(1) Soit R la récurrence homogène

$$\sum_{i=0}^{k} a_i t_{n-i} = 0$$

et soit p(x) le polynôme caractéristique de R, avec les racines distinctes r_1, \ldots, r_ℓ de multiplicités respectives m_1, \ldots, m_ℓ . Alors la solution générale de R est

$$\sum_{i=1}^{\ell} \sum_{j=0}^{m_i - 1} c_{ij} n^j r_i^n.$$

(2) Soit R^* la récurrence non homogène

$$\sum_{i=0}^{k} a_i t_{n-i} = \sum_{i=1}^{s} b_i^n q_i(n)$$

avec b > 0 et $q_i(n)$ un polynôme en n de degré d_i , i = 1, ..., s. Soit $p^*(x)$ le polynôme caractéristique de R^* , avec les racines distinctes $r_1, ..., r_\ell$ de multiplicités respectives $m_1, ..., m_\ell$,

$$p^*(x) = p(x) \prod_{i=1}^{s} (x - b_i)^{d_i + 1}.$$

Alors la solution générale de R est

$$\sum_{i=1}^{\ell} \sum_{j=0}^{m_i - 1} c_{ij} n^j r_i^n.$$

Remarque 1. En cours, nous avons vu la forme générale de la solution en (2) dans la forme

$$\sum_{i=1}^{\ell} \sum_{j=0}^{m_i-1} c_{ij} n^j r_i^n + \sum_{i=\ell+1}^{s} \sum_{j=0}^{d_i} c_{ij} n^j b_i^n$$

où r_i , $i = 1, ..., \ell$, sont des racines de p(x) (et non pas de $p^*(x)$), avec le commentaire la première partie vient des racines de p(x), la deuxième des b_i . Ceci n'est vrai que si les racines de p(x) sont différentes de tous les b_i . Nous avons vu un exemple de "pourquoi" en cherchant la solution donnée en (3) plus bas (le cas $b^k = \ell$).

(3) Soit la récurrence

$$t(n) = \ell t(\frac{n}{b}) + cn^k$$

quand $\frac{n}{n_0}$ est une puissance de b, avec $b, k, n_0 \in \mathbb{N}, \ b \ge 2, \ n_0 \ge 1, \ n > 0, \ c \in \mathbb{R}^{>0}$. Alors

$$t(n) \in \begin{cases} \Theta(n^k) & \text{quand } b^k > \ell \\ \Theta(n^{\log_b \ell}) & \text{quand } b^k < \ell \\ \Theta(n^k \log n) & \text{quand } b^k = \ell \end{cases}$$

et les relations semblables sont vraies pour

$$t(n) = \ell t(\frac{n}{h}) + f(n),$$

 $f(n) \in \Theta(n)$ et, mutatis mutandis, $f(n) \in O(n)$, $f(n) \in \Omega(n)$.

Remarque 2. Quand on change la variable ou le codomaine, les conditions originales ne disparaissent pas mais sont traduites dans le nouveau paradigme.

1