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Lecture 2: Review of Pipelines

Prof. David A. Patterson

Modifié par M. Aboulhamid
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Pipelining: Its Natural!

• Laundry Example

• Ann, Brian, Cathy, Dave 
each have one load of clothes 
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D
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Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would  laundry take?
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Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads
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Pipelining Lessons
• Pipelining doesn’t help 

latency of single task, it 
helps throughput of 
entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = 
Number pipe stages

• Unbalanced lengths of 
pipe stages reduces 
speedup

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup
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Computer Pipelines

• Execute billions of instructions, so 
throughput is what matters

• DLX desirable features: all instructions same 
length, registers located in same place in 
instruction format, memory operands only in 
loads or stores

+ N'est pas visible au programmeur
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5 Steps of DLX Datapath
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FIGURE 3.1  The implementation of the DLX datapath allows every instruction to be executed in four or five clock 

cycles.
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Steps 1 & 2

• IF - instruction fetch step

IR <-- Mem[ PC]: fetch the next instruction from memory
NPC <-- PC + 4 : compute the new PC

• • done in parallel with opcode decode

• ID - instruction decode and register fetch step
– A <-- Regs[ IR 6.. 10 ]

– B <-- Regs[ IR 11.. 16 ]

• • Possible since register specifiers are encoded in fixed fields
• • We may fetch register contents that we don’t use but OK since

• the operands will be ready if the opcode is of the type that does 
use

• them

• • Also calculate the sign extended immediate in case that’s the

• value that the opcode needs
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Pipelined DLX Datapath
Figure 3.4, page 137
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FIGURE 3.4  The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.
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Visualizing Pipelining
Figure 3.3, Page 133
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Its Not That Easy for 
Computers

• Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle

– Structural hazards: HW cannot support this combination of 
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline (missing sock)

– Control hazards: Pipelining of branches & other instructions  
that change the PC 

– Common solution is to stall the pipeline until the hazard  is 
resolved, inserting one or more “bubbles” in the pipeline
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One Memory Port/Structural Hazards
Figure 3.6, Page 142
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FIGURE 3.6  A machine with only one memory port will generate a conflict whenever a memory reference occurs.
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One Memory Port/Structural Hazards
Figure 3.7, Page 143
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FIGURE 3.7  The structural hazard causes pipeline bubbles to be inserted.
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Speed Up Equation for 
Pipelining

CPIpipelined = Ideal CPI 
+ Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth       Clock Cycleunpipelined
Ideal CPI + Pipeline stall CPI   Clock Cyclepipelined

Speedup =     Pipeline depth       Clock Cycleunpipelined
1 + Pipeline stall CPI   Clock Cyclepipelined

x

x
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Example: Dual-port vs. Single-port

• Machine A: Dual ported memory

• Machine B: Single ported memory, but its pipelined 
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed
SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth
SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) 

x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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Data Hazard on R1
Figure 3.9, page 147
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register is not written until after those instructions read it.
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FIGURE 3.10  A set of instructions that depend on the  result use forwarding paths to avoid the data hazard.ADD
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Three Generic Data Hazards
InstrI followed by InstrJ

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it
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FIGURE 3.11  Stores require an operand during MEM, and forwarding of that operand is shown here.
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Three Generic Data Hazards
InstrI followed by InstrJ

• Write After Read (WAR)
InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

• Can’t happen in DLX 5 stage pipeline because:

– All instructions take 5 stages, and

– Reads are always in stage 2, and 

– Writes are always in stage 5
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Three Generic Data Hazards

InstrI followed by InstrJ

• Write After Write (WAW)
InstrJ tries to write operand before InstrI writes it

– Leaves wrong result ( InstrI not InstrJ )

• Can’t happen in DLX 5 stage pipeline because: 

– All instructions take 5 stages, and 

– Writes are always in stage 5

• Will see WAR and WAW in later more complicated pipes
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Data Hazard Even with Forwarding
Figure 3.12, Page 153
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FIGURE 3.12  The load instruction can bypass its results to the  and  instructions, but not to the ,  since AND OR SUB
that would mean forwarding the result in "negative time."
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Data Hazard Even with Forwarding
Figure 3.13, Page 154
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FIGURE 3.13  The load interlock causes a stall to be inserted at clock cycle 4, delaying the  instruction and those SUB
that follow by one cycle.
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A = B + C

WBMEMEXIDCaleIFsw a, ra

WBMEMEXCaleIDIFadd ra,rb,rc

WBMEMEXIDIFlw rc, c

WBMEMEXIDIFlw rb,b
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Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra 

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid 
Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW  a,Ra

SUB Rd,Re,Rf

SW d,Rd
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A = B + C; D = E + F

MEMEXIDIFSw a, ra

WBMEMEXIDIFadd ra,rb,rc

WBMEMEXIDIFLw rf, f

WBMEMEXIDIFLw re, e

WBMEMEXIDIFlw rc, c

WBMEMEXIDIFlw rb,b
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HW Change for Forwarding
Figure 3.20, Page 161
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FIGURE 3.20  Forwarding of results to the ALU requires the addition of three extra 
inputs on each ALU multiplexer and the addition of three paths to the new inputs.
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Control Hazard on Branches
Three Stage Stall
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Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• DLX branch tests if register = 0 or not 0

• DLX Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3
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Pipelined DLX Datapath
Figure 3.22, page 163
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This is the correct 1 cycle
latency implementation!
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FIGURE 3.4  The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.
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FIGURE 3.22  The stall from branch hazards can be reduced by moving the zero test and branch target calculation 

into the ID phase of the pipeline.
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FIGURE 3.24  The frequency of instructions (branches, jumps, calls, and returns) 
that may change the PC.
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FIGURE 3.25  Together the forward and backward taken branches account for an average of 67% of all conditional 
branches.
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% DLX branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average

– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5 
stage pipeline

– DLX uses this

Branch delay of length n
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Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken

– From fall through: only valuable when branch not taken

– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful 
in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, 
multiple instructions issued per clock (superscalar)
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Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0

Predict taken 1 1.14 4.4 1.26

Predict not taken 1 1.09 4.5 1.29

Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty
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Pipelining Introduction 
Summary

• Just overlap tasks, and easy if tasks are independent

• Speed Up �� Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources

– Data (RAW,WAR,WAW): need forwarding, compiler scheduling

– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined


