Lecture 2: Review of Pipelines

Prof. David A. Patterson
Modifié par M. Aboulhamid

DAP Spr.‘98 ouCB 1

Pipelining: Its Natural!

Laundry Example
Ann, Brian, Cathy, Dave @5&5&5
each have one load of clothes =

to wash, dry, and fold
Washer takes 30 minutes J

Dryer takes 40 minutes

“Folder” takes 20 minutes %

DAP Spr.'98 ©uCB 2

Page 1

Sequential Laundry
6PM 7 8 9 10 11 Midnight

| Time

|
30| 40 |5'30| 40 I5‘30'40 I5'30| 40 IE'

| & G5

Fd-"

L O sk

- & (5

* Sequential laundry takes 6 hours for 4 loads
* If they learned pipelining, how long would laundry take?

DAP Spr.‘98 ouCB 3

Pipelined Laundry
Start work ASAP

6PM 7 8 9 10 11 Midnight
H Tim >

e
| T T

30 40 40 40 20

B HE
S ﬁ by .
| & S[h7

* Pipelined laundry takes 3.5 hours for 4 loadg, ., ¢ cuces

N

~ 0o -

U= .45]_

N

0

= ma=0

Page 2

~ 0o o

=0 o =0

Pipelining Lessons

9 + Pipelining doesn’t help
latency of single task, it
> helps throughput of
entire workload

e
|—| « Pipeline rate limited by
0 20 slowest pipeline stage

55 . * Multiple tasks operating
- simultaneously
° « Potential speedup =
?- Number pipe stages
¢ Unbalanced lengths of

LI
° pipe stages reduces
55 speedup

° * Time to “fill" pipeline and

U
~~

time to “drain” It reduces
v -rr speedup

0

DAP Spr.‘98 ©UCB 5

Computer Pipelines

* Execute billions of instructions, so
throughputis what matters

 DLX desirable features: all instructions same
length, registers located in same place in
instruction format, memory operands only in
loads or stores

+ N'est pas visible au programmeur

DAP Spr.'98 ©UCB 6

Page 3

5 Steps of DLX Datapath

Execute/
Instruction decode/ address Memory Write

Instruction fetch .
register fetch calculation access back

u
—|x
NPC
ranchf
4

Instruction
— Registers
memory

—

16 32
Sign

Data LMD '™
memory u
x

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock

cycles.

DAP Spr.‘98 oucB 7

Steps1l & 2

IF -instruction fetch step

IR <-- Mem[PC]: fetch the next instruction from memory
NPC <-PC + 4 : compute the new PC

» donein parallel with opcode decode

ID -instruction decode and register fetch step
— A<-RegdIR6.10]
— B<-RegdIR11.16]

* Possible sinceregister specifiersareencoded in fixed fields
» Wemay fetch register contentsthat we don’t use but OK since

the operandswill beready if the opcodeis of the type that does
use

them
* Also calculate the sign extended immediate in casethat’sthe
valuethat the opcode needs

DAP Spr.'98 ©UCB 8

Page 4

Pipelined DLX Datapath

IF/ID ID/EX EXIME MEM/WB

IR6..10
IR11..15
nstruction . I
memory —> [T Register
MEM/WB.]R

DAP Spr.‘98 ©UCB 9

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.

Visualizing Pipelining

Eiaure 3.3. Page 133

Time (in clock cycles)

cc1 H cc 2 cc 3 cca ccs cce cc 7 cc s cco

e Dy e

g P =Sy Al

L= [e |
;"a:
[]

D g

[FIGURE 3.3 The pipeline can be thought of as a series of datapaths shifted in tme.

DAP Spr.'98 ©UCB 10

Page 5

Its Not That Easy for
Computers

* Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

— Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

— Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

— Control hazards: Pipelining of branches & other instructions
that change the PC

— Common solution is to stall the pipeline until the hazard is
resolved, inserting one or more “bubbles” in the pipeline

DAP Spr.'98 ©UCB 11

One Memory Port/Structural Hazards
Figure 3.6, Page 142

Time (clock cycles) *

cC1 . CCIoq G033, CC4 o CCE , CCh g COT

A 4

I
: ;
.| Instrl
ol Instr2
r
d| Instr 3 S ! L
ey | =t i
" Instr 4 gt 5 g

Page 6

Time (in clock cycles)

CC1 Ccc2 CC3 CC4 CCs5 CC6 Ccc7 CcCs
Load Mem
Instruction 1
Instruction 2
Instruction 3
Instruction 4 Mem Reg ’ I Mem r

FIGURE 3.6 A machine with only one memory port will generate a conflict whenever a memory reference occurs.

DAP Spr.‘98 ouCB 13

One Memory Port/Structural Hazards
Fiaure 3.7, Page 143
Time (clock cycles) *

|

n

S

t | Instrl
r.
O | Instr 2
;

d
e

r

v Instr 3

Page 7

Time (in clock cycles)

Load Mem

C ': i
Instruction 1 Mem i Reg I Mem r Reg

Instruction 2 Mem J: Re Bl I Mem r Reg '

Mem 7 Reg
g

Instruction 3 Mem Reg r I Mem r

FIGURE 3.7 The structural hazard causes pipeline bubbles to be inserted.

DAP Spr.'98 ©UCB 15

Speed Up Equation for
Pipelining

CPI pi pelined = |de§-| Cl_:’l -
+ Pipeline stall clock cycles per instr

Speedup = ldeal CPl x Pipeline depth « QA ock Cycl eynpipelined
Ideal CPI + Pipeline stall CPI G ock Cycl €y el ned

Speedup = Pi pel i ne depth C ock Cycl eynpipel i ned
1 + Pipeline stall CPI C ock Cycl epipelined

DAP Spr.'98 ©UCB 16

Page 8

Example: Dual-port vs. Single-port

Machine A: Dual ported memory

Machine B: Single ported m_emor%/, but its pipelined
implementation has a 1.05 times faster clock rate

Ideal CPIl =1 for both

Loads are 40% of instructions executed
SpeedUp, = Pipeline Depth/(1 + 0) x (clockyypype/ Cl OCKp; pe)
= Pipeline Depth

SpeedUpg = Pipeline Depth/(1 + 0.4 x 1)
® 7 (61 0CK gy o (€1'0CKynpi e | 1. 05)

= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth
SpeedUp, / SpeedUpg = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Machine A is 1.33 times faster

DAP Spr.'98 ©UCB 17

o~ 0 S —

= o a =0

Data Hazard on R1

Figure 3.9, page 147

Time (clock cycles)
IF IDIRF EX MEM WwB

add r1,r2,r3’ [»] I'MII-’ =4
sub r4,r1,r3

and r6,r1,r7

\/

.

or r8,r1,r9-

- XOr r10,r1,rii

Page 9

Time (in clock cycles)

cc1 ccs cc 4 ccs cce

cc2
ADD R1, R2, R3 M i Rl':[

SUB R4, R1, RS

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

«-——— Progam executon orer (ninstuctors)

Fregister is not written until after those instructions read it.

DAP Spr.'98 ©ucB 19

Time (in clock cycles)

SUB R4, R1, RS

AND R6, R1, R7

]
OR R8, R1, R9 | Reg |

XOR R10, R1, R11

o« Program execution orer (in instructions)

FIGURE 3.10 A set of instructions that depend on the ADDresult use forwarding paths to avoid the data hazard.

DAP Spr.'98 ©@ucCB 20

Page 10

Three Generic Data Hazards

Instr, followed by Instr,

* Read After Write (RAW)
Instr; tries to read operand before Instr, writes it

DAP Spr.‘98 ouCB 21

Time (in clock cycles)

ADD R1, R2, R3

LW R4, 0(R1)

SW 12(R1), R4

<+————— Program execution order (in instructons)

FIGURE 3.11 Stores require an operand during MEM, and forwarding of that operand is shown here.

DAP Spr.'98 ©@uCB 22

Page 11

Three Generic Data Hazards

Instr, followed by Instr,

* Write After Read (WAR)
Instr; tries to write operand pefore Instr,reads i
— Gets wrong operand

» Can’t happen in DLX 5 stage pipeline because:
— All instructions take 5 stages, and
— Reads are always in stage 2, and
— Writes are always in stage 5

DAP Spr.‘98 ouCB 23

Three Generic Data Hazards

Instr, followed by Instr,

» Write After Write (WAW)
Instr; tries to write operand before Instr, writes it

— Leaves wrong result (Instr, not Instr;)

e Can't happen in DLX 5 stage pipeline because:
— All instructions take 5 stages, and
— Writes are always in stage 5

¢ Will see WAR and WAW in later more complicated pipes

DAP Spr.'98 ©UCB 24

Page 12

Data Hazard Even with Forwarding
Figure 3.12, Page 153

Time (clock cycles)

| wrd, 0¢r2) [+] I'Mll-)

n L

s) [

b rdrirs -

0 and r6,r1,r7 [» H

' _

d .

r or r8,r1,r9 i i
\4 3B 25

Time (in clock cycles)

LW R1, 0(R2) M

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

-— Program execution order (ininstructions)

FIGURE 3.12 The load instruction can bypass its results to the ANDand ORinstructions, but not to the SUB, since
hat would mean forwarding the result in "negative time." DAP Spr.‘98 ©UCB 26

Page 13

Data Hazard Even with Forwarding

Figure 3.13, Page 154

Time (clock cycles)

v

| _
2 [lw rt, 0(r2 :
| r, 002) [TP H e \
é sub r4,r1,r6
2 and r6,r1,r7 EF
r L]

or r8,r1,r9

Time (in clock cycles)

cc1 ccz2 ccs CC 4 CC5 cce

LW R1,0(R2)

SUB R4, R1, RS

AND R6, R1, R7

ORR8, R1, R9

—_— Program execution order (in instructions)

FIGURE 3.13 The load interlock causes a stall to be inserted at clock cycle 4, delaying the SUB instruction and those
hat follow by one cycle. DAP Spr.'98 ©UCB 28

Page 14

Iw rb,b IF

lwrc, ¢

add rarb,rc

Sw a, ra

A=B+C

ID EX MEM WB
IF ID EX MEM WB
IF ID Cde EX MEM WB
IF Cde ID EX MEM WB

DAP Spr.‘98 ©UuCB 29

Software Scheduling to Avoid

Load Hazards

Try producing fast code for

Rb,b

Rc,c
Re,e
Ra,Rb,Rc
Rf,f

a,Ra
Rd,ReRf

DAP Spr.'98 ©@uCB 30

a=b+c;
d=e-f,
assuming a, b, c, d ,e, and f in memory.
Slow code: Fast code:
LW Rb,b LW
LW Rc,c LW
ADD RaRb,Rc LW
SW a,Ra ADD
LW Re,e LW
LW Rf f SW
SUB Rd,ReRf SUB
SwW d,Rd sw

d,Rd

Page 15

A=B+C;,D=E+F

Iw rb,b IF ID EX MEM WB

Iwre, c IF ID EX MEM WB

Lwre e IF ID EX MEM WB

add rarb,rc IF ID EX MEM WB

Lwrf, f IF ID EX MEM WB
Sw a, ra IF ID EX MEM

DAP Spr.‘98 oucCB 31

IDJEX

HW Change for Forwarding

Figure 3.20, Page 161

EXrrAEM ME MSNE

Zera?

ALL

RS

Data
M em ory

¥

DAP Spr.'98 ©uCB 32

Page 16

ID/EX EX/MEM MEM/WB

FIGURE 3.20 Forwarding of results to the ALU requires the addition of three extra
inputs on each ALU multiplexer and the addition of three paths to the new inputs.
DAP Spr.‘98 ouCB 33

Control Hazard on Branches
Three Stage Stall

Tarre fin ok Oyl *

L] oz L) Lt 3

i1z iz 3 | g :D*
|
daar 415 %32 B 1 red

w2 ad $19.42 42 IEI_

B0ld #4700

— FTROran Exetuben Order (R Iretractions)

Page 17

Branch Stall Impact

If CPl1 =1, 30% branch, Stall 3 cycles =>new CPI=1.9!

Two part solution:
— Determine branch taken or not sooner, AND
— Compute taken branch address earlier

DLX branch tests if register =0 ornot0

DLX Solution:

— Move Zero test to ID/RF stage
— Adder to calculate new PC in ID/RF stage
— 1clock cycle penalty for branch versus 3

DAP Spr.‘98 oucCB 35

Pipelined DLX Datapath

Figure 3.22, page 163

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch Addr. Calc. Access Back

This is the correct 1 cycle

latency implementation!
_ TeF FtR HRH-ZF

IFyae

Iarrias

HR4-ZFIF

< fug Yes
= L

DAP Spr.'98 ©UCB 36

Page 18

IFIID ID/EX EX/MEM MEM/WB

Branch|
Zero taken
IR6..10
IR1L.15 M
IInstruction IR ol | g
memory— [MEMMWB|IR 2 >LU
= M Data
o u memony_.| |_.[M
X u
X

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.

ID/EX
ADI]
IF/1ID EXIMEM MEM/WB
IR6..1
RILL
Ihstructiop R o
memory[— | [TMEM/WB.IR .2
g M Data
o u
X

FIGURE 3.22 The stall from branch hazards can be reduced by moving the zero test and brif€teRirgett4itiitition
into the ID phase of the pipeline.

Page 19

compress

22%
eqgntott

espresso

Benchmark
doduc
ear
hydro2d
mdljdp | 0%
0%
2%
su2cor %
1%
0% 5% 10% 15% 20% 25%

Il Forward conditi
branches

Backward cond
branches

DAP Spr.‘98 ©uCB 39
FIGURE 3.24 The frequency of instructions (branches, jumps, calls, and returns)
that may change the PC.

78%

80%

70%
63%
61%

60%
53%
50% |
44%

Fraction of all
conditional brancﬁ@s%

.
w
2
=

=

2

30% 6%
2% 21%21%

20%

.
2
8

10%

Benchmark

W Forward taken ' Backward talfen

FIGURE 3.25 Together the forward and backward taken branches account for an average of BT 18 QYCBitd nal
branches.

Page 20

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
— Execute successor instructions in sequence
— “Squash” instructions in pipeline if branch actually taken
Advantage of late pipeline state update
— 47% DLX branches not taken on average
PC+4 already calculated, so use it to get next instruction
#3: Predict Branch Taken
— 53% DLX branches taken on average
— But haven't calculated branch target address in DLX
» DLX still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

DAP Spr.'98 ©UCB 41

Four Branch Hazard Alternatives

#4: Delayed Branch
— Define branch to take place AFTER a following instruction

branch instruction
sequential successor
sequential successor,

Branch delay of length n

sequentl al successor | \
branch target if taken /
— 1slot delay allows proper decision and branch target address in 5

stage pipeline
— DLXuses this

DAP Spr.'98 ©uCB 42

Page 21

Delayed Branch

* Where to get instructions to fill branch delay slot?
— Before branch instruction
— From the target address: only valuable when branch taken
— From fall through: only valuable when branch not taken
— Cancelling branches allow more slots to be filled

» Compiler effectiveness for single branch delay slot:
— Fills about 60% of branch delay slots

— About 80% of instructions executed in branch delay slots useful
in computation

— About 50% (60% x 80%) of slots usefully filled

» Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

DAP Spr.'98 ©UCB 43

Evaluating Branch Alternatives

L _ Pipeline depth
Pipeline speedup 1 +Branch frequency ~ Branch pendty

Scheduling Branch CPl speedupv. speedupv.

scheme penalty unpipelined stall
Stall pipeline 3 142 3.5 1.0
Predict taken 1 114 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

DAP Spr.'98 ©UCB 44

Page 22

Pipelining Introduction
Summary

» Just overlap tasks, and easy if tasks are independent
» Speed Up — Pipeline Depth; if ideal CPlis 1, then:

Pipeline Depth Clock Cycle Unpipelined
Speedup = X

1 + Pipeline stall CPI Clock Cycle Pipelined

* Hazards limit performance on computers:
— Structural: need more HW resources
— Data (RAW,WAR,WAW): need forwarding, compiler scheduling
— Control: delayed branch, prediction

DAP Spr.‘98 ©ouCB 45

Page 23

