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Derek Nowrouzezahrai
Disney Research Zürich
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Figure 1: Using our perceptual framework we can compensate for light pollution due to ghosting in 3D stereo (left) and indirect scattering
when projecting onto concave screens (right). Current subtractive solutions fail in areas where the input image is dark (by either retaining
some residual ghost or eliminating important surface detail). Our solution automatically solves for a perceptually optimal compensation that
diminishes the appearance of ghosts and reveals more detail in these problem regions. Note: All deghosting results in this paper have been
captured with a camera through a polarizing filter; All descattering results are simulations.

Abstract

This paper addresses the problem of unintended light contributions
due to physical properties of display systems. An example of such
unintended contribution is crosstalk in stereoscopic 3D display sys-
tems, often referred to as ghosting. Ghosting results in a reduction
of visual quality, and may lead to an uncomfortable viewing expe-
rience. The latter is due to conflicting (depth) edge cues, which
can hinder the human visual system (HVS) proper fusion of stereo
images (stereopsis). We propose an automatic, perceptually-based
computational compensation framework, which formulates pollution
elimination as a minimization problem. Our method aims to dis-
tribute the error introduced by the pollution in a perceptually optimal
manner. As a consequence ghost edges are smoothed locally, result-
ing in a more comfortable stereo viewing experience. We show how
to make the computation tractable by exploiting the structure of the
resulting problem, and also propose a perceptually-based pollution
prediction. We show that our general framework is applicable to
other light pollution problems, such as descattering.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Filtering;

Keywords: Perceptual Framework, Ghosting, Scattering, Opti-
mization, Compensation

1 Introduction

Stereoscopic 3D displays, whereby a different image is presented to
the left and right eye, have been around for some time. The recent
popularity of 3D movies, TV and games has once again given atten-
tion to the problem of crosstalk. Dim copies of the images intended
for one eye leak to the other eye and are perceived as ”ghost” images.
This ghosting is a form of unintended light contribution: light that
is originally injected as intended light, but by some physical prop-
erty of the display system results in unintended light contribution
to (portions of) the intended image. Ghosting results in a reduction
of visual quality due to contrast reduction. More important how-
ever, it also interferes with the HVS stereopsis. Unintended (depth)
edges conflict with intended (depth) edges, thereby hindering the
proper fusion of stereo images [Tsirlin et al. 2011]. These conflicts
can result in an uncomfortable viewing experience. It is therefore
important to compensate for ghosting.

Current methods for ghosting compensation, or “deghosting”, typi-
cally rely on some form of subtractive compensation: the anticipated
unintended light is subtracted from the images prior to display,
e.g. [Konrad et al. 2000]. In areas where the input images have
low luminance (Figure 1, left), subtraction would result in nega-
tive light values, which are subsequently clamped. Clamping can
be avoided by raising the black level. However, this leads to a re-
duction in contrast and loss of details. We propose an automatic,
perceptually-based computational framework to compensate for the
light pollution. The error due to light pollution is distributed to areas
of reduced sensitivity for the HVS, where details are better preserved
and contrast is reduced only locally. This diminishes the appearance
of ghosting and raises the apparent quality of the displayed images.

In this paper we specifically focus on controlled illumination environ-
ments, and 3D cinema in particular. Although the focus in this paper
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Figure 2: An example of ghosting and deghosting. Left: To illustrate the disparities the left and right eye images are superimposed. Right: In
the top row a comparison between original input, subtractive compensation and perceptual compensation. The bottom row is the same as the
top row but now shows observed images acquired with a camera through the eyewear polarizing filter. (We encourage readers to view results
electronically, adjusting brightness and gamma settings if images appear too dark.)

is on ghosting, our perceptually-based framework is more general.
As an example, we apply our framework to concave projection-based
spherical displays (e.g., IMAX Dome cinemas), which suffer from
scattering: unintended indirect illumination due to reflection.

The remainder of our paper is organized as follows: Section 2 dis-
cusses related work. Our general perceptually-based compensation
framework is explained in Section 3 and its application to deghosting
in Section 3.4. We discuss results, including a user evaluation, in
Section 4. In Section 5 we propose a model for pollution prediction.
Section 6 discusses descattering using our framework. Discussion
and avenues for future work are presented in Section 7, followed by
conclusions in Section 8.

2 Related Work

Ghosting and Stereopsis The illusion of stereoscopic depth is
dependent on a viewer’s ability to fuse corresponding features or
edges presented to the two eyes [Howard and Rogers 2002]. Viewing
stereoscopic images is a demanding task for the HVS. It requires a
decoupling between focus and eye vergence that has been demon-
strated to influence not only viewer discomfort, but also hinder visual
attention and depth discrimination [Hoffman et al. 2008].

The perception of ghosting can be considered a“binocular noise” that
further hinders fusion limits and visual comfort. Yeh and Silverstein
demonstrated that crosstalk significantly influences the ability to
fuse widely separated images via binocular eye vergence movement
[1990]. Ghost images may introduce unintended edges and binocular
rivalry making visual processing unstable, unpredictable, and impair
guiding visual attention [Patterson 2007]. It has also been found to
inhibit the interpretation of depth [Tsirlin et al. 2011].

Use of even minimal crosstalk has been found to strongly affect
subjective ratings of display image quality and visual comfort [Yeh
and Silverstein 1990; Kooi and Toet 2004]. Although acceptable
crosstalk may generally be as high as 5-10%, the detection and
acceptability thresholds can be significantly reduced with higher
image contrast or larger disparity [Wang et al. 2011]. There is a
strong need to remove the detection of crosstalk.

Deghosting. Subtractive compensation methods for active (time-
sequential) and passive (light modulation) stereo display systems,
subtract the predicted ghosting contribution prior to display [Konrad
et al. 2000; Klimenko et al. 2003]. These methods assume that there
is sufficient signal to subtract from since physical systems cannot
inject negative light. To fully compensate in these cases, the black

level is raised globally (automatically), or locally (manually). Smit et
al. [2007] proposed a perceptually motivated extension to subtractive
compensation. They perform subtraction in the perceptually uniform
CIE-Lab, instead of RGB color space. This results in less visible
ghosting compared to standard subtractive methods. However, in the
case of low luminance, their method suffers from the same problem
as other subtractive methods, and leaves ghosting as uncorrectable.
We specifically want to address these “uncorrectable” cases, and
instead propose a perceptually-based distribution of the ghosting
error to reduced sensitivity regions of the HVS.

The HVS and Perceptual Models. Perceptually-based methods
have been extensively used and an exhaustive list would be beyond
the scope of this paper. We discuss the most relevant works. Percep-
tual models have been exploited to determine if the texture of objects
masks an underlying coarse tessellation [Ferwerda et al. 1997], and
in stopping criteria for global illumination [Ramasubramanian et al.
1999; Mantiuk et al. 2006; Longhurst et al. 2006; Sundstedt et al.
2007]. We explicitly exploit perceptual models for formulating an
optimization framework.

Tone mapping involves the display of an image with a higher dy-
namic range on a display with a lower dynamic range [Reinhard
et al. 2002; Mantiuk et al. 2008]. The method that we propose is
related to local tone mapping in that our goal is to take an image
with a higher dynamic range (the intended image), and display it on
a (locally) lower dynamic range display (due to the light pollution).
We aim to distribute the error smoothly in a local region, and we
propose to exploit HVS properties to do this in a perceptually more
optimal manner.

Majumder and Stevens [2005] aim to obtain a global smoothly
varying luminance in a multi-projector display by incorporating per-
ceptual metrics. Grosse et al. [2010] expoit the CSF to precompute
a binary mask, which in turn is used to compute an optimal coded
aperture. Our work differs in that our goal is to locally compen-
sate for ghosting only. This requires a different formulation for the
optimization problem which we describe in Section 3.

In image processing domain, perceptual metrics are incorporated
into a Visible Difference Predictors (VDP), which aims to quantify
the perceptual difference between a reference and a test image [Daly
1992; Lubin 1995]. Furthermore, Nadenau et al. [2001] propose
to exploit the contrast sensitivity function (CSF) for weighting the
coefficients of a wavelet decomposition at different levels [Nadenau
et al. 2001]. We propose to incorporate the CSF and components of
the VDP directly in our optimization framework.
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Figure 3: Dataflow for our perceptual compensation.

Descattering. Several subtractive compensation methods have
been suggested to compensate for indirect scattering by modifying
the image before projection [Bimber et al. 2006; Mukaigawa et al.
2006; Wetzstein and Bimber 2007; Dehos et al. 2008]. Bimber
et al. [2007] provides a more comprehensive overview of other
related work in this field. All these methods suffer from the same
problems as subtracive deghosting methods. We propose an analytic
subtractive compensation for spherical domes, that operates on full-
resolution images, and combine this with our perceptual framework
to redistribute this error into visually less important regions.

3 Perceptual Framework

In the following, matrices are denoted with uppercase bold letters,
while vectors are denoted with lowercase bold letters.

3.1 Minimization Formulation

Although we focus on light pollution due to ghosting, we will discuss
our perceptual framework for the general case of additive light pol-
lution, shown in Figure 3. Light pollution is typically addressed by
subtractive compensation of the input images followed by clamping.
This can mathematically be expressed as a constrained minimization
problem if we introduce the observation function ψ(·):

argmin
x
‖ψ(x)− x̄‖2, s.t. 0 ≤ x ≤ 1. (1)

Here x and x̄ denote the compensated and the desired image respec-
tively. The observation function ψ(·), takes into account additive
light pollution in the physical system and can be expressed as the
sum:

ψ(x) = x + ϕ(x), (2)

with pollution function ϕ(·). The constraints in Equation 1 are
critical to ensure that the pixel values remain within the physically
attainable value range.

Our goal is to compute a compensated input image x resulting in
an observed image which is perceptually as close as possible to the
desired image x̄. To achieve this we define an abstract perceptually
based weighting function λ(·), which can include any combination
of the psychophysical and physiological aspects of the HVS. We
then use λ(·) for weighting the residual r = x + ϕ(x) − x̄ and
rewrite Equation 1 as:

argmin
x
‖λ(r)‖2, s.t. 0 ≤ x ≤ 1. (3)

The above formulation applies to a single channel. For color images
we solve Equation 3 separately for each channel. This requires the
images to be transformed to a color space with independent channels.
Sheng et al. [2010] suggest the YCbCr color space, which is a good
approximation of the perceptually uniform CIE-Lab color space.

It would in general be impractical, if not impossible, to solve Equa-
tion 3 as λ(·) may be highly non-linear. To make Equation 3
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Figure 4: A 1-D illustration comparing no compensation, subtrac-
tive compensation and CSF weighting (perceptual) compensation.
(a)-(c) The input images. (d)-(f) The observed images. Pollution is
depicted as the red shaded areas. Perceptual compensation smoothes
the high contrast edge of the ghost, while simultaneously maximizing
the contrast of the original input right-hand edge.

amenable to efficient computation, we aim to linearize Equation 3.
We propose to first apply the CSF as a weighting function directly
(3.2). Additional non-linear perceptual models are computed only
once incorporated as a weighting mask in the spatial domain (3.3).

3.2 Linear Perceptual Weighting by the CSF

The CSF describes the varying sensitivity of the HVS to spatial
frequencies, with a distinct peak and falloff towards low and high
frequencies. Weighting the residual r in Equation 3 with the CSF
coefficients distributes the error to frequencies where the HVS is
least sensitive. This results in smoothing of edges due to pollution,
while non-pollution details are preserved, as illustrated in Figure 4.
The figure compares no compensation, subtractive compensation
(λ(·) is one) and perceptual compensation (λ(·) is CSF) of a 1-D
signal. The additive pollution is drawn as shaded red areas. For
perceptual compensation, Figure 4f, the contrast of the input’s right
edge is maximized while smoothing the edge due to pollution.

The CSF is most naturally expressed in the frequency domain, but
we can represent it in matrix form as:

Λl = F−1ΩF , (4)

where Ω is a diagonal matrix of the CSF spectral coefficients and
F = Fy ⊗ Fx is the two dimensional discrete Fourier transform.
We can thus directly apply the CSF as the weighting function, with
λ(r) ≡ Λl · r we have:

argmin
x
‖Λl · r‖2, s.t. 0 ≤ x ≤ 1. (5)

The challenge is that Λl is a dense n× n matrix, with n the number
of pixels in the input image. For typical digital cinema quality
content, this would result in a matrix with roughly 1013 non-zero
elements, and would require over a terabyte of memory just to
store. Fortunately, by the convolution theorem, we can also express
Equation 5 as a convolution:

argmin
x
‖Kl ∗ r(x)‖2, s.t. 0 ≤ x ≤ 1, (6)

where Kl is the spatial convolution kernel corresponding to Λl.
Equation 6 yields a linear system with a block Toeplitz with Toeplitz



blocks (BTTB) structure. We can exploit this fact to omit the need to
store Λl explicitly and compute Λlr on demand instead. By taking
a circulant extension of the BTTB structure, matrix-vector multipli-
cations can be performed using 2D FFTs [Vogel 2002]. This allows
us to solve Equation 6 for our large problems using for example
the conjugate gradients with gradient projection (GPCG) method
[Moré and Toraldo 1991]. We note that Equation 6 is similar in struc-
ture to non-blind deconvolution problems [Banham and Katsaggelos
1997], which aim to reconstruct some true signal from corrupted
observations given a known corruption kernel.

3.3 Non-Linear Perceptual Weighting

We observe that although pollution is physically always present,
the actual pollution may be near or below the perceptual threshold
of visibility. This could be incorporated into Equation 6 as an
additional weighting. For efficiency, non-linear models would be
computed once and represented as a diagonal matrix Λn. This can
be combined with matrix Λl and model the perceptual weighting λ
of r as λ(r) ≡ ΛnΛlr. Equation 3 thus becomes:

argmin
x
‖ΛnΛlr(x)‖2, s.t. 0 ≤ x ≤ 1. (7)

For the remainder of this and the next section we set Λn to identity.
We discuss Λn further in Section 5.

3.4 Deghosting

Stereoscopic Input Images To apply our framework to deghost-
ing, we have to take into account that the input is a (stereo) pair of
images: left (xL) and right (xR). Hence, ϕ(·) is now a function of
two input images:

ψ(xL) = xL + ϕ(xL,xR) ; ψ(xR) = xR + ϕ(xR,xL), (8)

where ψ(xL) and ψ(xR) are the observed images in the presence
of ghosting.

We stack xL and xR into a single vector x and furthermore assume
that during a single iteration of GPCG, ϕ(x) remains constant. We
can then write r = x− (x̄− ϕ(x)). Plugging this into Equation 7
we get:

argmin
x
‖ΛnΛlx− ΛnΛl(x̄− ϕ(x))‖2, s.t. 0 ≤ x ≤ 1. (9)

In practice we precompute ΛnΛl(x̄ − ϕ(x)) = x′, perform one
iteration of GPCG and then use the current solution x to updateϕ(x),
recompute x′, and continue with the next iteration until convergence.
Also, whenever we need to compute ΛnΛlx, we first un-stack x,
compute ΛnΛlxL and ΛnΛlxR, and re-stack x.

4 Results

To evaluate our perceptual framework for deghosting we superim-
posed two manually aligned1 projectors (1280×720 @ 2.5m) using
circular polarization, see Figure 5. The projectors’ response (in
CIE-XYZ) are measured using a colorimeter, and we found that
R+G+B = W , with a gamma value of 2.2. We used the common
gamut mapping method [Stone et al. 1988] to correct for color and
brightness. We measured the pollution function ϕ(·) by mounting
the eyewear’s polarizing filter in front of the colorimeter. We mea-
sure the XYZ values for the RGB primaries: once for the intended eye
image, and once for the unintended eye image (for both projectors).

1alignment is pixel-accurate except for the periphery of the display

Figure 5: Our experimental rear-projection setup consisting of two
projectors using polarization filtering for generating separate left
and right eye images. Results are captured by mounting the eyewear
in front of a camera lens (inset).

We finally gamma correct the RGB values and transform ϕ(·) to the
Y CbCr color space for computing the compensation.

Figure 2 compares no compensation, subtractive compensation and
perceptual compensation for a zoomed-in region. The top row on
the right-hand side shows the compensated (input) images. The
bottom row shows the observed images on our experimental setup.
Subtractive compensation cannot compensate for the pollution, and
the ghosting is nearly as strong as it is for the original image. The
perceptually compensated result shows that the residual has been
distributed smoothly to make the ghosting edge imperceptible. The
left and right input images are superimposed on the left-hand side
to illustrate the disparities. Figure 6 shows additional comparisons.
The top row shows the original input image, and the bottom row
shows zoomed-in regions for the observed subtractive and perceptual
compensation images. The perceptual compensation distributes the
residual error smoothly. We point out again that the lack of a visible
ghost edge in the perceptually compensated images leads to more
comfortable stereoscopic viewing, as verified with our user study
(see Section 4.1).

All our results have been generated for a ”sweet-spot” location. We
use the model proposed by Daly [1992] for generating a 2D CSF. As
CSF parameters we use the projection resolution and size, a viewing
distance of 3.0 m, light adaptation of 5 cd/m2, and eccentricity
zero.

4.1 User Evaluation

We conducted a user evaluation to determine whether perceptual
compensation of stereoscopic images and video is more comfortable
to view. The experiments apply a single factor, the compensation
strategy, with up to three different conditions: no compensation
(original image), subtractive compensation, and perceptual compen-
sation. We did not include compensation by raising the black level
globally, as this significantly changes the image compared to the
intended image. Using a forced-choice, pairwise comparison design,
participants were presented balanced trials consisting of two images
that differ only in compensation strategy. Participants then chose
which one is more comfortable to view.

For both still images and video, we observed strong statistical evi-
dence that the perceptually-based compensation is more comfortable
to view. For still images we collected from 960 total balanced tri-
als across 16 participants, while for video we collected across 120
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Figure 6: Examples of ghosting and deghosting on the badge, indoor, knight and grasshopper scenes. The top row shows the non-compensated
input image. The bottom row shows a side-by-side comparison of observed images acquired with a camera for subtractive compensation and
perceptual compensation, for a selected area.
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Figure 7: Significant preference for perceptual compensation is
present in all ten images (left) and five of six videos (right) of our
two user evaluations. The outlier, video #2, reaffirms the value of
ghosting prediction (see section 4.1)

total balanced trials from 10 participants, see Figure 7. We applied
Pearson’s chi-squared goodness-of-fit test to analyze the participant
preferences [Sheskin 2007]. Perceptual compensation is significantly
preferred over the original image and subtractive compensation for
both still images and video (p = 0.01 and χ2(2, 960) = 283.0,
p = 0.01 and χ2(1, 120) = 58.8 resp.). Video #2 was the only
non-significant result. The ghosting for this case is in a relatively
small and visually less important region of the image (included as
Bolt Indoor in the accompanying video). This result reaffirms the
value of using ghosting prediction.

5 Pollution Prediction

Due to the size of the problem in Equation 6, performance and
convergence is slow. The size of the optimization problem can be
reduced by restricting only to areas where pollution is noticeable.
The diagonal matrix Λn can be exploited as a predictor by turning
this into a binary weighting mask in the spatial domain. For predic-
tion we propose to use the threshold-vs-intensity (TVI) and visual
masking in Λn [Ferwerda et al. 1996; Ferwerda et al. 1997].

The TVI describes the minimum contrast required to distinguish
between foreground and background intensities. A per-pixel test is
performed to check whether the residual ψ(x)− x̄, averaged over
some area, is above a threshold:

δ(x) = (ψ(x)− x̄) > ∆TV I . (10)

For mesopic luminance level settings, e.g. cinema, Ferwerda et

al. [1996] suggest to blend between values computed by photopic
and scotopic models.

Mechanisms in the visual system are tuned to different frequency
and orientations bands, and visual masking describes the reduction in
contrast sensitivity due to interactions between image components
within mechanism bands. We use the model from Ferwerda et
al. [1997] with x̄ and ψ(x) as the reference and test images to
compute per-pixel masking values:

υ(x) =
∑
i

∑
θ

∆R2
i,θ(x), (11)

where ∆Ri,θ is the difference in response of a mechanism with
frequency band i and orientation θ, to a reference and test image.

To determine the spatial domain weighting mask Λn we normalize
and combine maps δ(x) and υ(x) using component-wise multipli-
cation:

Λn = δ(x)� υ(x). (12)

To turn Λn into a binary mask we compare each pixel against a
threshold tΛn . The predictor can be further extended by considering
only ghosting in visually important regions, e.g., Harel et al.[2007]
proposed an MRF-based approach to predict object regions. Saliency
masking γ(x) is incorporated in the prediction as:

Λn = γ(x)� (δ(x)� υ(x)). (13)

With deghosting, the pollution is due entirely to unintended light
contribution from the other eye image. To better predict the notice-
ability of the ghosting we use the saliency of that eye’s image. Thus,
for the left eye we have:

Λleft
n = γ(x)right � (δ(x)left � υ(x)left), (14)

and similarly for Λright
n .

We implemented this prediction model for our experimental setup.
We extracted a 1D CSF from the generated 2D CSF in Section 4,
and this CSF is used in the masking model. Adaptation luminance
for the TVI is computed over a small area as proposed by Ramasub-
ramaniam et al. [1999] (using the XYZ measurements obtained for
our experimental setup). Figure 8 shows an example of ghosting
prediction, with tΛn = 0.05.

Table 1 shows the timing results for our algorithm implemented in
CUDA. The first row shows the performance for a full resolution
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Figure 8: Example of the ghosting prediction map. For each of the four images in this figure the computed map is shown on the left-hand side,
and the modulation of the map with the residual is shown on the right-hand side: (a) TVI map, (b) visual masking map, (c) saliency map, and
(d) thresholded prediction map.

(2K) input image. Subsequent rows show performance for examples
of areas determined by the pollution prediction (Section 5). As com-
pensation is only required for these areas, the runtimes for smaller
areas greatly reduce. Even with prediction, Table 1 shows that our
method is not suitable for time-critical applications, but rather for
applications which allow the compensation to be performed in an
offline preprocess.

Table 1: Performance of CUDA implementation.
Resolution #FFTs #Iterations Runtime (secs)

2028×1080 3772 159 248.5557
534×844 3992 167 128.4280
435×505 3684 154 34.3573
196×232 2636 109 4.1634

6 Descattering

Our perceptual framework can also be applied to the problem of
descattering for immersive displays, specifically IMAX Dome pro-
jections. In this case, the intended image is degraded due to light
pollution caused by multiple bounces of indirect scattering. With
descattering, simply evaluating the pollution term ϕ(·) is a complex
and computationally expensive process which, in the general case,
involves solving the rendering equation [Kajiya 1986]. However, the
screens in IMAX Dome systems are low-gain, resulting in Lamber-
tian reflectance [Lantz 1995; Scott 2008]. This allows us to obtain
closed-form solutions.

6.1 Efficient Closed-Form Pollution Estimation

To compute the pollution term ϕ(·), we exploit the relatively un-
known fact that the point-to-point form factor within a sphere is a
constant. The consequence of this is that the indirect illumination
within a Lambertian sphere is spatially uniform, regardless of the
projected illumination. This fact was used by Szirmay-Kalos [2000]
to obtain a closed-form solution to the one-bounce light transport
operator within a closed, perfectly Lambertian sphere, as well as by
Hawkins et al. [Hawkins et al. 2005]. We generalize this result to
partial spherical sections and multiple bounces. This results in the
following analytic expression for the pollution term:

ϕ(x) =
ρπr2

4− Ωxρπr2
(a · x), (15)

where ρ ∈ (0, 1) is the screen gain (diffuse albedo), a is a vector
specifying the projected area of each pixel onto the screen, Ωx

is the projected area of the entire image, and r is the radius of
the sphere. For simplicity of notation, we omit the projector-to-
screen form factors, but incorporate these in our implementation.
Equation 15 computes all bounces of indirect illumination, for all
pixels, using a single dot product in O(n) time where n is the
number of image pixels. Hence, this computation can be performed
efficiently within the inner-loop of perceptual compensation, without
down-sampling, even for high-resolution input images typical of
IMAX Dome projection.

Figure 1 shows a simulation of an image projected onto an IMAX
Dome and compares it to the image observed by the audience once
indirect scattering is added by the physical system. The observed
image is simulated using the radiosity solution described in Sec-
tion 6.1. We compare subtractive descattering to our perceptual
descattering solution for this image, as well as in Figure 9. In each
case, our perceptual compensation increases the relative contrast
without the loss of details arising from the light clamping necessary
in subtractive compensation approaches.

7 Discussion & Future Work

As discussed, ghosting introduces local error in the form of edges,
which is typically compensated for by subtraction prior to display.
For low background luminance areas this error can only be hidden
by reducing the contrast. We propose an automatic method for local
contrast reduction. Under the non-negative light constraint, we apply
a weighted L2 norm to the residual according to perceptual metrics.
Residual error is then distributed into regions of lower sensitivity
for the HVS. The formulation of light pollution compensation as
an optimization problem is a generalization of the subtractive com-
pensation approaches. It is specifically aimed to handle areas which
previous work classifies as uncorrectable.

Our approach has certain limitations. First, computational complex-
ity is high due to the fact that Λl is dense. Improved performance
may be obtained by formulating an approximation to the perceptual
metrics with more desirable properties for optimization. Second,
our method relies on a controlled illumination environment, and
results are computed for a sweet-spot location. SMPTE D-Cinema
specifications [2008] were developed to ensure uniformity among
digital cinemas and offline pre-computed deghosting material would
thus be valid for most digital cinemas. Furthermore, measurements
in a real cinema show an increase in ghosting from 1.1% at the
sweet-spot, to 2.0% at the periphery. We evaluated this on our setup.
Figure 10 shows subtractive and perceptual compensation for loca-
tions left off-axis, sweet-spot and right off-axis on our experimental
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Figure 9: When projecting onto a spherical dome, the projected image (left) is corrupted by indirect scattering. Subtractive methods (middle)
can only correctly compensate the projected image in image regions with enough signal and negative values are clamped to black, leading to
loss of detail in the observed image. Our perceptual compensation (right) retains more of these dark details while maintaining a final observed
image that is perceptually closer to the unpolluted original image.
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Figure 10: We compare compensations for left off-axis, center
(sweet-spot) and right off-axis locations. The top and bottom rows
compare subtractive and perceptual compensations. Although the
ghosting contribution increases for off-axis locations, the perceptual
compensation still increases viewing comfort.

setup. Although an increase in ghosting for left and right off-axis can
be observed, the off-axis locations still benefit from the perceptual
compensation.

We only validated the prediction (Section 5) experimentally. For a
truly effective prediction, a more rigorous validation should be per-
formed. Recent work explores subjective detection or acceptability
thresholds for ghosting [Wang et al. 2011]. Future work to obtain a
more thorough understanding of discomfort and fatigue for viewing
stereoscopic imagery in general will be necessary. Further research
in the spatio-temporal domain and the general concept of stereo-
scopic saliency could help improve this understanding. Reducing
any discomfort for stereoscopic viewing will be especially important
with the increasing popularity of 3D television, games and mobile
devices.

8 Conclusion

We have descrived a framework for compensation of light pollution,
formulated as a perceptually-based optimization problem. Light
pollution is defined as the unintended light contribution onto (por-

tions of) an intended image. The residual error of light pollution
is distributed to regions with less sensitivity of the HVS. Our for-
malization is a generalization of exisiting subtractive compensation
methods. We described two compensation applications: deghosting
in stereoscopic 3D display systems, and descattering for concave
projection-based displays. Most importantly the perceptibility of
conflicting edge cues is reduced for perceptual deghosting, which
makes watching stereoscopic 3D displays more comfortable. For
spherical display surfaces often used in immersive displays, we have
developed an analytic formulation for the scattering pollution.
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