from coarser
levels of the pyramid the farther away they are from a given receiver point. We unify the representation of visibility
and indirect radiance at discrete azimuthal directions (i.e., as a function of a single elevation angle) using the
concept of a “casting set” of visible points along this direction whose contributions are collected in the basis
of normalized Legendre polynomials. This analytic representation is compact, requires no precomputation, and
allows efficient integration to produce the spherical visibility and indirect radiance signals. Sub-sampling visibility
and indirect radiance, while shading with full-resolution surface normals, further increases performance without
introducing noticeable artifacts. Our method renders 512x512 height fields (>500K triangles) at 36Hz.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Color, shading, shadow-
ing, and texture—

1. Introduction

The human visual system is adapted to the physical world,
where light typically reflects off many different surfaces
before entering the eye. Global illumination (GI) thus en-
hances realism and perceptibility of synthetically rendered
scenes. Shadows, the direct component of GI, provide crit-
ical cues about spatial relationships between objects but
blacken points receiving no contribution from any light
source. In reality, such points receive indirect light from sur-
rounding geometry. A subtle case is color bleeding where
colored geometry reflects correspondingly colored light to
nearby geometry. More dramatic is the brightening within
surface depressions, which reveals detail in what would oth-
erwise be a black image void.

Though compelling, simulating indirect effects comes
with a price: the computation is intensive and difficult to
do in real-time. The problem arises because the relationship
between lighting and shading becomes non-linear, spatially-
varying, dependent on the global geometric configuration,
and iterative. The geometry effectively acts as a complex
light source that recursively relights itself until reaching an

energy balance. Although indirect contributions can be pre-
computed in the case of static geometry, this approach fails
to extend to geometry that changes over time. We present
a real-time method for computing direct and indirect illu-
mination on animated height field geometry under varying
environmental and directional lighting. Computation of the
direct visibility, and indirect lighting for each number of
bounces, forms the bottleneck. We make it practical using
the same approximation strategy for both types of functions.

Our work has two main contributions. First, we extend
the multi-resolution method of [SN08] to handle indirect
lighting. The basic idea is to construct a pyramid for ge-
ometry and radiance data to reduce aliasing and sampling
requirements. This avoids the need to take more and more
samples of visibility/indirect radiance as the distance from
occluder/illuminator to receiver grows. For diffuse inter-
reflections, we pyramidally filter the scalar shading over
the height field at each lighting bounce; for glossy inter-
reflection, we instead filter the (glossy) exit radiance, rep-
resented as a vector in the spherical harmonic (SH) basis.

Second, at each receiver point, we represent 1D functions
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Figure 1: Real-time global-illumination on dynamic height fields (> 35Hz), compared to direct illumination only. All images in
the paper are captured at high resolution from the real-time demo; readers are encouraged to digitally zoom in to reveal detail.

of visibility and indirect radiance along each azimuthal ray
in a compact, analytic form using the normalized Legendre
polynomial (NLP) basis. We then integrate over samples in
different azimuthal directions to produce spherical functions
in the SH basis by applying a small linear operator on the
NLP coefficients. For linear interpolation and order-4 SH,
each azimuthal segment applies a 16×8 matrix to the two
4D NLP coefficient vectors at the two adjacent azimuthal
samples. We also support B-spline azimuthal interpolation
with a 16×32 matrix. Summing over all azimuthal segments
yields the total incident radiance at the receiver, which is
finally dotted with an SH vector representing its BRDF.

Our approach is fast. It is also simple and implemented
completely on the GPU in less than 100 lines of shader code
(see the Supplemental Material.) Its performance is inde-
pendent of the geometry or complexity of the lighting en-
vironment and depends only on the height field resolution. It
handles arbitrary numbers of bounces off diffuse and glossy
surfaces with cost linear in the number of bounces. Lighting,
geometry, and viewpoint can all be manipulated dynamically
while maintaining framerates of at least 35 Hz for 512×512
height fields. Figure 1 shows the quality we achieve.

All approximations, including the use of multi-resolution
pyramids for visibility and indirect radiance, allow control
of error. The largest error source arises from our use of low-
order (order-4) SH for spherical functions of radiance and
visibility, which provides only low-frequency (soft) reflec-
tion effects. Highly specular reflections and sharp shadows
can not be captured, though shadow sharpness is enhanced
by using light sources of restricted extent [SN08].

2. Previous Work

Shadow mapping approaches [Wil78] compute direct illu-
mination under point lighting for arbitrary geometry in real-
time; see Hasenfratz et al. [HLHS03] for a survey. Soft shad-
ows are typically approximated by filtering the results of
depth comparison over a neighborhood in the shadow map
[RSC87]. Recent approaches augment the shadow map with
additional data, such as depth mean and variance [DL06] or
functions of light-space z variation [AMB∗07, AMS∗08], to
provide more control over shadow softness.

Annen et al. [ADM∗08] ignore indirect illumination and

use many shadow maps to shadow dynamic geometry under
environmental lighting. Their method scales linearly with
the number of shadow maps, and thus the number of area
lights required to approximate the environment. The ap-
proach is restricted to rectangular light sources. It also incurs
greater error for larger lights, since it assumes coplanarity of
blockers, receivers, and light sources, and computes visibil-
ity with respect to the center of each light source.

Ritschel et al. [RGK∗08] augment an instant-radiosity
approach with imperfect shadow maps, which approximate
the incident radiance from point and environment lighting.
Quality of the indirect illumination, and algorithm perfor-
mance, depend on the number of secondary lights. While the
approach is suitable for small area light sources, larger ones
(e.g. environmental) are approximated by many direct lights,
which in turn require many more indirect light sources.

Precomputed radiance transfer (PRT) techniques gener-
ate soft shadows and GI effects for static scenes lit by large
area and environmental sources [SKS02, KSS02, NRH03].
The costly ray-tracing precomputation precludes the use of
standard PRT approaches for dynamic geometry.

Spherical Harmonics Exponentiation (SHEXP)
[RWS∗06, SGNS07] avoids this costly precomputation,
by approximating dynamic geometry as a set of spherical
blockers, and accumulating the occlusion from each sphere
in a logarithmic SH space. In the case of complex and
dynamic geometry such as detailed height fields, a blocker
sphere approximation can not be precomputed (since we
target general animation not described by simple “skinning”
of an articulated skeleton) and requires too many spheres.

Height field rendering has a long history in computer
graphics. Horizon mapping [Max88, SC00] precomputes
horizon angles over discrete azimuthal directions, to render
point light shadows. A similar method precomputes a cir-
cular aperture at each receiver [OS07]. Precomputed visibil-
ity maps handle both direct and indirect lighting by storing
the location of the first visible point, over all receiver points
and a discretization of incident directions [HDKS00]. These
methods do not address dynamic geometry. Parallax occlu-
sion mapping [Tat06] can approximate height displacement
and soft shadows with a pixel-shader ray-tracer.
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Figure 2: Height field elevation angle notation.

Similar techniques have been used in dynamic scenes to
approximate ambient occlusion (AO) [SA07, AMA02] and
GI in screen space [RGS09]. These approaches render ge-
ometry into a depth buffer and treat it as a height field. Shad-
ing integrals are approximated by examining a small set of
samples nearby in screen space. AO complements standard
point lighting with a softer “GI feel”, but ignores cast shad-
ows from lighting with strong directionality [RWS∗06]. In
general, these techniques render plausible images but ig-
nore shadows and indirect light cast by geometry occluded
in the view. What’s more, the small number and locality of
samples approximating the integrals preclude long-range GI
effects. Our method accounts for long-range effects, elimi-
nates aliasing, and converges to correct ground truth results.

Snyder and Nowrouzezahrai [SN08] use a multi-
resolution pyramid of height variation to compute hori-
zon maps in real-time without aliasing artifacts. We extend
[SN08] to include indirect effects and handle non-diffuse
surfaces. Indirect radiance is a more challenging function
to manipulate compared to simple (binary) visibility. Visi-
bility in a given azimuthal direction is completely captured
by a single scalar representing the maximum blocking an-
gle, whereas indirect radiance varies over the height field and
is received from all unoccluded points along that direction.
Technical innovations developed to deal with this problem
include the detection of visible samples for indirect accumu-
lation using the idea of a “casting set”, the use of the NLP
basis to represent such azimuthal slice functions, the abil-
ity to handle visibility and indirect radiance below the z=0
plane, and higher-order interpolation of azimuthal samples
to further reduce aliasing.

3. Overview and Terminology

Height fields are scalar functions on the plane defining a
surface of points p = (x,y, f (x,y)), where f evaluates the
height at planar position, (x,y). We denote the unit length
normal vector at p as N. We generate height fields with
analytic formulae or simple simulation procedures, but any
method producing a 2D array of heights can be substituted.

Visibility over the height field is represented by first consid-
ering the simplified case of a single point p receiving light
along a single azimuthal direction ϕ. The associated ray is
given by r(t) = (x,y)+ t(cosϕ,sinϕ) and 3D points along it
are denoted p(t) = (r(t), f (r(t))).

The blocking angle at p, formed between the horizon and
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Figure 3: Monotonically increasing blocking angles above
ωmin, marked in white, form the casting set. Samples in black
are not visible from the receiver p and thus excluded.

height field points along r(t), is given by

ω(t) = tan−1
(

f (r(t))− f (r(0))
t

)
. (1)

This angle is measured from the horizon up. Its associated
visible angle is defined as θ = (π/2−ω) and measured from
the zenith down. While θ follows standard spherical parame-
terization, it is more natural to express visibility and indirect
radiance in terms of ω.

We define the binary visibility function as

v(ω;σ) =
{

0, if ω≤ σ

1, otherwise ,
(2)

where σ represents the elevation angle at which the transi-
tion from blocked to visible occurs, as one looks increas-
ingly higher from p along the azimuthal direction ϕ. The
corresponding binary occlusion function is just the logical
inversion of this visibility function, denoted

v(ω;δ) = 1− v(ω;δ) . (3)

The transition angle, or maximum blocking angle at p, is

ωmax = max
t∈(0,∞)

ω(t) , (4)

and occurs at tmax. The minimum blocking angle is defined
by the upper hemisphere about N and given by ωmin =
−arcsin(N · (cosϕ,sinϕ,0)) (see Figure 2.)

Then the visibility along r(t), as a function of blocking
angle ω, is

v(ω) = v(ω;ωmax) =
{

0, if ω≤ ωmax
1, otherwise .

(5)

The casting set is defined as the set of points along p(t)
that are visible (i.e., not occluded) from p. More formally, T
is the set of values of t whose corresponding blocking angle
ω(t) is larger than that for all smaller t; i.e.,

T = {t | ω(t′) < ω(t) ∀ t′ < t} . (6)

Such t ∈T thus appear above all intervening geometry in the
height field, as seen from p. Discrete elements of this set are
denoted ti ∈ T ; the actual discretization is explained further
in Section 5. Figure 3 illustrates an example.
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Figure 4: Normalized Legendre polynomial reconstruction
of the occlusion function v(ω;π/4), for different orders, n.

Indirect radiance (IR) towards p from any point along p(t)
arrives from direction s(t) =−(θ(t),ϕ), and is defined as

u(t) = u(p(t), p(t)→ p(0)) = u(p(t), s(t)) . (7)

When computing the bth bounce of indirect illumination, we
require the radiance from the (b− 1)th bounce. Assuming
piece-wise constant variation of radiance along the elevation
angle, in terms of a number of discrete samples ti ∈ T , we
express IR along r(t) as a function of the blocking angle ω:

u(ω) =
{

u(ti), if ω(ti−1)≤ ω < ω(ti)
0, if ω < ωmin or ω > ωmax .

(8)

Piece-wise constant interpolation is justified because adja-
cent values of ti ∈ T need not be close on the height field;
they may arise from entirely different visible surface layers
(see Figure 3). This approximation converges to the correct
result with increased sampling in t.

4. Compact Representation of 1D Elevation Functions

Equations 5 and 8 can be compactly expressed in the orthog-
onal NLP basis. This is a natural choice when using the SH
basis for spherical functions, since the order-n NLP basis
(containing n basis functions) captures all the variation in
elevation angle one obtains from one azimuthal slice of an
order-n SH expansion (containing n2 basis functions). Each
NLP basis function, denoted P̂l(cosθ), is a degree-l polyno-
mial in cosθ. NLPs are related to zonal harmonics (ZH) via

yyyl(θ,φ) =

√
1

2π
P̂l(cosθ) =

√
2l +1

4π
Pl(cosθ) , (9)

where P are the (unnormalized) Legendre polynomials. The
vector corresponding to the first n = 4 normalized Legendre
basis functions evaluated at z = cosθ is

P̂(z) =
[√1

2
,

√
3z√
2

,
5
√

2(3z2−1)
4

,
7
√

2(5z3−3z)
4

]
.

The NLP basis function is given by Rodrigues’ formula:

P̂l(z) =

√
2l +1

2
1

2l l!
dl

dzl [(z
2−1)l ] .

satisfying orthonormality over the interval [−1,1]:∫ 1

−1
P̂i(z) P̂j(z)dz = δi j ,

where δi j is the Kroenecker delta function.

An order-n NLP expansion of the binary occlusion func-
tion in Equation 3 is then given by

vvv(σ) =
∫ π

0
v(ω;σ) P̂(z) dz =

∫ π

π

2−σ

P̂(z) dz , (10)

with dz = sinθ dθ. We use Equation 10 to obtain projection
coefficients of Equations 5 and 8 in the NLP basis via

vvv = vvv(π/2)− vvv(ωmax) (11)

uuu =
∫ π

2

0
u(θ)P̂(cosθ)sinθ dθ

= ∑
i

[
u(ti)−u(ti+1)

]
vvv(ω(ti))−u(t0) vvv(ωmin), (12)

where vvv and uuu are the coefficient vectors of visibility and IR.
Here, u(ti+1) = 0 when i≥ |T |. Equation 11 converts occlu-
sion via subtraction to reconstruct visibility in terms of the
maximum blocking angle ωmax. Equation 12 accumulates
indirect radiance over segments of successively increasing
blocking angles in the casting set. The last term subtracts
out radiance below the lower hemisphere, ω < ωmin.

Reconstruction of continuous functions from these pro-
jection vectors requires a simple dot product:

v(θ) = vvv · P̂(cos(θ)) , u(θ) = uuu · P̂(cos(θ)) . (13)

This representation unifies the two quantities necessary for
determining the direct and indirect illumination along the
ray. We can precompute vvv in a 1D lookup table for many
values of σ or use the following order-4 analytic form:

vvv(σ) =
[ sinσ+1√

2
,
−3cos2

σ

2
√

6
,
−5sinσcos2

σ

2
√

10
,

7cos2
σ(−4+5cos2

σ)
8
√

14

]
.

Figure 4 illustrates the reconstruction of v(ω;σ) with in-
creasing order n. Section 6 discusses how these visibility
and indirect radiance vectors can be integrated over several
azimuthal directions ϕ to yield spherical functions for di-
rect and indirect shading. Discretization and multi-resolution
sampling along the ray parameter t is explained next.

5. Multi-Resolution Sampling

5.1. Uniform Sampling

Uniformly sampling along r(t), the maximum blocking an-
gle and casting set (Equations 4 and 6) can be computed via

ωmax ≈max
i

[
tan−1

(
f (x + ti cosϕ,y+ ti sinϕ)− f (x,y)

ti

)]
,

T ≈ {ti | ω(t j) < ω(ti), ∀ j < i} , with ti = i∆t,

where ∆t represents the discrete step size in t. We note a
small abuse in notation in that the ti here include all points
along the ray, some of which are occluded and thus not mem-
bers of T . When scanning to compute T , successive indices
denote successive points along the ray, while in scanning
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over the casting set, as in Equation 8, they denote succes-
sive members of T .

Uniform sampling leads to aliasing unless an impracti-
cally large number of samples is taken. This is especially
true because we are integrating over 2D domains, parameter-
ized by both distance t and azimuthal direction ϕ. To ensure
all height field features are adequately sampled, sampling
must be tied to domain area and so must sample more as the
distance to the receiver point increases. Intuitively though,
by adequately prefiltering the geometry and indirect radi-
ance, we can avoid this problem.

5.2. Multi-Resolution Height Sampling

As in [SN08], we reduce the sampling requirements with a
height pyramid. Each pyramid level is denoted fi(x,y), i ∈
{0,1, · · · ,nv−1}. It is a filtered version of the original height
field which reduces its resolution by a factor of 21/kv in both
x and y, using 2D B-spline filtering. The level step, kv, con-
trols how fast levels decrease in resolution as a function of
their index i; the total number of pyramid levels is denoted
nv. We typically set kv = 4, corresponding to a pyramid with
4 levels per level-of-2 reduction in resolution, as in [SN08].

Instead of stepping uniformly along the ray r(t), we take
steps that increase exponentially via

τi = 2−(nv−1−i)/kv . (14)

As τi increases, we access increasingly filtered levels in the
pyramid. The blocking angle at a given level is computed by

ωi = tan−1
(

fi(x + τi cosϕ,y+ τi sinϕ)− fi(x,y)
τi

)
. (15)

Equation 4 can now be approximated as the maximum over
a 1D B-spline interpolant, sampled at the knots and mid-
points, over these ωi values:

ωmax ≈max
τ

B-spline(τ,{ω0, · · · ,ωnv−1})︸ ︷︷ ︸
ω(τ)

. (16)

A level offset, ov, can be used to bias the pyramid level
by replacing fi in Equation 15 with fi+kvov . Increasing ov
reduces the “blurring” of the height field with distance and
so produces sharper long-range shadows, but also reduces
the ability of the pyramid to control aliasing. We typically
set ov = 2 for visibility sampling.

We compute Equation 16 on the GPU, by scanning τi over
all pyramid levels (i = 0, . . . ,nv − 1) and only storing the
visible τi; i.e, those with blocking angle ωi larger than that
from all previous τi, forming a discrete approximation of T

T ≈ {τi | ω(τ j) < ω(τi) ∀ j < i} . (17)

Results from scanning over pyramid levels (ωmax and τi ∈
T ) are then substituted into Equations 11 and 12 to compute
the NLP coefficients of the 1D visibility and IR functions.

Evaluating radiance values, u(τi), in Equation 12 depends on
the BRDF at the point p(τi), as discussed in the next section.

5.3. Multi-Resolution Radiance Sampling

We use the same multi-resolution strategy to efficiently com-
pute u(τi) at visible points τi ∈ T , as seen by the receiver
point p in the azimuthal direction ϕ. The quantities neces-
sary for computing u are accessed from a radiance pyramid
representing exit radiance at each point on the height field.

Diffuse surfaces emit radiance uniformly in all directions,
and thus require the storage of only a single (trichromatic)
value at each surface point. In order to compute the bth

bounce of light, we process diffuse shading results from the
(b− 1)th bounce and generate a multi-resolution shading
pyramid on these values. As before with the height pyramid,
this pyramid is generated using 2D B-spline filtering but us-
ing nu levels (level step ku), and accessed with level offset
ou. The u(τi) are then sampled from this pyramid.

Non-diffuse surfaces require more complicated handling
since the outgoing radiance from the (b− 1)th bounce of
lighting is a full (trichromatic) spherical function, not a
scalar. We therefore store and filter the IR vector from the
(b−1)th bounce with the shading pyramid. The u(τi) is cal-
culated as the dot product of the SH vector obtained by eval-
uating the BRDF in the direction s(t) with the SH vector rep-
resenting IR from the pyramid (see Section 7.) We can also
augment vectors sampled from the radiance pyramid with
any additional spatially varying information, such as param-
eters of the BRDF (e.g. Phong exponent) or albedo.

Mixture surfaces, composed of diffuse and glossy compo-
nents, can be handled by combining the above approaches
using two pyramids. Alternatively, we can approximate this
result using a single pyramid which filters the sum of the
diffuse and glossy scalar shades and then applies the diffuse-
only sampling strategy. This is not strictly correct since the
outgoing glossy radiance is evaluated in the direction to-
wards the viewer rather than towards p; i.e., in the direc-
tion s(t). If the surface is not overly specular, then the error
introduced is small. This approximation is similar to the dif-
fuse indirect bounce approach in [BAEDR08]. Figure 5 com-
pares results of our two approximation approaches. Most er-
ror arises from reduced sampling in t in ϕ.

6. Constructing Spherical Functions

So far, we have explained how to compute visibility and IR
(Equations 5 and 8) only along a single azimuthal direction.
Shading requires full spherical functions. We obtain them
by sampling at a discrete, uniformly-spaced set of azimuthal
directions, Φ = {ϕ1, · · · ,ϕm}. Each consecutive pair of az-
imuthal samples forms an azimuthal wedge having angu-
lar extent ∆ϕ = ϕ j+1 − ϕ j. Unlike [SN08], we interpolate
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ground truth vector pyramid scalar pyramid

Figure 5: Approximating glossy indirect illumination (only
indirect lighting is illustrated.) Left: ground truth. Mid-
dle: multi-res vector (radiance) pyramid (converges to the
ground truth; see Section 8). Right: multi-res scalar (shad-
ing) pyramid, similar to the approximation in [BAEDR08].

1D functions rather than scalar blocking angles, over each
wedge. Our method also allows higher-order interpolation.

For visibility due to environmental illumination, and all
IR computations, Φ spans the complete azimuthal domain,
[0,2π]. For visibility due to smaller light sources, Φ is re-
stricted to the light’s partial azimuthal extent as in [SN08].
Complete domains yield m wedges, with an additional
wedge between the first and last samples, while partial ones
yield m−1 wedges. Another benefit of NLP-based elevation
functions is that visibility for smaller light sources can now
be restricted in the elevation domain, as well as azimuthally,
producing even sharper shadowing effects with low-order
SH lighting. To accomplish this, the parameters of the two
terms in Equation 11 become the intersection of the angular
intervals [ωmax,π/2] and [lmin, lmax], where lmin and lmax are
the elevation ranges of the light source, in terms of ω.

For each azimuthal direction ϕ j , we denote the NLP pro-
jection of visibility and IR as vvv j and uuu j. The spherical func-
tion within the wedge j between azimuthal directions ϕ j and
ϕ j+1 is expressed using a general interpolation operator ap-
plied to the whole set of discrete azimuthal directions, de-
noted I. Projecting each wedge j into the SH basis yields

VVV j =
∫ ∆ϕ

0

∫ π

0
I
(

φ+ϕ j

∆ϕ
;vvv1, · · · ,vvvm

)
YYY (θ,φ)sinθ dθ dφ

(18)

UUU j =
∫ ∆ϕ

0

∫ π

0
I
(

φ+ϕ j

∆ϕ
;uuu1, · · · ,uuum

)
YYY (θ,φ)sinθ dθ dφ ,

(19)

where YYY (θ,φ) is the vector of SH basis functions. This for-
mula canonically re-orients each wedge to start at φ=0. A
continuous integrand in θ is obtained by applying the NLP
reconstruction rule in Equation 13.

Integration in Equation 18 and 19 is a linear operator on
the NLP projection coefficients vvv j and uuu j. For linear inter-
polation, the formula reduces to

VVV j = Mlin

[
vvv j

vvv j+1

]
, UUU j = Mlin

[
uuu j

uuu j+1

]
. (20)

B-spline interpolation is similar but uses a larger matrix

which operates on a vector concatenating 4 consecutive az-
imuthal samples rather than 2. The appendix details how M
is computed for linear and B-spline interpolation.

Finally, to accumulate contributions over all wedges, we
perform a fast SH Z-rotation of VVV j and UUU j into the wedge’s
actual azimuthal position and sum the resulting vectors:

VVV =
m−1

∑
j=1

Rotz(VVV j,ϕ j), UUU =
m−1

∑
j=1

Rotz(UUU j,ϕ j) . (21)

7. Shading in SH

Shading at a receiver point p is computed as the dou-
ble product integral (dot product) of SH vectors represent-
ing the BRDF evaluated in the view direction ωo, denoted
FFF(ωo), with the incident radiance. We represent BRDF vec-
tors with circularly symmetric functions. For low-frequency
reflectance, these are compactly represented with ZH. This
basis also provides an efficient rotation algorithm [SLS05].

A diffuse BRDF is symmetric about the normal N and has
order-4 ZH vector {0.886227,1.02333,0.495416,0}. The
Phong BRDF is symmetric about the reflection vector and
represented in canonical orientation by the ZH approxima-
tion {1,e[−1/(2S)],e[−2/S],e[−9/(2S)]}, with Phong exponent
S [RH02]. In either case, FFF(ωo) is computed by rotating the
ZH vector to the appropriate frame, in which the z axis aligns
with the normal or reflection vector. Our method easily ex-
tends to general BRDFs, using e.g. [KSS02, NKF09].

For direct illumination, the incident radiance is the SH
product of (typically distant) lighting, LLL, and the visibility,
VVV , from (21). We compute the SH visibility for each area
(key) light and for environmental lighting using the multi-
resolution approach discussed in Section 5.2. Environmental
lights take samples over the entire azimuth, while key lights
concentrate them over the light’s azimuthal extent [SN08].

For indirect illumination, the incident radiance is UUU from
(21). Each indirect bounce b is computed as discussed in
Section 5.3. In the case of diffuse BRDFs or the approx-
imate (scalar pyramid) mixture approach, the scalar shade
from the previous bounce of lighting is forwarded to the IR
computation algorithm to compute the next bounce. Results
from all bounces are accumulated into the final shaded re-
sult. In the case of mixture surfaces, both the diffuse shade
and the indirect radiance must be forwarded to the next pass.

Sub-sampling visibility and IR yields significant perfor-
mance gains. A 2×2 sub-sampling has little effect on shad-
ing quality when shading is performed with full-resolution
normals, as shown in Figure 7. Stages that can be sub-
sampled are shown with *’s in Figure 6. We compute the
visibility and IR vectors every frame (see Section 9) but
amortize the direct and indirect shading computation be-
tween frames when the geometry is static: on even numbered
frames the direct shading is computed using the visibility,
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Figure 6: Rendering pipeline: stages marked * may be sub-sampled. Stages 4 and 5 are accumulated for each indirect bounce.
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Figure 7: Illumination sub-sampling. 2×2 yields a good
trade-off between performance and quality; at 4×4, slight
bleeding of shadows and indirect illumination occurs.

and on odd numbered frames the indirect shading is com-
puted using the IR. When the geometry changes, both the
direct and indirect shade are updated.

8. Approximations and Convergence to Ground Truth

Our algorithm approximates brute-force evaluation of the
rendering equation in several ways. It represents spherical
functions of visibility and radiance using low-order and thus
low-frequency SH, and 1D azimuthal slice functions in the
NLP basis. It samples heights and incoming radiance along
each ray using multi-resolution pyramids. And it interpolates
azimuthal wedges over discrete sets of azimuthal samples.
Error in each of these steps can be reduced within any de-
sired limit using simple (but possibly computationally ex-
pensive) choices for the algorithm parameters.

Both the SH and NLP bases have the property that they
represent any smooth function arbitrarily accurately as the
order increases. However, they are an inefficient choice
for representing detailed functions of visibility or radi-
ance [NRH03], and better suited for handling low-frequency
(soft) GI effects. In the case of multi-resolution sampling,
the number of levels in the pyramid can be increased and
the filtering reduced (or equivalently, the level bias in-
creased) until sampling becomes equivalent to brute-force
ray-marching. The number of azimuthal samples can also be
increased, which reduces the significance of azimuthal inter-
polation. We demonstrate convergence to ground truth, com-
puted with ray-tracing and order-4 SH lighting, in Figure 10.

9. Implementation and Performance

Our GI pipeline is illustrated in Figure 6 and is implemented
as a set of GPGPU fragment shader kernels. We tessellate
the height field using a vertex at each grid point and a pair
of triangles connecting each adjacent “quad” of 4 vertices.

A multi-resolution pyramid for the height field geometry is
first generated using multiple render passes on the GPU. Re-
peated bilinear decimation the height field is followed by B-
spline synthesis for each pyramid level, using the approach
of [SH05]. We maintain a stack of synthesized textures (at
the potentially sub-sampled resolution), however an alterna-
tive approach is discussed in Section 10. The max blocking
angle ωmax, and casting set T , are then computed at each re-
ceiver point for each azimuthal direction with Equations 16
and 17. We use 32 azimuthal samples for environmental vis-
ibility and indirect illumination sampling, and 3 samples for
key light visibility. Sampling in τ and over azimuthal direc-
tions forms the computational bottleneck of our approach.
Note that key lights may be absorbed into the lighting en-
vironment for better performance but separating them out
yields sharper shadows (see Supplemental Material.) Equa-
tions 11 and 12 perform the Legendre projection of visibil-
ity and IR at each azimuthal direction. After looping over all
azimuthal samples, Equations 20 and 21 then integrate over
azimuthal wedges to obtain SH vectors for direct shadowing,
VVV , and IR, UUU . Each vertex is shaded as described in Section
7 to yield the shading texture map applied to the geometry.

Images in the paper were computed in real-time, and ex-
cept for Figure 8, using a single indirect bounce. Computa-
tion time scales linearly in the number of azimuthal samples
and height field resolution, and sub-linearly with the number
of levels used in each pyramid. Shading amortization results
in a 5− 10% performance gain on low-to-mid range GPUs,
and up to 45% on a high-end GPU. Table 1 summarizes
performance and memory usage; note that each power-of-
2 multiple of sub-sampling affords a memory gain of almost
4x and reported memory usage includes all input and inter-
mediate (16-bit float) textures. The approach in [SN08] was
timed using the original executable but it is possible to apply
sub-sampling to it as well.

With 2x sub-sampling, our algorithm is faster than the ap-
proach of [SN08], but accounts for multi-bounce GI effects,
sharper and more accurate key light shadows, and lighting
below z = 0. Our performance advantage comes mainly from
sub-sampling and using an analytic formula as opposed to a
costly visibility wedge texture lookup. Figure 9 compares
the two techniques. Figure 8 shows multi-bounce results.

10. Conclusion and Future Work

Indirect effects provide realism and enhance visualization
cues by revealing shape detail in the umbra. We formulate
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Figure 8: Real-time multi-bounce results.

HF Sub- Mem. FPS for 1, 2, & 3 indirect bounces (Hz)
Res. sample (MBs) 8800 GT GTX 285 GTX 285∗

2562
1x 17.4 15.7, 13, 11 49.5, 44, 40 100, 86, 79
2x 4.5 43, 39, 36 125, 107.7, 101 230, 194, 176
4x 1.65 89, 81, 76 229, 198, 185 363, 303, 276

5122
1x 76 3.5, 2.8, 2.4 11.6, 10.5, 10 24, 22, 20
2x 20 11, 10, 8.9 35.5, 32, 30 67, 60, 56
4x 7.1 26, 23, 21 73, 65.6, 62 124, 110, 104

10242
1x 336 0.8, 0.6, 0.4 2.7, 2.4, 2.2 5, 5, 4
2x 88 2.1, 1.6, 1.2 8.3, 7.6, 7.1 16, 14, 14
4x 29.5 4.5, 3.5, 2.9 18.9, 17.2, 16.4 32, 30, 28

Framerate for [SN08] (Hz)
2562 1x 5 24.3 129 n/a
5122 1x 22 5.8 30 n/a

10242 1x 96 1.6 7.2 n/a
∗ performance with shading amortization enabled.

Table 1: Performance with kv = ku = 4, 1 env. light (m = 32),
1 key light (m = 3), and 8X multi-sampling measured on PCs
with nVidia 8800 GT (512 MB) and GTX 285 (1 GB) GPUs.

direct and indirect illumination on height fields in a unified
manner, by introducing a compact representation for visibil-
ity and indirect radiance at discrete azimuthal directions us-
ing the NLP basis. Each azimuthal slice is accumulated over
samples in the visible (casting) set using analytic expres-
sions for NLP occlusion. We then efficiently collect these
samples into full spherical functions using analytic interpo-
lation operators over azimuthal wedges. All computations
are local and map naturally to the GPU, allowing real-time
global illumination on dynamically changing geometry with
varying light, view, and BRDF. As mentioned in Section 9,
we currently synthesize a “stack” of visibility/IR values with
pyramid levels “blown out” to high-resolution via B-spline
interpolation every frame. Storing an actual pyramid saves
memory (>30x for 2562 and 5122, and 40x for 10242) but
requires non-natively supported texture interpolation on-the-
fly and so currently reduces performance.

Our algorithm currently exploits properties of height
fields in several ways, most notably in that a single direc-
tion on the domain maps to just one global azimuthal direc-
tion. This is not true for more general geometry parameteri-

direct only [SN08] direct + indirect indirect only

Figure 9: Comparing direct illumination [SN08] (left, 28Hz)
with our global illumination results (middle/right, 36Hz).

zations where all three coordinates vary over the 2D domain.
Our technique can also be applied in screen space, to bet-
ter handle long-range GI effects without aliasing compared
to [SA07, AMA02, RGS09]. Currently, only a single height
field patch is supported. In the future we plan on investigat-
ing the coupling of overlapping height field patches as a lo-
cal representation for more general geometry. Coupling our
indirect illumination sampling with other shadowing tech-
niques (e.g. shadow maps) is a straightforward extension.
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Appendix A: SH Interpolation Over Azimuthal Wedges

For a wedge spanning azimuthal directions j and j +1, we compute
the SH projection coefficients of a spherical function W (θ,φ) within
the wedge (canonically re-oriented to start at φ = 0) as

WWW =
∫

∆ϕ

0

∫
π

0
W (θ,φ)YYY (θ,φ) sin(θ)dθdφ . (22)

We define W as a continuous azimuthal blending of discrete eleva-
tion functions, with NLP projection coefficients www j:

W (θ,φ) = I (α j;www1, · · · ,wwwm) · P̂(z) , (23)

where α j = φ−ϕ j
∆ϕ

and z = cosθ. In the case of linear interpolation,

I (α j;xxx1, · · · ,xxxm) = Ilin = (1−α j)xxx j + α jxxx j+1 . (24)

Substituting 24 and 23 into 22, we express this integral as a linear
operator (matrix) acting on coefficient vectors www j and www j+1,

WWW = Mlin(∆ϕ)
[
www j www j+1

]T
,[

Mlin

]
r,c

=
∫

∆ϕ

0

∫
π

0
[Ilin]c P̂c(z) YYY r(θ,φ) sin(θ) dθ dφ .

We can replace Equation 24 with any interpolation scheme. For B-
spline interpolation, we have

I (α j;xxx1, · · · ,xxxm) = Ibspl = β0(α j)www j−1 + β1(α j)www j+

β2(α j)www j+1 + β3(α j)www j+2 ,

where βi are the B-spline basis functions (see [SN08]). Then

WWW = Mbspl(∆ϕ)
[
www j−1 www j www j+1 www j+2

]T
,[

Mbspl

]
r,c

=
∫

∆ϕ

0

∫
π

0

[
Ibspl

]
c P̂c(z) YYY r(θ,φ) sin(θ) dθ dφ .

We compute the elements of these matrices using symbolic integra-
tion in Maple. In the case of order-4 SH and order-4 NLP, Mlin has
dimension 16×8 and Mbspl has dimension 16×32.
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