
Page 1

DAP Spr.‘98 ©UCB 1

Lecture 2: Review of Pipelines

Prof. David A. Patterson

Modifié par M. Aboulhamid

DAP Spr.‘98 ©UCB 2

Pipelining: Its Natural!

• Laundry Example

• Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

Page 2

DAP Spr.‘98 ©UCB 3

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

DAP Spr.‘98 ©UCB 4

Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Page 3

DAP Spr.‘98 ©UCB 5

Pipelining Lessons
• Pipelining doesn’t help

latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

DAP Spr.‘98 ©UCB 6

Computer Pipelines

• Execute billions of instructions, so
throughput is what matters

• DLX desirable features: all instructions same
length, registers located in same place in
instruction format, memory operands only in
loads or stores

+ N'est pas visible au programmeur

Page 4

DAP Spr.‘98 ©UCB 7

5 Steps of DLX Datapath

Instruction fetch
Instruction decode/

register fetch

Execute/
address

calculation

Memory
access

Write
back

B

P C

4

AL U

1 6 3 2

Ad d

D a t a
m e m o r y

Re g i ste rs

S ig n
ex ten d

I n s t r u c t i o n
m e m o r y

M
u
x

M
u
x

M
u
x

M
u
x

Z e r o ?
B r a n c h

t a k e n
C o n d

N P C

l m m

A L U
o u t p u t

IR
A

L M D

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock

cycles.

DAP Spr.‘98 ©UCB 8

Steps 1 & 2

• IF - instruction fetch step

IR <-- Mem[PC]: fetch the next instruction from memory
NPC <-- PC + 4 : compute the new PC

• • done in parallel with opcode decode

• ID - instruction decode and register fetch step
– A <-- Regs[IR 6.. 10]

– B <-- Regs[IR 11.. 16]

• • Possible since register specifiers are encoded in fixed fields
• • We may fetch register contents that we don’t use but OK since

• the operands will be ready if the opcode is of the type that does
use

• them

• • Also calculate the sign extended immediate in case that’s the

• value that the opcode needs

Page 5

DAP Spr.‘98 ©UCB 9

Pipelined DLX Datapath
Figure 3.4, page 137

Data
memory

ALU

Si gn
ex tend

P C

Instruction
memory

A DD

IF/ID

4

I D / E X EX/MEM M E M / W B

I R6. .10

M E M / W B . I R

M
u
x

M
u
x

M
u
x

I R11 ..1 5

Regi ster s

B ran ch
taken

IR

16 32

M
u
x

Zero?

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.

DAP Spr.‘98 ©UCB 10

Visualizing Pipelining
Figure 3.3, Page 133

A
LU

AL
U

RegRegIM D M

RegIM D M

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

P
ro

gr
am

 e
xe

cu
tio

n
 o
rd

er
 (
in
 in

st
ru

ct
io
n
s)

Reg

CC 8 CC 9

RegIM D M RegA
LU

RegIM D M RegA
LU

RegIM D M RegAL
U

FIGURE 3.3 The pipeline can be thought of as a series of datapaths shifted in time.

Page 6

DAP Spr.‘98 ©UCB 11

Its Not That Easy for
Computers

• Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

– Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

– Control hazards: Pipelining of branches & other instructions
that change the PC

– Common solution is to stall the pipeline until the hazard is
resolved, inserting one or more “bubbles” in the pipeline

DAP Spr.‘98 ©UCB 12

One Memory Port/Structural Hazards
Figure 3.6, Page 142

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Page 7

DAP Spr.‘98 ©UCB 13

A
LU

A
L

U

RegRegMem Mem

RegMem Mem

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

CC 8

RegMem Mem RegA
LU

RegMem Mem RegA
L

U

RegMem MemA
LU

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

FIGURE 3.6 A machine with only one memory port will generate a conflict whenever a memory reference occurs.

DAP Spr.‘98 ©UCB 14

One Memory Port/Structural Hazards
Figure 3.7, Page 143

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

stall

Instr 3

Page 8

DAP Spr.‘98 ©UCB 15

A
LU

A
LU

RegRegMem Mem

RegMem Mem

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

CC 8

RegMem Mem RegA
LU

RegMem MemA
L

U

Load

Instruction 1

Instruction 2

Stall

Instruction 3

Bubble Bubble Bubble Bubble Bubble

FIGURE 3.7 The structural hazard causes pipeline bubbles to be inserted.

DAP Spr.‘98 ©UCB 16

Speed Up Equation for
Pipelining

CPIpipelined = Ideal CPI
+ Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth Clock Cycleunpipelined
Ideal CPI + Pipeline stall CPI Clock Cyclepipelined

Speedup = Pipeline depth Clock Cycleunpipelined
1 + Pipeline stall CPI Clock Cyclepipelined

x

x

Page 9

DAP Spr.‘98 ©UCB 17

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory

• Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed
SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth
SpeedUpB = Pipeline Depth/(1 + 0.4 x 1)

x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

DAP Spr.‘98 ©UCB 18

Data Hazard on R1
Figure 3.9, page 147

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB

Page 10

DAP Spr.‘98 ©UCB 19

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c l o c k c y c l e s)

R 1 , R 2 , R 3

R e g

D M

D M

D M

A D D

S U B R 4 , R 1 , R 5

A N D R 6 , R 1 , R 7

O R R 8 , R 1 , R 9

X O R R 1 0 , R 1 , R 1 1

R e g

R e g R e g

R e gI M

I M

I M

I M

I M

R e g
A

L

U

A
L

U

A
L

U

A
L

U

R e g

P
ro

gr
a

m
 e

x
e

c
u

tio
n

 o
rd

e
r

(i
n

 in
s

tr
u

c
ti

o
ns

)

F I G U R E 3 . 9 T h e u s e o f t h e r e s u l t o f t h e i n s t r u c t i o n i n t h e n e x t t h r e e i n s t r u c t i o n s c a u s e s a h a z a r d , s i n c e t h e A D D

register is not written until after those instructions read it.

DAP Spr.‘98 ©UCB 20

D M

D M

D M

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c l o c k c y c l e s)

A D D R 1 , R 2 , R 3

S U B R 4 , R 1 , R 5

A N D R 6 , R 1 , R 7

O R R 8 , R 1 , R 9

X O R R 1 0 , R 1 , R 1 1

R e g

R e g

A
LU

A
L

U

A
L

U

A
L

U

R e g

R e g

R e gI M

I M

I M

I M

I M

R e g

R e g

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 o

rd
e

r
(i

n
 i

n
s

tr
u

c
ti

o
n

s
)

FIGURE 3.10 A set of instructions that depend on the result use forwarding paths to avoid the data hazard.ADD

Page 11

DAP Spr.‘98 ©UCB 21

Three Generic Data Hazards
InstrI followed by InstrJ

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

DAP Spr.‘98 ©UCB 22

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

R1, R2, R3

D M

D M

D M

ADD

LW R4, 0(R1)

SW 12(R1), R4

Reg

Reg Reg

RegIM

IM

IM A
LU

A
L

U

A
L

U

Reg

P
ro

g
ra

m
 e

x
ec

ut
io

n
or

d
er

 (
in

 in
st

ru
ct

io
ns

)

FIGURE 3.11 Stores require an operand during MEM, and forwarding of that operand is shown here.

Page 12

DAP Spr.‘98 ©UCB 23

Three Generic Data Hazards
InstrI followed by InstrJ

• Write After Read (WAR)
InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

• Can’t happen in DLX 5 stage pipeline because:

– All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

DAP Spr.‘98 ©UCB 24

Three Generic Data Hazards

InstrI followed by InstrJ

• Write After Write (WAW)
InstrJ tries to write operand before InstrI writes it

– Leaves wrong result (InstrI not InstrJ)

• Can’t happen in DLX 5 stage pipeline because:

– All instructions take 5 stages, and

– Writes are always in stage 5

• Will see WAR and WAW in later more complicated pipes

Page 13

DAP Spr.‘98 ©UCB 25

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153

DAP Spr.‘98 ©UCB 26

D MA
L

U

A
LU

A
LU

D M

CC 1 CC 2 CC 3 CC 4 CC 5

Time (in clock cycles)

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Reg

Reg

RegIM

IM

IM

IM Reg

Reg

P
ro

gr
am

 e
xe

cu
tio

n
 o

rd
er

 (
in

 in
st

ru
ct

io
ns

)

FIGURE 3.12 The load instruction can bypass its results to the and instructions, but not to the , since AND OR SUB
that would mean forwarding the result in "negative time."

Page 14

DAP Spr.‘98 ©UCB 27

Data Hazard Even with Forwarding
Figure 3.13, Page 154

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

DAP Spr.‘98 ©UCB 28

D M

D M

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Reg A
LU

A
L

U

A
LU

Reg

Reg

RegIM

IM

IM

IM Reg

P
ro

g
ra

m
 e

xe
cu

tio
n

or
d

er
 (

in
 in

st
ru

ct
io

ns
)

Bubble

Bubble

Bubble

FIGURE 3.13 The load interlock causes a stall to be inserted at clock cycle 4, delaying the instruction and those SUB
that follow by one cycle.

Page 15

DAP Spr.‘98 ©UCB 29

A = B + C

WBMEMEXIDCaleIFsw a, ra

WBMEMEXCaleIDIFadd ra,rb,rc

WBMEMEXIDIFlw rc, c

WBMEMEXIDIFlw rb,b

DAP Spr.‘98 ©UCB 30

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid
Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd

Page 16

DAP Spr.‘98 ©UCB 31

A = B + C; D = E + F

MEMEXIDIFSw a, ra

WBMEMEXIDIFadd ra,rb,rc

WBMEMEXIDIFLw rf, f

WBMEMEXIDIFLw re, e

WBMEMEXIDIFlw rc, c

WBMEMEXIDIFlw rb,b

DAP Spr.‘98 ©UCB 32

HW Change for Forwarding
Figure 3.20, Page 161

Page 17

DAP Spr.‘98 ©UCB 33

Data
memory

ALU

Zero?

ID/EX EX/MEM MEM/WB

M
u
x

M
u
x

FIGURE 3.20 Forwarding of results to the ALU requires the addition of three extra
inputs on each ALU multiplexer and the addition of three paths to the new inputs.

DAP Spr.‘98 ©UCB 34

Control Hazard on Branches
Three Stage Stall

Page 18

DAP Spr.‘98 ©UCB 35

Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• DLX branch tests if register = 0 or not 0

• DLX Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

DAP Spr.‘98 ©UCB 36

Pipelined DLX Datapath
Figure 3.22, page 163

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.

This is the correct 1 cycle
latency implementation!

Page 19

DAP Spr.‘98 ©UCB 37

Data
memory

ALU

Sign
extend

PC

Instruction
memory

ADD

IF/ID

4

ID/EX EX/MEM MEM/WB

IR6..10

MEM/WB.IR

M
u
x

M
u
x

M
u
x

IR11..15

R
eg

is
te

rs

Branch
taken

IR

16 32

M
u
x

Zero?

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.

DAP Spr.‘98 ©UCB 38

Data
ALU

Sign
extend

16 32

memory

PC

Instruction
memory

ADD

ADD

IF/ID

4

ID/EX

EX/MEM MEM/WB

IR6..10

MEM/WB.IR

IR11..15

R
eg

is
te

rs

Zero?

M
u
x

M
u
x

M
u
x

IR

FIGURE 3.22 The stall from branch hazards can be reduced by moving the zero test and branch target calculation

into the ID phase of the pipeline.

Page 20

DAP Spr.‘98 ©UCB 39

P e r c e n t a g e o f i n s t r u c t i o n s e x e c u t e d

0% 25%5% 10% 15% 20%

10%

0%

0%

2%

1%

2%

6%

4%
4%

6%

2%
2%

11%

8%
4%

12%

4%
3%

11%

1%
4%

22%

2%
2%

11%

3%
3%

9%
0%

1%

Forward conditional
branches

Unconditional branchesBackward conditional
branches

Benchmark

compress

eqntott

espresso

gcc

li

doduc

ear

hydro2d

mdljdp

su2cor

FIGURE 3.24 The frequency of instructions (branches, jumps, calls, and returns)
that may change the PC.

DAP Spr.‘98 ©UCB 40

Fraction of all
conditional branches

0%

80%

10%

20%

30%

40%

50%

70%

60%
61%

21%

14%

53%

37%38%

26%

34%

13%

44%

16%

35%

25%

63%

8%

51%

22%

78%

3%

21%

Backward takenForward taken

Benchmark

co
m

pr
es

s

eq
nt

ott

es
pr

es
so

gc
c

li dod
uc

ea
r

hy
dr

o2d

m
dl

jd
p

su
2co

r

FIGURE 3.25 Together the forward and backward taken branches account for an average of 67% of all conditional
branches.

Page 21

DAP Spr.‘98 ©UCB 41

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% DLX branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average

– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome

DAP Spr.‘98 ©UCB 42

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5
stage pipeline

– DLX uses this

Branch delay of length n

Page 22

DAP Spr.‘98 ©UCB 43

Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken

– From fall through: only valuable when branch not taken

– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful
in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

DAP Spr.‘98 ©UCB 44

Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0

Predict taken 1 1.14 4.4 1.26

Predict not taken 1 1.09 4.5 1.29

Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

Page 23

DAP Spr.‘98 ©UCB 45

Pipelining Introduction
Summary

• Just overlap tasks, and easy if tasks are independent

• Speed Up �� Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources

– Data (RAW,WAR,WAW): need forwarding, compiler scheduling

– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

